EXCAVATIONS ALONG NM 22: Agricultural Adaptation from AD 500 to 1900 in the Northern Santo Domingo Basin, Sandoval County, New Mexico

compiled by Stephen S. Post and Richard C. Chapman

Volume 5

ANALYTICAL STUDIES: FAUNA AND FLORA

Nancy J. Akins, Susan Moga, Pamela McBride, Mollie Toll, Jessica Badner, Richard Holloway

Museum of New Mexico Office of Archaeological Studies Archaeology Notes 385 2012

OFFICE OF ARCHAEOLOGICAL STUDIES

DEPARTMENT OF CULTURAL AFFAIRS

Excavations along NM 22: Agricultural Adaptation from AD 500 to 1900 in the Northern Santo Domingo Basin, Sandoval County, New Mexico

compiled by Stephen S. Post and Richard C. Chapman

VOLUME 5

ANALYTICAL STUDIES: FAUNA AND FLORA

by Nancy J. Akins, Susan Moga, Pamela McBride, Mollie Toll, Jessica Badner, and Richard Holloway

Archaeology Notes 385

Contents

Chapter 20. UTILIZATION OF FAUNA by Nancy J. Akins
Chapter 21. Worked Bone Assemblages from Six Sites by Susan M. Moga
Chapter 22. HUMAN SKELETAL REMAINS by Nancy J. Akins
Chapter 23. Flotation Sample Analysis, Macrobotanical Sample Analysis, and Wood Identification at Peña Blanca by Pamela J. McBride, Mollie S. Toll, and Jessica A. Badner
Chapter 24. Pollen Analysis of Six Sites (LA 249, LA 265, LA 6169, LA 6170, LA 6171, and LA 11582) by Richard G. Holloway, Ph. D

Figures

20.1.		
	provenience types	35
20.2.	Scatter plot of lagomorph and turkey indices for Early Developmental sites and	
	provenience types	35
20.3.	Scatter plot of artiodactyl and turkey indices for Early Developmental sites and	
	provenience types	35
20.4.	Percent of roasting-like and discard burns for Peña Blanca faunal assemblages	54
20.5.	Peña Blanca faunal indices	87
20.6.		
20.7.	Peña Blanca faunal indices by provenience type	
	Peña Blanca ceramic and bone ratios for rabbit/small mammals and artiodactyl/	
	large mammals	96
20.9.	Bar graph of Peña Blanca ceramics and bone ratios	97
	. Scatter plot of lagomorph and artiodactyl indices for regional sites and time periods	
	. Scatter plot of lagomorph and turkey indices for regional sites and time periods	
	. Scatter plot of artiodactyl and turkey indices for regional sites and time periods	
	. Indices for Arroyo Hondo	
	. Arroyo Hondo percent of edible meat weight	
	Bone tools	
	Coarse-point awls	
	Bone tools	
21.4.	Elk rib object of unknown function from LA 265	127
	Age distribution for Peña Blanca	
	Proportions of subadult age groups for regional sites	
	Cumulative percent of subadults for regional sites	
	Ranges of humerus robusticity	
	Range in femur robusticity	
22.6.	Range of femur shape index.	150
	Comparison of proportions of hypoplasia lines	

22.8. Proportion of Peña Blanca teeth with hypoplasia lines by age of formation	157
22.9. Rodent disturbance and gnawing, LA 6169, Burial 9	173
22.10. Chop-like marks on Burial 1	176
22.11. Chop-like marks on Burial 6	177
22.12. Chop-like marks on Burial 3	178
24.1. LA 265, Structure 1 economic taxa by level	282
24.2. Feature 14 economic taxa by level.	283

TABLES

20.1.	Summary of taxa recovered from Peña Blanca sites	. 5
20.2.	Proportion of unidentifiable elements, flotation contribution, and environmental	
	alteration by site	. 7
20.3.	Pearson correlations between small and large from counts from six site assemblages	. 7
20.4.	Age, burning, and completeness for rodent taxa	
20.5.	Summary of cottontail rabbit age, burning, and completeness by time	12
20.6.	Summary of jackrabbit age, burning, and completeness by time	13
20.7.	Proportion of artiodactyl bone by time	
20.8.	Summary of artiodactyl burning by time period	
20.9.	Summary of artiodactyl completeness by time period	16
20.10.	Summary of bird taxa and burning through time	20
	Distribution of toads and frogs in Peña Blanca sites	
20.12.	Site contribution to provenience types	30
20.13.	Site contribution to temporal groups	31
20.14.	Provenience type contribution to temporal groups	32
20.15.	Comparison of lagomorph, artiodactyl, and turkey indices and ratios by provenience	
	type for Early Developmental assemblages	33
20.16.	Comparison of lagomorph, artiodactyl, and turkey indices and ratios by site for Early	
	Developmental assemblages	
	Faunal sample, site and provenience type contribution to ceramic dates	
	Rabbit body part distribution for Early Developmental period	41
20.19.	Early Developmental period rabbit age distribution, percent of components within	
	provenience type	43
20.20.	Distribution of Early Developmental period large mammal and artiodactyl	
	body parts	
	Co-occurrence of artiodactyl species in Early Developmental period components	46
20.22.	Provenience type distribution for large mammal and artiodactyls in Early	
	Developmental deposits	
	Deer and pronghorn parts recovered from Early Developmental period assemblages	47
20.24.	Summary of cottontail rabbit parts, fragmentation, and burning for Feature 29 at	
	LA 6169	50
20.25.	Comparison of percent of MNI represented for Henderson Site boiled cottontail and	
	roasted prairie dog assemblages and LA 6169 Feature 29 roasted assemblage	52
20.26.	Proportion of roasting and discard burns for rabbit/small mammal and	
	artiodactyl/large mammal	53
20.27.	Actual and expected counts for artiodactyl/large mammal parts by	
	provenience type	56
20.28.	Actual and expected counts and chi-square values for burn type of larger samples of	
	artiodactyl/large mammals by provenience	60
20.29.	Actual and expected counts and chi-square values for completeness of larger	
	samples of artiodactyl/large mammals by provenience	
20.30.	Actual and expected counts for rabbits/small mammal parts by provenience type	63

20.31.	Actual and expected counts and chi-square values for burn type of larger samples of rabbits/small mammals by provenience
20.32.	Actual and expected counts and chi-square values for completeness of larger
	samples of rabbits/small mammals by provenience
20.33.	Counts and expected counts for major animal groups by time and provenience type
20.34.	Complete and partial dogs recovered from Peña Blanca73
20.35.	Summary of dogs and dog elements recovered from Early Developmental and Mixed
	Early Developmental period deposits
20.36.	
20.37.	
	components with turkey and probable turkey remains
20.38.	
	turkey bones
20.39.	Possible ceremonial disposition of wild bird parts in Early Developmental period
	deposits
20.40.	Possible ceremonial disposition of artiodactyl cranial parts in Early Developmental
	period deposits
20.41.	Possible ceremonial disposition of reptile and amphibian parts in Early
	Developmental period deposits
20.42	Summary of Early Developmental components with potential animal ceremonial
20.12.	deposition
20.43	Summary of identified artiodactyl specimens by time period for Peña Blanca
	Comparisons of lagomorph, artiodactyl, and turkey indices for Peña Blanca,
20.11.	Dolores, and Chaco Canyon
20.45	Summary of lagomorph, artiodactyl, and turkey indices and ratios by period and
20.45.	provenience type
20.46	Ratios of rabbit/small and artiodactyl/large counts to gray and brown ware ceramic
20.40.	counts and weights for similarly sampled components
20.47	· · · ·
20.47. 21.1.	
21.1.	Bone artifacts by site, component, completeness, taxon, and element
	Frequencies of bone artifact type by site at Peña Blanca
21.3.	Frequencies of Peña Blanca bone artifact type by ceramic dating period
21.4.	Bone artifact dimensions (mm) for Peña Blanca (complete measurements only)
21.5.	Summary of the attributes for Peña Blanca awls
21.6.	Comparison of selected bone artifacts for regional sites
22.1.	Individuals represented at Peña Blanca sites
22.2.	Scattered human elements by site and SU and individual
22.3.	Age and sex distribution for the Peña Blanca humans
22.4.	Age distribution compared with other Southwest sites
22.5.	Comparison of sex ratios and percent of females over 40 years of age
22.6.	Burial location, position, and grave goods for Peña Blanca burials
22.7.	Summary of burial location, position, orientation, and burial goods for Peña Blanca
	burials by site and time period
22.8.	Summary of burial location, position, orientation, and burial goods for Peña Blanca
	burials by age and time period
22.9.	Comparison of burial practices with Cochiti Dam sites, LA 3333, Pindi, and
	Arroyo Hondo
22.10.	Summary of Peña Blanca human measurements
22.11.	Peña Blanca maximum humerus diameter (mm), femur robusticity, and femur shape
	compared with a Late Developmental (Pojoaque/Nambe), a fairly mobile (Galisteo
	Basin) and a sedentary (La Plata) populations
22 12	
22.12.	Femur robusticity and shape indices and maximum humerus diameter for Cochiti Dam sites

	Summary of conditions observed	
22.14.	Summary of degenerative joint disease by time and age	154
22.15.	Number of individuals with hypoplasia lines (M2-I1) by half years of age	155
22.16.	Proportion of individuals with hypoplasia lines on the maxillary central incisor	
	and the mandibular canine by age compared to other populations	
	Number of caries by age and tooth	
22.18.	Antemortem loss and abscesses for individuals 45 years or older	159
22.19.	Attrition scores oldest to youngest mature individuals	160
	Peña Blanca summary of porotic hyperostosis	160
22.21.	Peña Blanca, Rio Grande, Galisteo Basin, San Juan Basin and Northern San Juan	
	comparative burial practices	
	Summary of carnivore, rodent, and possible cultural modification	174
23.1.	Peña Blanca charred plant taxa recovered from flotation, macrobotanical, and	
	wood samples.	199
23.2.	LA 249, Structure 6 fill, Late Developmental flotation plant remains, frequency and	
		200
23.3.	LA 249 Structure 6 fill, Late Developmental/Coalition wood charcoal from flotation	
		200
23.4.	LA 249, Structure 6 fill, Late Developmental/Coalition carbonized wood and	
		201
23.5.	LA 249, Structure 6 Late Developmental/Coalition floor and features, flotation plant	
		201
23.6.	LA 249, Structure 6 Late Developmental floor and features, wood charcoal from	
		201
23.7.	LA 249, Features 3 and 7 (extramural hearths) and surface strip, flotation plant	
	remains	
	LA 249, AU 406 (midden), flotation plant remains	
	LA 249, AU 406 (midden), wood charcoal from flotation samples	
	LA 249, AU 412 (midden) and AU 413 (burial), flotation plant remains	
	LA 265, Study Unit 1 (pit structure) upper fill, flotation plant remains	
	LA 265, Study Unit 1 (pit structure) upper fill, wood charcoal from flotation samples	
	LA 265, Study Unit 1 (pit structure) floor fill and features, flotation plant remains	205
23.14.	LA 265, Study Unit 1 (pit structure) floor fill and features, wood charcoal from	
	flotation samples	
	LA 265 Study Unit 1 (pit structure) features, macrobotanical samples	
	LA 265, Study Unit 2 (extramural activity area), macrobotanical samples	
		207
23.18.	LA 265, Study Unit 3, Feature 14 (large irregular-shaped pit), wood charcoal from	
	flotation samples	
	LA 265, Study Unit 3, Feature 15 (very large pit), flotation plant remains	208
23.20.	LA 265, Study Unit 3, Feature 15 (very large pit), wood charcoal from	• • • •
	flotation samples	
	LA 265, Study Unit 3, Feature 15 (very large pit), macrobotanical samples	
	LA 265, Feature 34 (large irregular-shaped pit) by stratum, flotation plant remains	209
23.23.	LA 265, Feature 34 (large irregular-shaped pit) by stratum, wood charcoal from	010
	flotation samples	
	LA 265, Study Unit 4 upper fill and roof fall, flotation plant remains	
	LA 265, Study Unit 4 upper fill and roof fall, wood charcoal from flotation samples	
	LA 265, Study Unit 4 floor fill and floor features, flotation plant remains	
	LA 265, Study Unit 4 floor fill and floor features, wood charcoal from flotation samples	
	LA 265, Study Unit 4 floor fill and floor features, macrobotanical samples	
	LA 265, Study Unit 13 upper fill and roof fall by stratum, flotation plant remains.	Z1Z
23.30.	LA 265, Study Unit 13 upper fill and roof fall by stratum, wood charcoal from flotation	010
	samples	213

	LA 265, Study Unit 13 floor fill and burial, flotation plant remains
23.33.	LA 6169, Feature 47 (Early Developmental pit structure) floor features, flotation plant remains
	LA 6169, Feature 47 (Early Developmental pit structure) floor features, wood charcoal from flotation samples
	LA 6169, Feature 47 (Early Developmental pit structure) floor features, macrobotanical and wood samples
	LA 6169, Feature 76 (Late Developmental pit structure) floor features, flotation plant remains
	LA 6169, Feature 76 (Late Developmental pit structure) floor features, wood charcoal from flotation samples
	macrobotanical and wood charcoal samples
	LA 6169, Feature 70 (Coalition pit room) floor features, wood charcoal from flotation samples by weight in grams and macrobotanical samples
	LA 6169, Feature 4 (Early Developmental pit structure) roof fall/floor fill and floor features, flotation plant remains
	LA 6169, Feature 4 (Early Developmental pit structure) upper fill, floor, and floor features, wood and macrobotanical samples
	plant remains
	charcoal from flotation samples
	macrobotanical and wood samples
23.48.	samples
	LA 6170, Structure 2 Early Developmental components, flotation plant remains
23.51.	samples
23.53.	LA 6170, Structure 5A Late Developmental components, flotation plant remains
23.55.	LA 6170, Structure 5 Early Developmental features, flotation plant remains
	LA 6170, Structure 5 (Early Developmental fill) and Structure 5A (Late Developmental), wood charcoal from flotation samples
	LA 6170, Structure 50 Early Developmental fill by component, flotation plant remains
23.60.	LA 6170, Structure 50 Early Developmental features, flotation plant remains
23.62.	macrobotanical samples
23.63.	flotation samples233LA 6170, Study Unit 12 extramural features, flotation plant remains233

23.64.	LA 6170, wood charcoal specimens examined prior to possible tree-ring dating	233
23.65.	. LA 6171 Feature 38 fill and sub features and Structure 1 fill, flotation plant remains	234
23.66.	LA 6171, Study Unit 6, Structure 60 floor features, flotation plant remains	234
	LA 6171, Earliest Developmental features, flotation plant remains	
	LA 6171, Earliest Developmental features, wood charcoal from flotation samples	
	LA 6171, Structure 26 floor fill and features, flotation plant remains	
	LA 6171, Feature 26 floor fill and features, wood charcoal from flotation samples	
	LA 6171, Structure 18 floor, flotation plant remains	
	LA 6171, Structure 18 floor, wood charcoal from flotation samples.	
	LA 6171, Structure 9 floor features, flotation plant remains	
	. LA 6171, Structure 9 floor features, wood charcoal from flotation and macrobotanical	
	samples	238
23 75	LA115862, Study Unit 1 (pit structure) floor and features, flotation plant remains	
	. LA115862, Study Unit 1 (pit structure) floor and features, wood charcoal from	
20.70.	flotation and macrobotanical samples.	239
23 77	. LA115862, extramural features, flotation plant remains	
	Peña Blanca earliest Developmental and Early Developmental carbonized plant	
25.70.	remains	241
23 70	Peña Blanca taxonomic composition of flotation assemblage by time period	
	Peña Blanca Late Developmental through Classic period carbonized plant remains	
	Peña Blanca earliest Developmental through Coalition thermal features with primary	
23.01.		244
<u></u>	deposits, flotation plant remains	
	Peña Blanca earliest and Early Developmental flotation wood charcoal.	
	Peña Blanca Late Developmental through Classic flotation wood charcoal	243
23.84.	Peña Blanca wood charcoal from intramural and extramural thermal features	246
22 PE	with primary deposits	
	Comparative Zea cob morphometrics, from the Middle Rio Grande Valley and	
25.60.	San Juan Basin	248
22.87	Peña Blanca Zea mays kernel morphometrics	
	Comparative <i>Zea</i> kernel morphometrics over time, from Peña Blanca Sites, the Middle	
25.00.	and Northern Rio Grande Valley, and the San Juan Basin	250
23.80	LA 6170 Phaseolus morphometrics	
	Comparative morphometrics of common beans (<i>Phaseolus vulgaris</i>) in Peña Blanca	250
23.90.	and Chaco	251
22 01	Comparative ubiquity of carbonized flotation remains from Middle Rio Grande	201
23.91.	sites	252
22 92	Comparative ubiquity of carbonized wood from Middle Rio Grande sites	
	Occurrences of plant taxa by botanical category and time period in Peña Blanca	200
20.90.	sites	256
24.1.	Scientific and common names of plant taxa used in this report	
24.2.	Results of pollen analysis, site LA 249.	
24.3.	Results of pollen analysis, site LA 265 [°]	
24.4.	Raw pollen counts and concentration values, LA 6169	
24.5.	Raw pollen counts and concentration values, LA 6170	
24.6.	Raw pollen counts and concentration values, LA 6171	
24.7.	Raw pollen counts and concentration values, LA 115862	
24.8.	Raw pollen counts and concentration values, pollen wash samples	
	Results of PCA, soil samples.	
	Results of PCA, pollen wash samples	
	Pivot table 1, mean pollen concentration values sorted by northing	
	Pivot table 2, mean concentration values by structure type and age	
	Pivot table 3, mean concentration values of selected taxa by age, site, and structure	

24.14. Pivot table 4, mean concentration values of selected taxa from mealing basin	
features	382
24.15. Pivot table 5, mean concentration values of selected taxa, bin features	383
24.16. Pivot table 6, mean concentration values, selected taxa, burial features	384
24.17. Pivot table 7, mean concentration values, selected taxa, floor features	385
24.18. Pivot table 8, mean concentration values, selected taxa, pit features	390
24.19. Pivot table 9, mean concentration values, selected taxa, posthole features	399
24.20. Pivot table 10, mean concentration values, selected taxa, ceremonial features	401
24.21. Pivot table 11, mean concentration values, selected taxa, miscellaneous features	403
24.22. Pivot table 12, column samples from LA 265, selected taxa	405
24.23. Pivot table 13, site, age, structure and feature type by economic pollen	
24.24. Pivot table 14, burial type by selected mean pollen concentration values	417
24.25. Pivot table 15, vessel type by mean pollen concentration values, selected	
economic taxa	418
24.26. Pivot table 16, age by mean pollen concentration values, selected economic taxa	420

CHAPTER 20 UTILIZATION OF FAUNA

Nancy J. Akins

Over 10,000 specimens from six sites were analyzed from Peña Blanca and form the basis of this report. Assemblages range from just over 200 specimens for two sites (LA 249 and LA 115862) to 3,859 (LA 6169). The overwhelming majority come from unmixed Early Developmental period deposits (n = 7,802) with much smaller samples from the Late Developmental (n = 134) and Coalition (n = 572) periods. Mixed deposits account for the remainder of the sample. Rather than providing detailed accounts of the site assemblages, this section addresses the broader questions concerning subsistence and animal utilization through time and across the project area. Tables summarizing the fauna from site proveniences are included with the site descriptions. Site directors were given comments concerning each provenience grouping to incorporate into their discussions.

One goal of the original research design was to collect much needed data on economic and subsistence behavior in order to evaluate Cordell's (1979) hunter-gatherer refugium hypothesis. Under this model, at least early on when populations densities were low, farming was a minor component of a subsistence economy that focused on seasonally available wild foods. Thus, the adoption of agriculture was delayed primarily because the region was optimal for hunting and gathering (Ware 1997:47).

Building on the original goal, this report focuses on Early Developmental subsistence and animal utilization. Issues addressed tangentially throughout the taxa and site assemblage sections, and more indirectly, the section on research questions, examine the data from the perspective of mobility strategies. Hunting patterns are analyzed as they relate to garden and local hunting along with the evidence for long-distance hunting. Cooking and processing methods, deposition patterns with regards to site structure, seasonal resource use and distribution, and the nonsubsistence use of animals are also considered in addressing questions concerning which segment of the population may have inhabited the sites, when and how long they remained at these sites, and the nature of the activities that took place.

After faunal subsistence during the Early Developmental period has been examined, the later assemblages from these and the Cochiti Dam sites are evaluated for indications of continuity or changes in animal use and how these changes, or lack thereof, reflect on resource depletion, agricultural dependence, and mobility. Finally, Peña Blanca subsistence strategies are assessed with regards to practices throughout the Middle and Upper Rio Grande area.

Methods

Sampling was necessary for all but the two smallest assemblages, LA 249 and LA 115862. Site directors generally selected the proveniences that were analyzed completely or sampled and the individual bags to be analyzed. At LA 265, where the assemblage was so large and the selection well beyond what could be accomplished in the time allotted, the analysts selected from within the site director's selection. Accounts of the reasoning and nature of the selections are found in the site assemblage section. In addition to the selected sample, all bags were examined for the presence of bone tools and ornaments. These were pulled, analyzed, and reported as tools but do not appear in the general faunal data base when they are not from a selected provenience. Similarly, all of the dog burials were inventoried, measured, and assessed for age and other pertinent information. Dog burials that were in selected proveniences appear in the data base while the

others do not. Most of the bone recovered from flotation samples from proveniences selected for analysis was identified and included in the data base, materials recovered from dry screening unprocessed flotation samples, and those samples that were not processed until after the analysis was complete, were not analyzed.

Specimens chosen for analysis were identified using the Office of Archaeological Studies' comparative collection supplemented by those at the Museum of Southwest Biology Divisions of Fishes, Herps, Birds, and Mammals. Susan Moga identified the assemblages from LA 249, LA 265, LA 6169, LA 6171, and LA 115862 and the author that from LA 6170. To help overcome the inevitable differences in recording by different analysts, the author undertook extensive reviews of the data. All of the fauna from LA 249, LA 6171, and LA 115862 were checked on a bone-by-bone basis as were at least 70 percent of that from LA 265, and as much as 60 percent from LA 6169. Virtually all of the identified artiodactyls and herps, and most of the bird identifications were checked.

Recording followed the established OAS computer-coded format which identifies the animal and body part represented, how and if the animal and part was processed for consumption or other use, and how taphonomic and environmental conditions have affected the specimen. The following briefly describes and defines the variables.

Provenience-Related Variables

Detailed provenience, component, and ceramic dating information were linked to the data file through the LA and Field Specimen (FS) numbers. Components, or logical units of analysis, were assigned by the site director and the ceramic dating by C. Dean Wilson in consultation with the site director. Each line contains the provenience information, the FS number, and a lot number that identifies a specimen or group of specimens that fit the description recorded in that line. The count indicates how many specimens are described by that data line.

Taxon

Taxonomic identifications are made to the most specific level possible. When an identification is less than certain, this is indicated in the certainty variable. Specimens that cannot be identified to the species, family, or order are assigned to a range of indeterminate categories based on the size of the animal and whether it is a mammal, bird, other animal, or this cannot be determined. Unidentifiable fragments often constitute the bulk of a faunal assemblage. By identifying these as precisely as possible, the information gained supplements that from the identified taxa.

Each bone (specimen) is counted only once, even when broken into a number of pieces by the archaeologist. In most instances when the break occurred prior to excavation, the pieces are counted separately and their articulation noted in a variable that identifies conjoinable pieces, parts that were articulated when found, and pieces that appear to be from the same individual (e.g., virtually all pieces of a rabbit foot). Exceptions were made when deterioration has reduced a piece of bone or antler to a large number of pieces. Animal skeletons are considered as single specimens so as not to vastly inflate the counts for accidentally and intentionally buried taxa. Toads and frogs were often considered skeletons since most parts are so small that only a few are recovered by even smaller (1/8 inch) screens. When most of the larger parts were found in the same bag and appeared, on the basis of size, age, and taphonomic characteristics, to be from the same animal, these were counted as partial skeletons. This was occasionally done for small rodents.

Element (Body Part)

The skeletal element (e.g., cranium, mandible, humerus) is identified then described by side, age, and the portion recovered. Side is recorded for the element itself or for the portion recovered when it is axial, such as the left transverse process of a lumbar vertebra. Age is recorded at a general level: fetal or neonate, immature (a third to two-thirds mature size), young adult (near or full size with unfused epiphysis or young bone), and mature. Further refinements based on dental eruption or wear are noted as comments. The criteria used for assigning an age is also recorded, generally, the size, epiphysis closure, or the texture of the bone. The portion of the skeletal element represented in a particular specimen is recorded in detail for estimating the number of individuals represented in an assemblage and to discern patterns related to processing.

Completeness

Completeness refers to how much of that skeletal element is represented by the specimen (analytically complete, more than 75 percent complete but not analytically complete, between 50 and 75 percent complete, between 25 and 50 percent, or less than 25 percent complete). Completeness is used in conjunction with the portion represented to estimate the number of individuals present. It also provides information concerning whether a species is intrusive and on processing, environmental deterioration, animal activity, and thermal fragmentation.

Taphonomic Variables

Taphonomy is the study of preservation processes and how these affect the information obtained. The goal is to identify and evaluate at least some of the non-human processes affecting the condition and frequencies found in an assemblage (Lyman 1994:1). Taphonomic process expressly monitored in this analysis are environmental, animal, and some types of burning. Environmental alteration is recorded as degrees (light, medium, and heavy) of pitting or corrosion from soil conditions, sun bleaching from extended exposure, checking or exfoliation from exposure, root etching from the acids excreted by roots, and polish or rounding from sediment movement. Animal alteration is recorded by source or probable source and where it occurs on the element. Choices include carnivore gnawing and/or

punctures, scatological or probable scat, rodent gnawing, and agent uncertain. Burning, when it occurs after burial, is also a taphonomic process and burning effects the preservation and completeness of individual bones. In addition, a bright yellow stain on all or portions of bones was noted in a comment variable for all sites but LA 6169, as was the purple staining that tends to occur on bone buried in the flesh and primarily observed on human, turkey, and dog bones.

Burning

Burning can occur as part of the cooking process, part of the disposal process, when bone is used as fuel, or after burial. The color, location, and presence of crackling or exfoliation were recorded. Burn color is a gage of burn intensity. A light tan color or scorch is superficial burning, while charred or blackened bone becomes black as the collagen is carbonized, and when the carbon is oxidized, it becomes white or calcined (Lyman 1994:385, 388). Burns can be graded, reflecting the thickness of the flesh protecting portions of the bone, or dry, light on the exterior and black at the core, indicating the burn occurred well after disposal when the bone was dry. Graded or partial burns can indicate a particular cooking process, generally roasting, while complete charring or calcined bone does not. Uniform degrees of burning are possible only after the flesh has been removed and generally indicate a disposal practice (Lyman 1994:387). Potential boiling is recorded in a separate variable as brown and rounded, brown with no rounding, rounded only, waxy, and brown and waxy. Unfortunately, highly processed and boiled bone resembles scatological bone in many respects: specifically, the fragmentation, rounding, and color so that distinguishing the two is too often somewhat arbitrary.

Butchering and Processing

Evidence of butchering is recorded as various orientations of cuts, grooves, chops, abrasions, saws, scrapes, peels, and intentional breaks. The location of these on the element is also recorded. A conservative approach was taken to the recording of marks and fractures that could be indicative of processing animals for food, tools, or hides since many natural processes result in similar marks and fractures. Spiral fractures were recorded based on morphology, while recognizing there are other causes and that these can occur well after discard. Impacts require some indication of an impact, generally flake scars or evidence of percussion. These were not recorded when they were ambiguous or accompanied by carnivore gnawing.

Modification

Tools or ornaments, manufacturing debris, utilized bone, possible modification, and pigment stains are recorded as modification. The tools, manufacturing debris, and utilized bone are described in a separate section of this report (Moga, Chapter 21).

Data Analysis

Once the data were entered and checked, the site directors provided components and groups of components for table generation. Data were tabulated and analyzed using SPSS (pc version 8.0 and 10.1) and given to the site directors along with observations and interpretations. Most comments regarding particular provenience assemblages are integrated into the site reports. Some are included in this section when they illustrate a particular point or provide the basis for discussing a broader topic.

TAXA

A large variety of taxa was identified in the Peña Blanca faunal assemblages. This section considers the habitat and availability of the animals identified, how these may have been used by the prehistoric inhabitants, and their distribution in time and space. Table 20.1 gives the scientific name or description and the common names of those found along with the number of Peña Blanca sites where they were found and whether they are reported from the Cochiti Dam sites.

Unidentified Taxa

The amount of unidentifiable bone (small fragments of bone where only the size of an animal can be estimated) (Table 20.2) is determined in part by the overall bone preservation at a site and by the proveniences selected for analysis within a site. Poor preservation accounts for the large proportions of unidentifiable bone at LA 6171 and LA 115862 while selection for floor and trash deposits where a smaller screen size was used may account for some of that from LA 265. Another factor is the proportion of flotation bone, which is often very small unidentifiable crumbs of bone. Flotation bone ranges from 0.7 percent for LA 265 to 5.4 percent for LA 115862.

Correlations between the counts for small unidentifiable forms, the lagomorphs, the medium to large and large mammal, artiodactyl, and identified artiodactyls (Table 20.3) have several implications. The highest correlation is between the small and large forms, suggesting that whatever the cause of the fragmentation – environmental, provenience, or processing related, it influences both small and large animal bones. Other high correlations are as expected, the small unidentifiable group correlates best with the amount of lagomorph (rabbit) bone while the large mammal and artiodactyl groups correlate with the identifiable artiodactyl counts.

Rodentia (Squirrels, Prairie Dogs, and Rodents)

A diversity of rodents and a few squirrel species were found. Much of this can be attributed to the amount of screening and screening with 1/8-inch mesh. Table 20.4 summarizes the completeness, burning, and age distribution for the rodent taxa.

Squirrels. True squirrel specimens are rare in this collection and confined to two species, the spotted ground squirrel (*Spermophilus spiloso*-

Scientific name or taxon	Common name or size	Count	Col %	No. of Peña Blanca Sites	No. of Cochiti Sites
Unknown small	Unknown small animal	3	0.0%	2	-
Unknown	Unknown animal	1	0.0%	1	-
Small mam./m-l bird	Smaller than jackrabbit or turkey	93	0.9%	6	_
Small mammal	Smaller than jackrabbit	1918	17.8%	6	
Small-medium mammal	Dog or smaller	241	2.2%	5	-
Medium mammal	Jackrabbit to dog size	241	0.1%	2	-
Medium-large mammal	-	561	5.2%	6	-
•	Dog size or larger Deer size or larger	526	5.2 <i>%</i> 4.9%	6	-
	5				-
Very large mammal	Elk size or larger	1	0.0%	1	-
Small Sciuridae	Small squirrels	1	0.0%	1	-
Spermophilus spilosoma	Spotted ground squirrel	10	0.1%	2	4
Spermophilus variegatus	Rock squirrel	1	0.0%	1	4
size of Cynomys ludovicianus	Black-tailed or large prairie dog	23	0.2%	3	-
Cynomys gunnisoni	Gunnison's prairie dog	26	0.2%	3	5
Thomomys bottae	Botta's pocket gopher	61	0.6%	5	5
Pappogeomys castanops	Yellow-faced pocket gopher	172	1.6%	5	4
<i>Perognathus</i> sp.	Pocket mice	8	0.1%	2	1
Dipodomys ordii	Ord's kangaroo rat	49	0.5%	6	2
Dipodomys spectabilis	Banner-tailed kangaroo rat	106	1.0%	5	2
Castor canadensis	Beaver	7	0.1%	2	2
Cricetidae	Cricetid rodents	3	0.0%	2	-
Peromyscus sp.	Peromyscus sp.	44	0.4%	3	2
Onychomys leucogaster	Northern grasshopper mouse	19	0.2%	2	-
Neotoma sp.	Woodrats	80	0.7%	6	5
Neotoma albigula	White-throated woodrat	26	0.2%	4	3
Neotoma mexicana	Mexican woodrat	5	0.0%	2	-
Large Neotoma	Bushy-tailed or large white-throated	33	0.3%	3	-
Small rodent	Small rodents	19	0.2%	4	-
Medium-large rodent	Woodrat or larger	83	0.8%	6	-
cf. Sylvilagus nuttalli	Nuttall's cottontail	1	0.0%	1	-
Sylvilagus audubonii	Desert cottontail	3161	29.3%	6	5
Lepus californicus	Black-tailed jackrabbit	982	9.1%	6	5
Medium carnivore	Fox to badger size	3	0.0%	3	-
Large carnivore	Bobcat, coyote, wolf size	7	0.1%	2	-
Canis sp.	Canid, species unknown	8	0.1%	3	3
Canis latrans	Coyote	2	0.0%	1	-
Canis familiaris	Dog	223	2.1%	3	1
Ursus americanus	Black bear	1	0.0%	1	3
Mustela frenata	Long-tailed weasel	1	0.0%	1	5
					-
Taxidea taxus	Badger Bobcat	8	0.1%	3	3
Felis rufus		3	0.0%	1	4
Medium artiodactyl	Deer, pronghorn, bighorn	960	8.9%	6	-
Large artiodactyl	Elk or bison	21	0.2%	4	-
Medium to large artiodactyl	Medium-large artiodactyl	8	0.1%	3	-
Cervidae	Deer or elk	19	0.2%	4	2
Cervus elaphus	Elk	33	0.3%	3	-
Odocoileus hemionus	Mule deer	163	1.5%	6	4
Antilocapra americana	Pronghorn	91	0.8%	5	4
Bos bison	Bison	6	0.1%	2	-
Bos/Bison	Cattle or bison	42	0.4%	3	3
Ovis canadensis	Bighorn sheep	35	0.3%	5	4

Table 20.1. Summary of Taxa Recovered from Peña Blanca Sites

Scientific name or taxon	Common name or size	Count	Col %	No. of Peña Blanca Sites	No. of Cochiti Sites
Ovis, Capra	Domestic sheep or goat	3	0.0%	2	-
<i>Equus</i> sp.	Horse, burro	1	0.0%	1	-
Small bird	Small passerine	2	0.0%	2	-
Medium bird	Quail or larger	18	0.2%	3	-
Large bird	Hawk or larger	72	0.7%	3	-
Medium-large bird	Medium-large bird	21	0.2%	3	-
Very large bird	Turkey or larger	70	0.6%	3	-
Egg shell	Eggshell	13	0.1%	2	-
Anatinae	Duck	2	0.0%	2	2
Accipiter striatus	Sharp-shinned hawk	1	0.0%	1	-
Aquila chrysaetos	Golden eagle	4	0.0%	4	-
Falco mexicanus	Prairie falcon	1	0.0%	1	-
cf. Falco columbarius	American kestrel/merlin	1	0.0%	1	-
Callipepla squamata	Scaled quail	13	0.1%	4	3
Meleagris gallopavo	Turkey	438	4.1%	3	4
Grus canadensis	Sandhill crane	1	0.0%	1	4
Bubo virginianus	Great horned owl	1	0.0%	1	1
Colaptes auratus	Flicker	18	0.2%	4	1
Eremophila alpestris	Horned lark	21	0.2%	3	-
Sturnella neglecta	Western meadowlark	10	0.1%	2	-
Passeriformes	Passerines/small perching birds	16	0.1%	3	-
Chrysemys picta	Painted turtle	4	0.0%	2	-
Terrapene ornata	Ornate box turtle	1	0.0%	1	-
Sauria	Lizards	9	0.1%	4	-
Phrynosoma sp.	Horned lizards	3	0.0%	2	-
cf. <i>Cnemidophorus</i> sp.	Whiptail lizards	1	0.0%	1	-
Ophidia	Snakes	2	0.0%	1	-
Colubridae	Nonvenomous snakes	40	0.4%	3	-
Salienta	Frogs and toads	5	0.0%	2	1
cf.Scapiopus bombifrons	Plains spadefoot	2	0.0%	2	-
cf. Spea multiplicata	New Mexico spadefoot	1	0.0%	1	-
Bufonidae	True toads	5	0.0%	3	2
cf. Bufo cognatus	Great plains toad	15	0.1%	3	-
Bufo cognatus or woodhouseii	Plains or Woodhouse's toad	24	0.2%	5	-
cf. Bufo punctatus	Red spotted toad	8	0.1%	2	-
Bufo cognatus or punctatus	Plains or red-spotted toad	3	0.0%	- 1	-
cf. Bufo woodhousii	Woodhouse toad	26	0.2%	4	2
cf. Rana pipiens	Northern leapord frog	4	0.0%	3	-
Catostomidae	Suckers	2	0.0%	1	_
Ictiobus bubalus	Small mouth buffalofish	- 1	0.0%	1	-
Totals		10790	100.0%	6	5

Table 20.1. Continued.

ma) and rock squirrel (*Spilosoma variegatus*). Both species are terrestrial burrowing squirrels (Tomich 1982:192). The spotted ground squirrel is found in arid grasslands and deserts throughout the state and hibernates from October through late March (Findley et al. 1975:121). Spotted ground squirrels were found at two of the sites. All but one are from LA 265 where scattered parts of what appear to be a single squirrel were found in an extramural pit, probably indicating an intrusive burrower.

Rock squirrels depend on broken terrain for cover and are not found in open areas. Most hibernate from October to April but may fail to hibernate in areas as far north as Albuquerque

	7.4	conduction by	Olto				
	LA 249	LA 265	LA 6169	LA 6170	LA 6171	LA 115862	Total
Total count	205	3473	3859	2259	770	224	10790
Unidentifiable taxa:	-	-	-	-	-	-	-
Unknown small	-	0	-	0.1	-	-	0
Unknown	-	-	0	-	-	-	0
Small mammal/medium to large bird	0.5	0.2	1.5	0.9	0.4	0.9	0.9
Small mammal	10.2	24	13.1	15.9	17.3	29	17.8
Small to medium mammal	0.5	2.6	3.3	0.8	0.3	-	2.2
Medium mammal	-	-	0.2	-	-	0.4	0.1
Medium to large mammal	8.8	6.6	3.6	2.9	9	17.4	5.2
Large mammal	4.9	6.2	2.2	6.9	7.1	2.7	4.9
Very large mammal	-	-	0	-	-	-	0
Total unidentifiable	24.9	39.6	23.9	27.5	34.1	50.4	31.1
Recovered from flotation samples	3.4	0.7	2.4	1.7	2.6	5.4	1.8
Environmental alteration:							
Pitted or corroded	35.1	14.2	10.2	22.9	58.4	70.1	19.3
Checked or exfoliated	1.5	2.5	1.5	5.5	0.5	3.6	2.7
Root etched	9.8	7.2	29.7	14.8	5.2	3.6	16.7
% heavily altered	14.6	7.1	5.3	1.8	37.4	23.7	8.0

 Table 20.2. Proportion of Unidentifiable Elements (% of Assemblage), Flotation Contribution, and Environmental

 Alteration by Site

Table 20.3. Pearson Correlations between Small and Large from Counts from Six Site
Assemblages

	Small	Lagomorphs	Large Mammal	Artiodactyl	Identified Artiodactyls
Small	1				
Lagomorphs	.875*	1			
Large mammal	.983**	0.793	1		
Artiodactyl	0.647	0.699	0.673	1	
Identified artiodactyl	.834*	0.787	.869*	.871*	1

* significant at the 0.05 level

** significant at the 0.01 level

(Findley et al. 1975:125–126). The single rock squirrel specimen is a complete tibia from a ventilator shaft at LA 6169. This tibia is morphologically more similar to a rock squirrel than a prairie dog, but is not as large as comparative rock squirrel specimens. Harris reports larger quantities of this species for the Cochiti Dam sites: North Bank, LA 6462 (MNI=2); Alfred Herrera, LA 6455 (MNI=3) (Harris 1968:214, 230); LA 9154 (MNI = 3) (Harris 1971:76); and Pueblo del Encierro, LA 70 (MNI = 10) (Harris 1976:H-27), and occasional spotted ground squirrels.

Prairie Dogs. Two sizes of prairie dog were found, one in the size range of the black-tailed

(Cynomys ludovicianus) and the other similar to the smaller Gunnison's (Cynomys gunnisoni). For the purposes of this report, the large bones are classified as the black-tailed form, but may be no more than a large variety of Gunnison's prairie dog. While most specimens are clearly large or small, a few may have been misclassified when fragmentary. The black-tailed prairie dog was once abundant east of the Rio Grande in grasslands, open woodland, and semi-deserts in the southwestern part of the state. In the northern part of the state, they become fat in fall and hibernate for several months. Poisoning campaigns by ranchers have largely extirpated populations in parts of New Mexico (Findley et al. 1975:130-132). The

		Age		Burning	C	ompleteness	
	% neonate	% immature	% juvenile	% burned	% > 75%	% 25-75	% <25
Small squirrels	-	-	100	-	100	-	-
Spotted ground squirrel	-	-	50	-	40	40	20
Rock squirrel	-	-	-	-	100	-	-
Large prairie dog	-	-	4.3	8.7	34.8	30.4	34.8
Gunnison's prairie dog	-	-	7.7	-	50	34.6	15.4
Botta's pocket gopher	-	-	14.8	-	29.5	47.5	23
Yellow-faced pocket gopher	0.6	0.6	11.6	3.5	40.1	30.8	29.1
Pocket mice	-	12.5	62.5	-	75	25	-
Ord's kangaroo rat	-	4.1	32.7	10.2	53.1	30.6	16.3
Banner-tailed kangaroo rat	-	1.9	9.4	10.4	56.6	31.1	12.3
Beaver	-	-	-	14.3	57.1	28.6	14.3
Cricetid rodents	-	66.7	33.3	-	33.3	66.7	-
Peromyscus sp.	-	2.3	27.3	-	79.5	18.2	2.3
Northern grasshopper mouse	-	-	15.8	-	63.1	26.3	10.5
Woodrats	-	-	23.8	22.5	31.3	33.8	35
White-throated woodrat	-	-	3.8	7.7	50	19.2	30.8
Mexican woodrat	-	-	40	-	40	40	20
Large woodrat	-	-	33.3	18.2	51.6	33.3	12.1
Small rodent	-	-	5.3	5.3	5.3	52.6	42.1
Medium-large rodent	-	2.4	16.9	10.8	18	32.6	49.4

smaller Gunnison's prairie dog generally lives in the northern areas of the state where the black-tailed prairie dog does not occur, occupying grassland habitats ranging from low valleys to montane meadows as well as mixed shrub, sage, and juniper habitats in some areas. Populations have been reduced by control practices and by sylvatic plague (Biota Information System of New Mexico [BISON-M] species accounts n.d.; Findley et al. 1975:133–134).

Since these two species generally do not overlap in range, the possibility that both were found in these site assemblages may suggest that Peña Blanca was at or near the edges of their respective habitats, or again, that the larger bones represent a large variety of the Gunnison's form. Relatively small numbers indicate that neither the prairie dogs nor any of the squirrels were actively sought out as food items. Proportions of the larger form remain relatively stable from the Early Developmental through the Coalition assemblages. The smaller or Gunnison's prairie dogs are absent from more assemblages and seem to peak in the Coalition assemblages. Only two prairie dog bones are burned, both larger or black-tailed prairie dogs from Early Developmental period assemblages. A cranium fragment from this same period and species has an impact or percussion scar. Otherwise, the near absence of burning and processing along with the presence of a partial Gunnison's prairie dog skeleton found in a large pit at LA 265, suggest that at least a portion of the prairie dog bone is intrusive rather than the remains of food items. Evidence for consumption is better for the larger variety, which may suggest it was imported to the sites. In addition to burning, more of the larger or black-tailed prairie dog specimens are associated with roof fall and structure floors, while most of the smaller Gunnison's prairie dog is found in extramural areas followed by equal numbers in structure fill and structure floor associations.

Harris (1968, 1971, 1976) does not report the larger form from any of the Cochiti Dam sites. It is possible that he identified the larger specimens as either rock squirrels (which occur in all but one of his assemblages) or Abert's squirrel, which occurs at one site, or considered them a large variant of Gunnison's prairie dog. He apparently did not consider the blacktailed prairie dog as a possibility because it generally occurs to the east, beyond the mountains or across the valley, some distance to the south (Harris 1976:H-13).

Pocket gophers. Both the smaller Botta's pocket gopher (*Thomomys bottae*) and yellow-faced

pocket gopher (Papogeomys castanops) occur in most of the site assemblages with a slight numerical advantage for the larger form. It is rare for two species of pocket gopher to occupy the same area (Chase et al. 1982:239), however, both species are consistently present throughout the time span, often in the same provenience unit. Currently, the yellow-faced pocket gopher is not found anywhere near the project area. The closest reported find is an old skull found on the west bajada of the Sandia Mountains (Findley et al. 1975:155). Yet, its larger size and single groove in the upper incisor readily distinguishes it from the smaller Thomomys and definitely suggests a change in the range of this species. Yellow-faced pocket gophers prefer deep, sandy soils that are free of rocks but are also found in rocky, caliche soils (BISON-M n.d.). Botta's pocket gopher is found in almost every habitat from the western edge of the eastern plains where soil conditions allow burrowing (Findley et al. 1975:144–145).

Pocket gophers are solitary and spend almost all of their time underground, surfacing to push up excavated soil or look for food in the immediate area. Burrows generally range from 10 to 30 cm underground with deep vertical tunnels averaging 46 to 61 cm deep. Their burrows also serve as homes for salamanders, spadefoot toads, box turtles, lizards, snakes, cottontail rabbits, and a variety of mice (Chase et al. 1982:246).

A good number of the pocket gopher bones found in these sites are complete skulls and mandibles suggesting most are the remains of post-occupational burrowers. This is reinforced by our finding a live pocket gopher just above the floor of Structure 50 at LA 6170, at a depth of nearly 2 m below the ground surface. Burning on six yellow-faced pocket gopher bones suggests they were occasionally roasted and eaten. All but one of those burned are from Early Developmental period deposits and all are lightly burned or scorched, more often (n =4) on an end or margin rather than an even scorch. None has evidence of potential processing. Botta's pocket gophers are most often found in extramural features (32.8 percent) followed by structure fill (29.5 percent). The larger form was most often recovered from structure fill (41.3 percent) followed by floor associations (23.8 percent).

Pocket Mice. At least four species of pocket mice inhabit the Peña Blanca area. Perognathus flavus (silky pocket mouse) is ubiquitous in grasslands and deserts and occurs up into juniper woodland environs. Perognathus flavescens (Plains pocket mouse) has a similar range but prefers sandy soils. Perognathus hispidus (hispid pocket mouse) is found in taller grasses and annual forbes, and Perognathus intermedius (rock pocket mouse) is rarely found outside rock habitats in lower grasslands and deserts (Findley et al. 1975:159–169). No attempt was made to identify the pocket mice to the species level. However, at least two, a smaller and a larger form, are present in the faunal assemblage. One of these is about the size of and probably is Perognathus flavus, the other is larger. None of the pocket mouse bones is burned. All were recovered from near floor or floor feature contexts suggesting they either burrowed down to floor level, occupied the structures (LA 6170 Structures 5 and 50, LA 6171 Structure 60) along with the humans, or moved in soon afterwards.

Kangaroo Rats. At least two species of kangaroo rat were found, Dipodomys ordii (Ord's kangaroo rat) and Dipodomys spectabilis (bannertailed kangaroo rat). The smaller kangaroo rats agree well with comparative specimens of Ord's kangaroo rat, however, Dipodomys merriami (Merriam's kangaroo rat) occurs in the southern part of Sandoval county and is another possibility. Ord's kangaroo rats lives almost everywhere below mid-woodland where there is friable soil. The banner-tailed kangaroo rat inhabits well-developed grasslands preferring heavier soils that can support their complex and deep burrow systems. Merriam's kangaroo rats prefer warm deserts and grasslands and when their range overlaps that of Ord's kangaroo rats, they are excluded from the more friable soils (Findley et al. 1975:174–185).

One or both species of kangaroo rat are found in all but the mainly Classic period deposits. The larger form is usually the more numerous. More kangaroo rat bones are burned than for most the other rodents. Most of the burning is in the Early Developmental assemblages where 18.5 percent of Ord's and 23.1 percent of the banner-tailed kangaroo rat bone is burned, ranging from scorched to calcined. The only other time period with burned kangaroo rat bones is the "mainly Coalition" where the larger kangaroo rat has scorched bone (n = 2 or 8.3 percent). Both kangaroo rats are found more often in extramural areas (49.0 percent of Ord's and 62.9 percent of the banner-tailed). In structures, nearly equivalent proportions are found in fill and roof fall but more Ord's (26.5 percent) than banner-tailed (11.4 percent) are associated with structure floors.

Beaver. Beavers once lived along most permanent streams in New Mexico but have been exploited out of several drainages (Findley et al. 1975:187-188). The only aquatic mammal found in the Peña Blanca assemblage, beaver parts were found in low numbers at two sites, three pieces of scapulae from a single beaver in mainly Late Developmental deposits at LA 249 and a phalanx and a burned scapula fragment from Early Developmental deposits and another phalanx and a partial radius from mainly Early Developmental deposits at LA 6170. Even though the parts suggest a single animal, these were recovered from the lower fill of Structure 5 west of NM 22 and from SU 15, a sheet midden area east of the road, suggesting they are from different animals. Two of the Cochiti Dam sites had this species, LA 6462 or North Bank (Harris 1968:209) and Alfred Herrera (Harris 1968:226).

Peromyscus. A variety of mice from this genera are common in or near the project area: *Peromyscus maniculatus* (deer mouse), *Peromyscus leucopus* (white-footed mouse), *Peromyscus boylii* (brush mouse), and *Peromyscus truei* (piñon mouse). The deer mouse is found in most habitats from ponderosa forest down to desert communities, the white-footed mouse prefers soft soil along arroyos and grasslands below the woodland, especially arroyo sides under shrubs, the brush mouse prefers warm rocky hillsides with stands of oak or other shrubby species, and the piñon mouse favors piñon-juniper woodlands (Findley et al. 1975:204–220).

No attempt was made to identify the Peromyscus to the species level. At least two species are represented in the Peña Blanca assemblage, one the size of and resembling the deer mouse, and the other the white-footed mouse. Strictly nocturnal, these mice readily move into the abandoned tunnels of pocket gophers and other rodents, buildings, or any shelter (Bailey 1971:144), including the tarps or the plastic used to protect archaeological features. Found in most (four of six) of the site assemblages, these occur in deposits from all time periods except for the mainly Classic, due in part to the small size of that assemblage. Over half were found in structure fill, which includes intrusive features and vent shaft fill, followed by extramural areas, perhaps suggesting a good portion had occupied the burrows of other rodents. None of the bone is burned and a considerable proportion are complete or nearly complete elements.

Grasshopper Mouse. The northern grasshopper mouse (*Onychomys leucogaster*) lives in sand grasslands and subsists on arthropods and small vertebrates including lizards and mice (Findley et al. 1975:227). This small mouse is an unlikely food source or human commensal and may have burrowed into the site deposits or been left by predators. None was found in structure floor associations and it was found at only two of the sites, a single element from the upper fill of a pit structure (Structure 4) at LA 6169 and 18 from at least two mice in a single extramural pit at LA 6171. None is burned and all come from mainly Coalition deposits.

Woodrats. At least two species of woodrat occur in the Peña Blanca assemblages. Except for the large specimens identified as large woodrat and mandibles and maxilla retaining at least the first molar, no attempt was made to identify the woodrats to the species level. Features of the molars can distinguish species in most cases (Hoffmeister and Torre 1960:477) while long-bone size overlaps considerably. The white-throated woodrat (*Neotoma albigula*) is widespread and common ranging from desert to mixed coniferous forest environs and overlaps with the more montane Mexican woodrat (Neotoma mexicana). The bushy-tailed woodrat (Neotoma cinerea) is primarily a mountain species but does occur in piñon-juniper woodlands near cliffs and rock outcrops. Probably the closest record for this species is in the Valle Grande. The Southern Plains woodrat (Neotoma micropus) is a grassland species that has been reported south and east of Peña Blanca and Stephens' woodrat (Neotoma stephensi), which inhabits rock accumulations in the piñon-juniper zone just north of the project area, are other possibilities (Findley et al. 1975:238-251).

The specimens called large woodrat are considerably larger than the white-throated woodrats examined at the Museum of Southwest Biology and well within the size range for the bushy-tailed woodrat specimens. Teeth on the large specimens are generally quite worn so that tooth shape could not be used to distinguish species. Since diet and habitat make it unlikely but not impossible that these are bushy-tailed woodrats, these large specimens are labeled large woodrat to distinguish them from the more typical-sized woodrats in the assemblage.

One or more species of woodrat are found in all but the Coalition and mainly Classic deposits. Post-cranial remains left at the woodrat level are the most common throughout. In the Early Developmental deposits, mandibles and maxilla that could be identified to the species level are predominantly whitethroated woodrats. This and the recovery of two partial skeletons of Mexican woodrats suggest at least these two species were present in the general area. Burning is not as common as with the kangaroo rats and tends to be light or light to heavy burns suggestive of roasting as opposed to heavy or calcined or discard burns. No other evidence of processing was observed. However, considerable proportions of all woodrat taxa are found in structure floor associations (ranging from 30.3 to 52.5 percent depending on taxon), another indication that some were eaten.

Unidentifiable rodent. Most of the unidentifiable rodent bones are too fragmentary to determine a species or genus or are elements such as vertebrae. A few are burned and nearly half are fragmentary (Table 20.4). Small rodents are found mainly in extramural (47.4 percent) and structure fill (31.6 percent) contexts while large rodent remains are mostly in floor associated contexts (42.7 percent) followed by extramural areas (29.3 percent).

Lagomorphs (Cottontails and Jackrabbits)

Cottontail rabbits. The desert cottontail (Sylvilagus audubonii) is by far the most common species recovered at all sites. Nuttall's cottontail (Sylvilagus nuttalli) may also be present. Considerable variability in the size of cottontail specimens further suggests that a variety are represented. Desert cottontails are common to abundant from desert into woodlands, including cottonwood/willow habitats along rivers and agricultural land (BISON-M n.d). Nuttall's cottontail is found in the northern mountain ranges and is smaller than the desert cottontail. The single element, a complete metatarsal identified as Nuttalls cottontail, is mature but about 20 percent smaller than desert cottontail comparative specimens and most cottontail in this assemblage. Other specimens recorded as desert cottontail could also fall within the size of this rabbit. Some suspect that none of the New Mexico cottontails are distinct biological species, and instead are morphological responses to their respective ecological conditions (Findley 1975:83). If true, the variability observed suggests that cottontail rabbits were taken from a variety of ecological niches.

Short-lived but prolific breeders, cottontail rabbits produce up to five litters of three to four a season. Young are born from late March into September, becoming sexually mature at 80 days and generally dying at about 1.5 years of age. Gestation is 28 days and the young are ready to leave the nest at two weeks of age and disperse at three weeks (BISON-M n.d.). The

	•	-	-		•	- /	
	Early Developmental	Mainly Early Developmental	Late Developmental	Mainly Late Developmental	Coalition	Mainly Coalition	Mixed Classic
N =	2482	118	32	80	111	315	9
Age:							
Fetal/neonate	0.1	-	-	-	0.9	0.3	11.1
Immature	0.4	0.8	-	-	0.9	0.3	22.2
Juvenile	6.9	7.6	-	10	8.1	4.1	11.1
Burning:							
Scorch/light graded	14.2	10.2	9.4	5.1	0.9	2.9	11.1
Heavy to calcined	7.1	4.2	3.1	6.3	6.3	0.6	-
Completeness:							
> 75%	27.6	27.1	59.4	27.5	37.8	31.5	11.1
25-75%	33.7	31.4	28.1	47.6	37.8	37.8	44.4
< 25%	38.8	41.5	12.5	25	24.3	30.8	44.4

Table 20.5. Summary of Cottontail Rabbit Age, Burning, and Completeness by Time (Percentages)

annual number of young per female ranges from 22 for Nuttall's to 39 for the eastern cottontail in Oregon (Chapman et al. 1982:96). Rapid breeding and a propensity to invade agricultural fields, make cottontail rabbits an ideal food animal. Historically, cottontails flourished and extended their range during periods of pioneer agriculture and retained high densities in areas of abandoned and fallow farmland (Chapman et al. 1982:99).

Cottontail rabbits are by far the most abundant animal represented in the Peña Blanca faunal assemblages, regardless of the site or time period. Age, burning, and completeness vary over time (Table 20.5) with more immature animals in the Early Developmental and Coalition assemblages. The proportion of complete or nearly complete bone is greatest in the Late Developmental and Coalition assemblages, perhaps suggesting that more processing occurred in the Early Developmental and Classic or that the Late Developmental and Coalition deposits contain more waste products – such as feet – and this results in greater proportions of complete elements. Due to their small size, cottontail rabbits require little effort for rendering into a useful size for cooking. Thus, it is not surprising that few cottontail bones exhibit marks, breaks, impact breaks, or other unambiguous evidence of butchering or processing. Cottontail bones are found in nearly all proveniences in proportions quite close to the assemblage as a whole.

Jackrabbits. Jackrabbits (*Lepus californicus*) are much less common in these assemblages but are still the second most common species and third most numerous taxon. Generally found in all habitats below the ponderosa forest zone (Findley et al. 1975:93), numbers increase when juniper-woodland is replaced by grass (BISON-M n.d.), and they tend to concentrate in cultivated fields during periods of drought (Dunn et al. 1982:130). This has led some researchers (e.g., Szuter and Gillespie 1994:70) to suggest that jackrabbit proportions can be used as an index of disturbed or modified environment. Cottontails are often the more abundant rabbit when an area is first settled, but as settlement size and, possibly, when field areas increase, jackrabbits become more numerous relative to cottontails.

Jackrabbits are not as prolific as cottontails, averaging about 14 young per female annually (Dunn et al. 1982:128). Breeding occurs from January through July, gestation is about 45 days, and the two to seven litters per year range in size from one to five. Most females do not breed during their first year. Adult size is reached by seven months (BISON-M n.d.).

While not as common as cottontails, jackrabbits maintain a consistent presence in all the sites. Proportions increase slightly through the Late Developmental then decrease with the lowest proportion in the mixed Classic deposits. Very young or neonatal jackrabbits are found only in the mainly Early

	Early Developmental	Mainly Early Developmental	Late Developmental	Mainly Late Developmental	Coalition	Mainly Coalition	Mixed Classic
N =	750	47	16	41	34	83	3
Age:							
Fetal/neonate	-	2.1	-	-	-	-	-
Immature	0.9	-	-	2.4	-	-	-
Juvenile	5.2	4.3	-	-	2.9	6	-
Burning:							
Scorch/light graded	11.3	8.6	6.3	-	-	1.2	-
Heavy to calcined	8.9	2.1	-	7.3	14.7	3.6	-
Completeness:							
> 75%	17.4	14.9	18.8	17	23.5	36.1	66.7
25-75%	21.5	19.1	25	26.9	32.3	25.1	-
< 25%	61.1	66	56.3	56.1	44.1	39.8	33.3

Table 20.6. Summary of Jackrabbit Age, Burning, and Completeness by Time (percentages)

Developmental deposits and immature and juvenile animals are more common in the Early Developmental, mainly Early Developmental, and mainly Coalition deposits (Table 20.6). Burning changes from predominantly light or roasting burns in the Developmental period deposits to discard burning in the mainly Coalition deposits.

As with the cottontails, proportions of highly fragmented bone decrease during the Coalition as if these animals were no longer processed to the same degree. Jackrabbits have low levels but slightly more diverse evidence of processing, probably due to their larger size. These including chops (n = 1) and peels (n = 2), which were not observed on cottontail bones. Unlike cottontails, there is also a tendency for more than the expected number of specimens to be found in structure floor contexts and fewer in extramural areas.

Carnivores

With the exception of the dog (*Canis familiaris*), very few carnivore bones were recovered. At least six species are found and the most diversity occurs in the two sites with the largest samples (LA 265 with four and LA 6169 with three) and in the Early Developmental deposits (with five). A few specimens are diagnostically carnivore but could not be identified beyond the size of the animal. These are often tooth fragments, rib shaft fragments, or immature bone. One medium carnivore bone from a

mainly Late Developmental deposit is heavily burned.

Canids. Because of the similarities in dog and coyote bones, fragmentary canid bones are considered Canis sp. (dog, coyote, wolf). The more complete or diagnostic portions of elements were generally identifiable as dog or covote and immature canid bones as dog. Coyotes are larger and more gracile than the variety of dog present at these sites. Furthermore, much of the dog occurs as complete skeletons or scattered but complete elements that represent parts of dog burials, disturbed burials, or discarded skeletons. None of the bones are burned or broken in a manner that would indicate consumption. Two of the specimens (a maxillary canine fragment and a mandible fragment) left at the canid level are burned, one heavy and one graded light to calcined. Both are from Early Developmental deposits.

Only two bones (mandible fragments) could be identified as coyote (*Canis latrans*), both from mainly Coalition deposits. Coyotes are most common in grasslands but are found in all habitats (Findley et al. 1975:281) and are commonly found in archaeological faunal assemblages.

Articulated dogs were found at three of the Peña Blanca sites, some as deliberate burials and others placed in structures as part of closing rituals. The only burning is on a dog that was tossed into a structure (Structure 5 at LA 6170) while the roof was smoldering and burned parts of some bones. Ages range from one- to twomonth-old puppies to older individuals.

The Hopi considered dogs to be warriors, hunters, and watchers. They hunted rabbits, deer, and antelope, catching antelope by the leg. They also watched the fields, driving away coyotes (Bradfield 1973:242). Dogs are further discussed in the research questions portion of this report.

Bear. The black bear (*Ursus americanus*) mandible fragment from the floor of Structure 4 at LA 6169 is unusual in the part found and its provenience, both of which suggest ceremonial disposition. Black bears are found in all of the New Mexico montane forests and occasionally wander away from montane areas (Findley et al. 1975:293–294). Harris tentatively identified a burned phalanx as bear from LA 70 (1976:18), a partial humerus from North Bank as bear, and several foot bones as black bear from Alfred Herrera (Harris 1968:210, 227).

Weasel. A long-tailed weasel (Mustela frenata) mandible from a sealed floor feature, a possible posthole in Structure 4 at LA 265, is a rare archaeological find. Ranging from valleys, including the Rio Grande, to brushy field borders and montane meadows, their preferred prey are ground squirrels and woodrats. While not specifically noted for the Peña Blanca area, this species is currently found just to the south around Albuquerque and in the Sandia Mountains, around Santa Fe, and in the Jemez Mountains (Findley et al. 1975:304). Weasels are small but bold and courageous, willing to face almost any animal, including humans. Reports of attacks on humans generally involve someone trying to take prey away. Their grip is powerful and tenacious (Svendsen 1982:624), so it is not surprising that prehistoric hunters rarely collected this species.

Badger. Low frequencies of badger (*Taxidea taxa*) bones were identified from three Peña Blanca and several Cochiti Dam sites. Most common in grasslands, but ranging into other nonforested areas, badger presence is generally related to that of burrowing rodents (Findley

et al. 1975:308). Principally nocturnal and solitary, they generally forage at night and remain underground during the day (Lindzey 1982: 656). Badgers are considered medicine animals by the Hopi. They raid cornfields and if too much damage is done, they are killed (Bradfield 1973:220). Burned badger bones include a calcined partial radius from a dog burial (Feature 110) in the upper fill of Structure 1 and a heavily to calcined burned phalanx from a keyhole structure (Feature 27) at LA 265. The other badger parts are a rib in the roof fall of Structure 1, an auditory bulla in the upper fill of Structure 4, and a partial ulna in Feature 23 at LA 265; a metacarpal from the roof fall in Structure 47 at LA 6169; and a maxilla and occipital portion of a crania from sheet deposits in Area 2 at LA 6170.

Badger bones were also recovered from the Cochiti Dam sites. Harris reports remains from North Bank (Harris 1968:210), LA 9154 (Harris 1971:72), and LA 70 (Harris 1976:H 19).

Bobcat. Bobcats (*Felis rufus*) are found throughout the state in almost all habitats (Findley et al. 1975:320). Found only at LA 265, one is an atlas vertebra from an immature animal and the others are a rib and an ulna from a mature individual. All are from different structures or features. Bobcats were more consistently found at the Cochiti Dam sites. Harris reports bobcat from North Bank (MNI = 2) and Alfred Herrera (MNI = 3) (Harris 1986:214, 230), possible bobcat (MNI = 1) from LA 9154 (Harris 1971:77), and bobcat (MNI = 3) from LA 70 (Harris 1976:H-28).

Artiodactyls

Determining prehistoric ranges and habitats for prehistoric artiodactyls is somewhat problematic. Most were hunted to near extinction in the nineteenth century and the subspecies or varieties reintroduced may not have the same behavior as the natives. Furthermore, competition with domestic ungulates, habitat degradation, intensive management practices, and occupation of some areas by humans have also altered their distribution. **Artiodactyl.** Much of the artiodactyl bone could not be identified beyond the size of the animal (Table 20.7). Medium-sized artiodactyl bone, or that from deer, pronghorn, or bighorn sheep, is the most common. A few pieces could have come from a medium or large artiodactyl (elk or bison), while others were definitely from a large artiodactyl. Small pieces of antler were classified as Cervidae, as both deer and elk are present at the sites. Neonatal or very young medium artiodactyl parts were found at LA 265, LA 6169, and LA 6170, mainly (15 of

16) in Early Developmental deposits, providing evidence of spring to early summer (May and June) hunts.

Medium and large artiodactyl bone is more often heavily burned than lightly or graded burning (Table 20.8), especially in the early period and Coalition assemblages. Almost all are small fragments (Table 20.9) and the exceptions are often neonatal or very young animals. Potential evidence of processing observed on medium artiodactyl bone is most often impacts (n = 78) followed by cuts (n = 16) and spiral

	Early Developmental	Mainly Early Developmental	Late Developmental	Mainly Late Developmental	Coalition	Mainly Coalition	Mixed Classic
Medium artiodactyl	8.1	9.6	19.4	19.6	2.6	5.7	48.1
Medium-large artio	0.1	0.2	-	-	-	0.1	-
Large artiodactyl	0.2	0.2	-	-	-	0.1	-
Elk	0.4	-	0.7	-	-	0.1	-
Deer or elk antler	0.1	0.2	0.7	-	0.3	1	-
Deer	1.4	0.7	6	3.7	0.5	1.6	1.2
Pronghorn	0.7	1.8	1.5	2.4	0.9	0.8	-
Bison	0.1	-	-	-	-	-	-
Cattle or bison	0	-	-	-	3.1	-	-
Bighorn	0.3	0.5	1.5	0.8	0.2	0.3	1.2
Assemblage size	7802	437	134	593	572	976	81

Table 20.7. Proportion of Artiodactyl Bone by Time

Table 20.8. Summary of Artiodactyl Burning by Time Period (percent of taxon)

	Early Developmental	Mainly Early Developmental	Late Developmental	Mainly Late Developmental	Coalition	Mainly Coalition	Mixed Classic
Light or light graded burns							
Medium artiodactyl	15.2	7.2	7.7	10.3	6.7	1.8	7.7
Medium-large artio	20	-	-	-	-	-	-
Large artiodactyl	36.9	-	-	-	-	-	-
Elk	-	-	-	-	-	-	-
Deer	13.2	-	12.5	4.5	-	-	-
Pronghorn	33.3	-	-	-	-	-	-
Bison	-	-	-	-	-	-	-
Cattle or bison	-	-	-	-	-	-	-
Bighorn	4.8	-	-	-	-	33.3	100
Total artiodactyl	15.5	5.1	7.5	8.3	2.3	2.1	9.8
Heavy to calcined burns							
Medium artiodactyl	29	23.8	7.7	15.5	26.7	7.2	7.7
Medium-large artio	-	-	-	-	-	-	-
Large artiodactyl	52.7	100	-	-	-	-	-
Elk	-	-	-	-	-	-	-
Antler	20	-	-	-	-	-	-
Deer	21.7	-	-	4.5	-	-	-
Pronghorn	22.3	12.5	-	14.2	-	-	-
Bison	-	-	-	-	-	-	-
Cattle or bison	-	-	-	-	-	-	-
Bighorn	28.6	-	-	-	-	33.3	-
Total artiodactyl	26.8	20.7	5	13.4	9.1	5.2	7.3

	Early Developmental	Mainly Early Developmental	Late Developmental	Mainly Late Developmental	Coalition	Mainly Coalition	Mixed Classic
Medium artiodactyl	631	42	26	116	15	56	39
> 75%	0.7	-	-	0.9	-	-	-
25-75%	4.6	-	-	0.9	6.7	3.6	-
< 25%	94.8	100	100	98.3	93.3	96.4	100
Large artiodactyl	19	1	-	-	-	1	-
> 75%	-	-	-	-	-	-	-
25-75%	5.3	-	-	-	-	100	-
< 25%	94.7	100	-	-	-	-	-
Medium-large artiodactyl	5	1	-	-	-	1	-
> 75%	-	-	-	-	-	100	-
25-75%	-	-	-	-	-	-	-
< 25%	100	100	-	-	-	-	-
Elk	31	-	1	-	-	1	-
> 75%	71	-	-	-	-	-	-
25-75%	6.5	-	-	-	-	-	-
< 25%	22.6	-	100	-	-	100	-
Mule deer	106	3	8	22	3	16	1
> 75%	18	33.3	25	36.3	-	25	-
25-75%	26.4	33.3	37.5	18.1	33.3	18.8	100
< 25%	55.7	33.3	37.5	45.5	66.7	56.3	-
Pronghorn	54	8	2	14	5	8	-
> 75%	27.8	62.5	-	21.4	20	25	-
25-75%	7.4	12.5	-	21.4	20	12.5	-
< 25%	64.8	25	100	57.1	60	62.5	-
Bison	6	-	-	-	-	-	-
> 75%	16.7	-	-	-	-	-	-
25-75%	50	-	-	-	-	-	-
< 25%	83.3	-	-	-	-	-	-
Cattle or bison	2	-	-	-	18	-	-
> 75%	-	-	-	-	27.8	-	-
25-75%	-	-	-	-	11.1	-	-
< 25%	100	-	-	-	61.1	-	-
Bighorn	21	2	2	5	1	3	1
> 75%	9.5	50	50	40	-	-	-
25-75%	38.1	-	-	-	-	-	-
< 25%	52.4	50	50	60	100	100	100
Total artiodactyl *	880	58	40	157	44	96	41
> 75%	7.2	12.1	7.5	8.9	13.7	6.3	-
25-75%	8.2	3.4	7.5	5.1	11.4	7.3	2.4
< 25%	84.7	84.5	85	86	75	86.5	97.6

Table 20.9. Summary of Artiodactyl Completeness by Time Period (percent of taxon)

*includes deer/elk antler

breaks (n = 18). Other kinds found include portions cut off (n = 1), abrasions (n = 2), bone flakes (n = 11), and peels (n = 6). For the large artiodactyl taxon, evidence is more limited and includes cuts (n=4), a spiral break, and portions cut off (n = 2). Almost twice the expected number of artiodactyl bones were found in roof fall associations (22.4 percent of the medium artiodactyl and 71.4 percent of the large artiodactyl compared to 12.5 percent for all fauna). **Elk.** Primarily grass eaters that once occupied all of the major montane areas in New Mexico (Findley et al. 1975:328), elk (*Cervis elaphus*) summer in mountain meadows and coniferous forests, descending to piñon-juniper woodlands, plains grassland, or even desert scrub in winter (BISON-M n.d). It is difficult to estimate the prehistoric range of this species. However, the proportions of this species in faunal assemblages from Tijeras Canyon (< 0.2 percent, Young 1980:101), from the Galisteo Basin site of LA 3333 (0.1 percent, Akins n.d.a), and from Arroyo Hondo (a maximum of 0.2 percent in AD 1300-1315 deposits, Lang and Harris 1984:155) are slightly lower than for the Peña Blanca sites (0.4)percent in Early Developmental deposits, 0.7 percent in Late Developmental deposits, and 0.1 percent in mainly Coalition deposits). This may suggest that elk were not as abundant to the east and southeast, and that the source was in the Jemez Mountains to the west and northwest, although the Santa Claras claim that in historic times, elk did not occur in their hunting range (Hill 1982:53).

Elk has a small but consistent presence in the Peña Blanca fauna. Parts are largely feet (72.7 percent), including an articulated hind foot found in the fill of a structure at LA 6170, but also include a tooth and parts of a vertebra, ribs (n = 4), scapulae (n = 2), a distal tibia, and a femur. Most (93.9 percent) are from Early Developmental deposits with single specimens from a Late Developmental and a mainly Coalition deposit. Evidence of processing is relatively common. The partial articulated foot from LA 6170 has impact breaks that resulted in separating the distal end of the tibia from the shaft and separating the proximal end of the metatarsal from its shaft and the phalanges. The femur has an impact fracture from separating the proximal end from the shaft, a metacarpal also has an impact separating the proximal end from the shaft, and one rib has chops and cuts. None are burned and over half (51.5 percent) were recovered in extramural areas.

Deer. Mule deer (*Odocoileus hemionus*) range throughout all elevations and habitats in New Mexico. As browsers, their most important foods are shrubs and trees (Findley et al. 1975:328–329). In some areas, deer move to higher altitudes in hot weather, returning to the foothills and valleys in the winter. Fawns are born late May into September (BISON-M n.d.).

Deer are by far the most numerous and probably the closest and most available of the artiodactyl species for prehistoric hunters. Yet, proportions in the larger site samples range

from only 1.1 to 2.1 percent. More (42.0 percent) were found in structure fill and extramural (23.5 percent) than roof fall (16.0 percent) and floor (18.5 percent) contexts. When time is considered, the proportion is low in the Early Developmental deposits (1.4 percent), increases substantially in the Late Developmental (6.0 percent), and falls again in the Coalition (0.5 percent) and mainly Classic (1.2 percent) deposits. As for parts, the vast majority of the Early Developmental deer is limb and foot parts (81.1 percent) followed by cranial (including antler) (17.0 percent), and ribs (1.9 percent). Mixed Early Developmental deer specimens (n=3) are from feet. Parts are more diverse in the Late Developmental deposits and include two vertebrae and six foot parts. In the larger mixed Late Developmental sample, parts are again more diverse and include cranial (18.2 percent), vertebrae (9.1 percent), ribs and sternum (9.1 percent), with the rest being limb and foot parts. The few Coalition parts are cranial (n = 2) and front foot (n = 1). Mainly Coalition parts are largely limb and foot parts (68.8 percent) and cranial (25.0 percent), but also include an axis vertebra. The single Classic deer specimen is part of an innominate.

Fragmentation, evidence of processing, and burning all indicate that those deer parts returned to the sites were often heavily processed. Burning is greatest in the Early Developmental assemblage (Table 20.8). The amount of highly fragmented bone (Table 20.9) varies with the highest proportions in the Early Developmental, Coalition, and mostly Coalition deposits. Impacts are by far the most common direct evidence of processing (n = 21), but also found are cuts (n = 4), spiral breaks (n = 2), chops (n = 2), splits (n = 2), and a peel.

Pronghorn. Open grassland dwellers, pronghorn (*Antilocapra americana*) were once numerous but declined markedly by the early 1900s. In Arizona, they prefer areas with grass and scattered shrubs in rolling or dissected hilly or mesa areas. In southern New Mexico young are born in June and July but in Arizona peak fawning is from May to June in the northern part of the state (BISON-M n.d.). While it is

possible that pronghorn occurred in the vicinity of the Peña Blanca sites, as is suggested by Lange (1990:130) who states that the Cochitis used a box canyon just above Cochiti as a trap for pronghorn and deer, pronghorn could also have been hunted in the Galisteo Basin to the east. The Early Coalition site of LA 3333 has abundant pronghorn (10.4 percent of the assemblage as compared to 2.4 percent deer), while proportions from the Classic period component at Tijeras Pueblo, pronghorn slightly outnumbers deer (4.4 to 3.7 percent) (Young 1980:101). San Antonio (Akins 2004), in the Tijeras Canyon area, is similar. Pronghorn considerably outnumbers deer in the lowest two levels of the midden, which date to the Coalition and Early Classic periods (4.3 to 2.2 percent and 2.7 to 0.8 percent). Proportions for Arroyo Hondo range between 0.2 and 0.6 percent for pronghorn compared to 0.5 to 2.6 percent for deer (Harris 1984:154-176).

For Peña Blanca, the proportion of pronghorn bone is never very large and probably peaked in or around the Late Developmental period (Table 20.7). This suggests the source was not in the immediate area. Parts attributed to the Early Developmental period are mainly limb and foot bones (79.6 percent) but also include cranial (20.4 percent) fragments. All of the mixed Early Developmental deposit pronghorn is foot and lower limb bones as are the two Late Developmental specimens. The mainly Late Developmental sample is larger and more diverse. It includes mandible parts (14.3 percent), vertebrae (21.4 percent), a single rib and innominate, and limb and foot parts (50.0 percent). The Coalition deposit parts include mandible fragments (n = 3) and front foot parts (n = 2) as does the mainly Coalition deposits (two cranial and six foot and limb). Like deer, pronghorn specimens were most commonly found in structure fill (42.9 percent), however relatively few came from extramural contexts (14.3 percent compared to 23.5 percent of the deer).

Pronghorn bone is more likely to be burned than deer bone (Table 20.8) and greater proportions are fragmentary in most time periods (Table 20.9). Potential processing includes impacts (n = 6), spiral breaks (n = 4), a cut, and a chop.

Bison. Bison (*Bos bison*) is definitely present at two sites in Early Developmental deposits, and probably at one other in Coalition and undated deposits. Several specimens are fragmentary or nondiagnostic and could represent either bison or domestic cattle. These were left at the *Bos* level unless the context was indisputably prehistoric.

Bison were essentially gone from New Mexico by 1860 (Findley et al. 1975:335). Most biologists believe that bison was a grassland animal confined to the eastern Plains. Bailey (1971:12-23) skeptically recounts an 1853 account by a Tewa whose father had killed two bison at Santo Domingo and a Mexican from San Juan Pueblo who claimed to have seen buffalo on the Rio del Norte (Rio Grande) in 1835. He goes on to dismiss the archaeological evidence from west of the Rio Grande as small bands that may have strayed from their usual range, which he viewed as about half-way between the Rio Grande and Pecos River. This perception is perpetuated by Lang and Harris (1984:49-50) who state the bison found at Arroyo Hondo were occasional wanderers from the great herds of the plains to the east. However, more recent evidence, as well as the consistent presence of bison in assemblages from the west side of the Sandia Mountains, Tijeras Canyon, and the Galisteo Basin, and a Basketmaker III bison kill site east of Tomé (Akins 1987b:166-167), indicate a much closer presence for this species, probably the Estancia Basin and the west slopes of the Sandia and Manzano Mountains.

The bison from LA 265 is from a backhoe trench and is not accompanied by other cultural material but is also heavily disturbed and could predate or postdate the site occupation. The specimens are considerably larger than comparative cattle material and consistent with bison so are considered bison. The other Early Developmental period bison is a complete carpal found on or near the floor of Structure 50 at LA 6170. A cattle or bison femoral epiphysis was found in the trash area just north of this structure. A cattle or bison tooth from near the floor of the pit structure at LA 115862 could well be bison, but could also have been transported by burrowing rodents. Most of the cattle or bison is from Feature 8 at LA 6171 (Badner, Chapter 14) and consists of cranial pieces, thoracic vertebrae, rib, and foot parts from a neonatal bovid. These were found in what may be a natural feature but about a meter beneath the surface. Some of the remains were articulated and some were scattered. While this could be an historic burial of a domestic calf, the cranial attributes, specifically small horns, suggest it could be bison.

Bighorn. The Rocky Mountain bighorn sheep (Ovis canadensis) is another species whose original range is largely unknown. Until the early twentieth century, bighorn sheep were present in the higher mountains of north-central New Mexico in sizable numbers. Their last stronghold was the Sangre de Cristo Mountains northeast of Santa Fe. Bighorns inhabit rugged cliffs and extremely rocky areas near suitable feeding sites containing grass and browse plants. In the United States and Canada, above bighorns winter timberline on windswept ridges or southernly exposed slopes but may descend to lower foothills and river valleys, and are found in alpine or subalpine regions during summer (BISON-M n.d.). Historically, the Cochitis placed pits containing sharp stakes and covered with grass matting and dust on trails above Cañada de Cochiti and drove deer and bighorn sheep into the pits (Lange 1990:130). The Santa Claras also hunted bighorn in the vicinity of Cochiti Pueblo (Hill 1982:53).

The archaeological distribution of this species is interesting. It is persistently but variably present at the Peña Blanca sites, at Tijeras Pueblo (0.7 percent, Young 1980:101), and in the lower layers of the San Antonio midden (0.1 and 1.1 percent, Akins 2004) but was not specifically identified for Arroyo Hondo (Harris 1984:155–176) or LA 3333 (Akins n.d.a). This absence in sites to the east along with greater numbers and a wide distribution of body parts in the Peña Blanca sites, may indicate a Jemez Mountain origin for most of the bighorn sheep found.

Proportions of bighorn in the Peña Blanca assemblage are low but consistent with no evidence of a real peak in use (Table 20.7). Parts recovered from Early Developmental deposits are diverse: cranial (28.6 percent), vertebra (23.8 percent), rib (4.8 percent), sacrum (4.8 percent), and limb parts (33.3 percent) with only one foot part (4.8 percent). The two from mainly Early Developmental deposit parts are both foot elements, as are the two Late Developmental deposit specimens. Mainly Late Developmental period parts are largely front leg (80.0 percent) plus a phalanx. The single Coalition part is a tooth and the mainly Coalition deposit parts are from a limb and two phalanges. A femur fragment is all that represents the Classic period. Bighorn bones are occasionally burned (Table 20.8) and include a good number of nearly complete elements (Table 20.9). Potential processing includes impacts (n = 3) and a spiral break. More were found in structure fill contexts (42.9 percent) followed by roof fall (25.7 percent); few are associated with floors (14.3 percent) or extramural areas (17.1 percent).

Domestic ungulates. In addition to the native artiodactyls, small numbers of domestic sheep or goat, horse, and possible cattle bones were recovered. Some were surface or near surface finds, others were in fill and indicate historic disturbance. A badly weathered horse or burrow phalanx with an axe chop mark was found on the surface at LA 115862. Domestic sheep or goat parts include a metacarpal from Structure 13 and a metatarsal from the upper fill of Structure 1 at LA 265, and an astragalus from the upper fill of Structure 4 at LA 6169. Specimens that could be cattle or bison include the femur epiphysis from SU 14 at LA 6170, a fragment of a molar or premolar from on or near the floor of the structure at LA 115862, and the neonate parts from SU 8 at LA 6171.

Birds

Small pieces of bird bone were identified to the size of the bird: passerine or small birds, medi-

um, large, or very large. Fragmentary remains that are probably turkey were coded as very large bird when associated with considerable amounts of turkey but generally were coded as large bird in contexts without turkey and where the size of the bird was less clear. No attempt was made to identify small passerines other than checking them against the horned lark specimens. Over 80 species of small passerines currently occur or are likely to occur in the Cochiti area (US Army Corps of Engineers 1990:A-7-A9). Egg shell is extremely rare, except for mixed Developmental and Classic dating deposits from LA 249 where the 12 specimens account for 5.9 percent of that small assemblage. Otherwise a single piece of eggshell was recovered from LA 265 and a second piece was found when dry screening an unanalyzed flotation sample from LA 6169.

Golden eagle, scaled quail, and flicker are present in most site assemblages (four each), followed by turkey and horned lark (three each). When broken down by time (Table 20.10), Early Developmental deposits have the most diversity and have all but two of the species identified for the project. The Cochiti Dam sites of North Bank and Alfred Herrera (Harris 1968:214, 230), LA 9154 (Harris 1971:76), and LA 70 (Harris 1976:H-26-27) are considerably more diverse in avian fauna.

Riverine birds. Water and shore birds are surprisingly sparse in these sites, given the proximity to the Rio Grande. At least 18 species of duck and goose, two herons, egret, and two cranes currently occur or are likely to occur along the Rio Grande in the Cochiti area (US Army Corps of Engineers 1990:A-4). Yet, only single bones from a mallard-sized duck were recovered from LA 6169 (radius) and LA 6170 (coracoid) and a sandhill crane (Grus canadensis) tibiotarsus from LA 6169. Harris reports Canada goose (Branta canadensis), snow goose (Chen hyperborea), duck, and sandhill crane from North Bank (Harris 1968:214); Canada goose, snow goose, shoveler, teal-sized duck, and sandhill crane from Alfred Herrera (Harris 1968:230); Canada goose, duck, and sandhill crane from LA 9154 (Harris 1971:76); and great blue heron (Ardea herodias), snowy egret (Leucophoyx thula) or American bittern (Botaurus lentiginosus), Canada goose, duck,

		-					
	Early	Mainly Early	Late	Mainly Late		Mainly	Mixed
	Developmental	Developmental	Developmental	Developmental	Coalition	Coalition	Classic
Small passerine	15	-	-	-	1	2	-
Medium bird	15	-	-	-	1	2	-
Large bird	26	-	1	8	31	6	-
Medium-large bird	7	-	-	5	1	1	-
Very large bird	66	1	-	2	-	1	-
Eggshell	1	-	-	7	-	-	5
Duck	2	-	-	-	-	-	-
Sharp-shinned hawk	-	-	-	-	1	-	-
Golden eagle	1	1	-	-	1	1	-
Prairie falcon	-	-	-	1	-	-	-
American kestrel/merlin	1	-	-	-	-	-	-
Scaled quail	9	-	-	-	-	3	-
Turkey	240	2	1	3	148	44	-
Sandhill crane	1	-	-	-	-	-	-
Great horned owl	-	1	-	-	-	-	-
Flicker	18	-	-	-	-	-	-
Horned lark	21	-	-	-	-	-	-
Western meadowlark	10	-	-	-	-	-	-
Number burned:	-	-	-	-	-	-	-
Turkey	-	-	1	-	5	-	-
Unidentifiable bird	3	-	-	-	5	-	-
Wild birds	3	1	-	-	-	1	-

Table 20.10. Summary of Bird Taxa and Burning through Time

Note: counts are used because of small sample sizes

possible shoveler (*Spatula clypeata*), and sandhill crane from LA 70 (Harris 1976:26).

Herons, egrets, and bitterns are marsh or shore-line birds that feed on fish, snakes, crayfish, snails, and small rodents (Ligon 1961:29). Sandhill cranes and both the Canada and snow goose feed in agricultural fields near water during the day and return to aquatic locations at night (BISON-M n.d.). Most ducks and shovelers generally feed and rest in aquatic habitats (Ligon 1961:42–55).

The Pueblos associate some water birds with rain. Migratory habits of some ducks make them explorers in search of a spiritual home. Duck feathers are of great importance to the Rio Grande Pueblos and ducks are hunted for feathers, not for food. The Hopis consider the duck as the ancestor of all the kachina and of the Hopi. The Tewas offer loose duck feathers in shrines along with other feathers and cornmeal. Cranes bring seeds they like and clouds and rain. They are a combination of a water symbol, seeds, and a guardian who controls the activities of clowns and kachina dancers for the Tewa (Tyler 1979:113–129).

Birds of prey. Hawks, falcons, and golden eagles are more common than the water birds in the Peña Blanca assemblage, especially the golden eagle. The sharp-shinned hawk (*Accipiter striatus*) resides in mountainous areas throughout the state including the Jemez and Sangre de Cristo Mountains (Hubbard 1978:14). The element is a coracoid found in the upper fill of Structure 70 at LA 6169. The Zunis use the feathers of this species on prayer sticks placed for hunting success or as war offerings (Tyler 1979:195).

Golden eagle (*Aquila chrysaetos*) parts include talons from the floor of Structure 4 at LA 265, the roof and closing deposits in Structure 5 at LA 6170, the fill of Structure 9 at LA 6171, and an ulna awl from the upper fill of Structure 70 at LA6169. This species is found throughout the state, nesting on ledges and cliffs or in tall trees (Ligon 1961:74). Feathers of eagles were so important to the Pueblos that some groups trapped eagles and kept them in rooftop cages. Eagles are associated with clouds and the rain that is important in growing corn, with the underworld and the dead, with hunting, with curing, and with war (Tyler 1979:43–64).

Both the prairie falcon (Falco mexicanus) and a smaller form, probably a merlin or pigeon hawk (Falco cf. columbarius), are represented in the assemblage. Prairie falcons are found throughout the state, except for the higher forested mountains, in winter and require suitable cliffs or canyons walls for nesting (Ligon 1961:79). Merlins are not common in New Mexico and may occur only as migrants (Ligon 1961:83). Parts include a humerus from a merlin found on or near the floor in Structure 4 at LA 6169 and a femur from a prairie falcon in the roof and floor fill of Structure 76 at LA 6169. Falcons and small hawks are seen by the Pueblos as swift and tireless and are often associated with races, which are generally run for rain rather than for sport (Tyler 1979:193).

A talon from a great horned owl was found on the floor of Structure 26 at LA 6171. The largest of the owls, this species is found throughout the state and is most common in rugged foothills (Ligon 1961:144). Owls are associated with witches and witchcraft in the central Rio Grande pueblos, perhaps due to Spanish influence. In the Western pueblos, owls are associated with Skeleton Man, the god of death and a fertility symbol (Tyler 1979:156–157).

Birds of prey are also reported for the Cochiti Dam sites. North Bank had only possible hawk and possible owl (Harris 1968:214), Alfred Herrera had hawk and *Buteo* sp. (Harris 1968:230), LA 9154 had a larger and a smaller Buteo, a larger and a smaller falcon, and great horned owl (Harris 1971:76); and LA 70 had hawk, *Buteo* sp., possible eagle, and a small owl (Harris 1976:H-26).

Quail. Scaled quails (*Callipepla squamata*) are relatively common in the Peña Blanca assemblages, as well as in those from the Cochiti Dam sites of Alfred Herrera (Harris 1968:230) and LA 70 (Harris 1976:H-26). This species is widespread, living in most habitats except for high forested mountains and thriving in arid areas (Ligon 1961:96). Parts are diverse with a

large number of wing bones (n = 7), fewer leg bones (n = 3), and a single sternum, coracoid, and scapula. Quail bones were mainly recovered from structure fill (46.2 percent) and extramural contexts (30.8 percent). This is one of only two species of bird that the Zunis do not use for food or feathers (Tyler 1979:71).

Turkey. Turkey (Meleagris gallopavo) bones were recovered at three of the Peña Blanca sites (LA 265, LA 6169, and LA 6170), and egg shell, presumably from turkeys, at another (LA 249). Counts are small for all but LA 6169. Given the lack of young birds and egg shell, it is likely that most or all of turkey bones are from wild birds killed for their feathers or as food or that were tamed and kept for their feathers. The only turkey burial, found at LA 265, was of a large male bird with a severely fractured but healed leg bone. Similarly, a femur from a turkey at LA 6169 was completely fractured but healed with the broken ends overlapping considerably. Neither of these birds was very mobile and probably could not have foraged for food.

The natural habitat for wild turkeys is the forested mountains, piñon-juniper forests, riparian woodlands and marshes, dense stands of shrubs, and desert scrub. Food items include piñon nuts, juniper berries, acorns, and other nuts, berries, and grass (BISON-M n.d.). Wild turkeys traveled in large flocks until the mid 1800s (Tyler 1979:72).

Very few of the turkey bones come from extramural areas (0.7 percent) with an almost equal split between structure fill (40.0 percent) and floor associated deposits (39.7 percent). Turkey bones were relatively abundant at all of the Cochiti Dam sites (Harris 1968: 214, 230, 1971:76, 1976:H-26). Chronology and domestication are discussed in the research question section of this report.

Flicker. A relatively large number of the bird specimens are from flickers (*Colaptes auratus*). Members of the woodpecker family, flickers occur statewide in summer, and are common year-round in Sandoval County. Feeding mainly on ants, they roost in cavities in trees. Their large size, slow flight, and ground feeding make

them fairly easy prey (BISON-M n.d.; Ligon 1961:1967). This, and the red feathers under the wing and tail, may have made them attractive to prehistoric hunters. Both the parts and their proveniences suggest these birds were more than potential food items. An ulna was found in floor fill and floor deposits in Structure 50 at LA 6170 and parts comprising a right and a left wing were found with a human burial in Structure 13 at LA 265. Ulnas were recovered from Structure 4 roof fall and floor fill at LA 6169 and structure fill at LA 115862, and an ulna and carpometacarpus from an extramural feature (Feature 29) area at LA 6169. A carpometacarpus and wing phalanx were found in the area in or around the vent shaft opening for Structure 50 at LA 6170. Harris (1976:H-9) identified the remains of at least 11 flickers in the LA 70 faunal assemblage.

The Zunis occasionally ate flickers and the Tewa may have used this bird for food. For the Hopi, the red feathers represent the red dawn and they attach the feathers to a standard. Feathers are used on prayer sticks during the winter solstice ceremony and the water flute of the flute ceremony is entirely cased in flicker feathers (Tyler 1979:214–216).

Horned larks. The only lark found in the Americas, horned larks are one of the most abundant year-round birds in the state. They occupy short grass, arid, and desert plains, mesas, and valleys even in adverse conditions (Ligon 1961:188). Horned larks are often seen within, or in association with, fields or other relatively open habitats. They benefit most from dryland farming and utilize the crops until these get too tall or dense (BISON-M n.d.).

Not particularly valuable for its plumage, horned lark remains were found at three sites. Parts are largely wing elements (71.4 percent) but also include vertebrae (n=3), a sternum, a scapula, and a coracoid. Most were found in clusters indicating partial birds. The floor of Structure 47 at LA 6169 had three vertebra, a humerus, a pair of ulnas, and a carpometacarpus. In Structure 50 at LA 6170 an ulna was found in the ash pit (Feature 153) and a humerus and ulna in two sealed storage pits (Features 156 and 171). Just south of this structure in or above the vent shaft and trench were a sternum, scapula, humerus, and pair of ulnas. At LA 265, horned lark bones were found in the upper fill of Structure 1 (carpometacarpus), in Feature 24, a large bellshaped pit (ulna) containing a human burial, and in the vent tunnel of Structure 4 (two humeri, a coracoid, and a carpometacarpus).

Use of this small bird varies among the Pueblos. The lark's habit of coming together in large groups when snow obscures most seeds, makes for large concentrations. The Rio Grande Pueblos trapped or snared these small birds when the weather was bad and meat was scarce. A special type of snare was used by the Tewa. The Zunis took larks in large numbers for food. These were roasted over an open fire and the feathers were not used for ritual purposes. Feathers were used on Hopi masks of the female attendant of the *Qoglo* kachina involved in ushering in the winter season of masked dancing. The same attendant appears with the Hemis kachina at the close of the masked dance season (Tyler 1979:133-137).

Western meadowlarks. This species is found in Sandoval County from spring through fall and inhabits grasslands, fields, and agricultural areas at lower and middle elevations. During spring and summer, insects make up the bulk of their diet (BISON-M n.d.). Like the flicker, some of the parts are found in situations suggesting special use. The roof fall and floor fill of Structure 4 and the floor of Feature 47 at LA 6169 produced two tarsometatarsi. The vent shaft for Structure 13 at LA 265 held a cranium, and a human burial in that same structure had a humerus, three ulnas, two carpometacarpi, and a wing digit.

Reptiles and Amphibians

Turtles. Three species of turtles were recovered from the sites. The most common, the painted turtle (*Chrysemys picta*), was found in two of the site assemblages, the ornate box turtle (*Terrapene ornata*) in one, and the softshell

turtle (*Trionx spiniferus*) in the unanalyzed assemblage from LA 6169.

Painted turtles are found in the Rio Grande (Degenhardt et al. 1996:100) and are likely to occur in the vicinity of Cochiti (US Army Corps of Engineers 1990:A-2). This species inhabits permanent waters including slowmoving portions of rivers, marshes, and ponds. Active during the day, they hibernate during November through March or into April (Degenhardt et al. 1996:100–101). Parts include entoplastron and hypoplastron pieces from the roof and floor fill and the floor of Structure 76 at LA 6169 and a hypoplastron piece from the structure fill at LA 249.

While not specifically noted for the Cochiti area (Degenhardt et al. 1996:107), the ornate box turtle is considered likely to occur (US Army Corps of Engineers 1990:A-2). Fairly widespread below 2,100 m elevation, the box turtle is absent from the northwestern portion of the state. Not dependent on standing water, their preferred habitat is grasslands with soil suitable for burrowing. Able to dig their own burrows, this species often enlarges the burrows of rodents. Like the painted turtle, the box turtle hibernates from at least November into April (Degenhardt et al. 1996:104-106). Only one specimen is attributed to this species, a marginal from the floor fill and floor of Structure 47 at LA 6169.

Softshell turtle was not present in the analyzed assemblage but was observed in a bag from the upper fill of Structure 76. Harris reports burned turtle limb bones, probably softshell, from a cooking pit at North Bank (1968:202). The spiny softshell is primarily a river dweller and occurs in the Rio Grande below 1,600 m in elevation. It spends little time on land and is extremely wary (Degenhardt et al. 1996:122–123).

Lizards. At least two genera of lizards were found, whiptails (*Cnemidophorus* sp.) and horned lizards (*Phrynosoma* sp.). The former was found as a partial skeleton on or near the floor of Structure 5 at LA 6170 and the horned toad as isolated elements and horned lizard as cranial fragments in Structure 6, fill, at LA 249 and SU

14 at LA 265. Other lizard specimens were not identified beyond the level of lizard. Most appear to be post-occupational additions to the site deposits, including a partial skeleton found on or near the floor of Structure 15 at LA 6169.

At least four species of whiptail are likely to occur in the Cochiti area: the New Mexico whiptail (*Cnemidophorus neomexicanus*), the little striped whiptail (*Cnemidophorus inornatus*), the plateau striped whiptail (*Cnemidophorus velox*), and the checkered whiptail (*Cnemidophorus grahamii*) (US Army Corps of Engineers 1990:A-2; Degenhardt et al. 1996:218–235). Whiptails burrow down about 30 cm to hibernate (Degenhardt et al. 1996:219, 222). Two species of horned lizard are found in the general area: the short horned lizard (*Phrynosoma douglasii*) and the roundtail horned lizard (*Phrynosoma modestum*) (Degenhardt et al. 1996:151–154).

Snakes. None of the snakes was identified beyond the level of snake or nonvenemous (Colubridae) snake. Most occur as one or more vertebrae, but two pit structures had entire skeletons. Structure 5 at LA 6170 had much of a snake, probably a gopher snake, in the same area as four dog skeletons considered to be part of a closing ritual. While this particular snake could have inhabited a rodent burrow and been accidentally deposited, it is also possible that it, too, was deliberately placed there. Similarly, another snake, probably a gopher snake, was found on the floor of Structure 1 at LA 265.

The venomous/nonvenemous distinction was made following Olsen (1968:80–81). Several members of the nonvenemous family Colubridae including: the western hognose snake (*Heterodon nasicus*), the coachwhip (*Masticophis flagellum*), gopher snake (*Pituophis melanoleucus*), glossy snake (*Arizona elegans*), longnose snake (*Rhinocheilus lecontei*), gartersnake (*Thamnophis* sp.), and night snake (*Hysiglena torquata*), as well as the venomous western diamond back (*Crotalus atrox*), are likely to occur in the Cochiti area today (US Army Corps of Engineers 1990:A-2).

Toads and frogs. A variety of frogs and toads were found in the Peña Blanca assemblages,

often as partial skeletons (Table 20.11). Some elements are distinctive enough to distinguish true frogs (*Rana*), true toads (*Bufo*), and spadefoot toads (*Spea*). Since the available comparative specimens do not cover the range of sizes and sexes, species identifications remain tentative. Identifications are based on a combination of current species distributions and reported size ranges as well as morphological attributes (relative size and shape of the more diagnostic elements). Specimens that could not be identified to genera are considered toad or frog. The term partial skeleton is used liberally when a fair representation of the same individual is indicated by the size, preservation, and maturity.

Spadefoot toads are well adapted to arid conditions. They are explosive breeders that form dense breeding aggregations during summer thundershowers. Males emerge from underground burrows at the sound or vibration caused by rainfall or thunder and arrive at flooded areas, setting up a loud breeding chorus to attract females (Degenhardt et al. 1996:35). Degenhardt et al. (1996:37–42) place all three of New Mexico's spadefoot toads in or near the project area while a US Army Corps of Engineers study reports only two species (Couch's and Plains) as likely to occur in the vicinity of Cochiti (US Army Corps of Engineers 1990:A-2).

Couch's spadefoot (Scaphiopus couchii) occupies arid grasslands between 900 and 1,800 m in elevation where soils are sandy and well drained. Most of its life is spent underground, emerging only during spring and summer rains. These spadefoots have been known to remain underground for as long as three years when rainfall was insufficient to stimulate emergence. Larger than the other spadefoots, Couch's spadefoot may reach a length of 90 mm. The Plains spadefoot (Spea *bombifrons*) is a grasslands species that avoids river bottoms and wooded areas. They remain in rodent or self-constructed burrows during the day and emerge only at night, especially after a summer rain. Smaller than Couch's spadefoot, their length rages between 40 and 48 mm. New Mexico spadefoots (Spea multiplicata) are found in a wide variety of habitats

			New	-				Plains	or
	Toad or	Plains	Mexico			Great P	lains	Woodho	use's
	Frog		Spadefoot	TrueTo	bads	Тоа	d	Toad	
	Parts	Skeleton	Skeleton					Skeleton	Parts
LA 249									
Structure 6 Fill, Stratum 50	_	_	_	-	_	_	-	1	1
LA 265								·	
St.1- infant burial-upper fill	_	_	-	-	-	_	-	2	-
St.1 - vent shaft	-	-	-	-	-	-	-	1	-
St. 1 floor	1	_	-	-	-	1	-	-	-
St. 4 vent shafts and tunnels	-	_	-	-	-	1	1	1	1
St. 4- floor features	_	_	-	-	_	1	-	-	-
St. 13- Feature 141	_	1	_	-	-	_	-	-	-
St. 13- floor	_	-	_	-	-	_	-	-	2
St. 13- vent shaft fill	_	_	_	-	-	-	-	_	-
St. 13- human burial-subfl.	_	-	-	-	-	-	-	-	-
SU 2- large bell-shaped pits	1	-	_	-	-	-	-	1	2
SU 3- Feature 14- large pit	-	-	_	-	-	-	-	_	-
SU 3- Feature 15- large pit	_	_	_	_	-	-	-	-	-
SU 3- hearths/roasting Pits	2	_	_	_	-	-	-	1	-
SU 9- other features	-	_	-	_	1	-	-	-	-
SU 12- hearths/roasting pits	_	_	-	_	-	-	-	-	1
SU 14- Small Pits	_	_	-	_	-	-	-	-	-
LA 6169									
St. 4 upper fill	_	_	_	-	1	_	-	-	-
St. 4 roof fall and floor fill	_	_	-	_	-	-	-	-	2
St. 4 floor	_	_	-	1	1	-	-	1	-
St. 47 upper fill	_	_	-	-	-	-	-	-	-
St. 47 floor	_	_	-	_	-	1	-	-	1
St. 76 st. collapse and trash	_	_	-	_	-	-	-	-	1
St. 76 roof and floor 1	_	_	_	_	_	_	_	_	-
St. 15 upper fill	_	_	_	_	_	_	_	_	_
St. 15 floor fill and floor	_	_	_	_	_	_	_	_	_
LA 6170									
Str 2 floor fill & contact	_	_	-	_	1	-	-	-	-
Feature 5	1	_	-	_	-	-	-	-	-
Str 5 roof & closing	-	_	-	_	-	_	1	-	-
Str 5 floor fill & contact	_	_	-	_	-	2	4	-	-
Str 5 pits w occup fill	_	1	1	-	_	-	-	-	_
Str 5 vent shaft	_	-	-	_	-	1	-	-	-
Area 2	_	-	-	_	-	-	-	-	1
Str 50 sealed features	_	-	-	_	-	2	-	-	-
SU 12	_	-	-	_	-	-	-	2	1
LA 6171								~	'
SU 6 extramural features	_	-	-	_	-	-	-	-	_
Structure 60 fill	_	-	-	_	-	-	-	-	1
Earliest Dev. features	_	-	-	_	-	-	-	-	-
Total	5	2	1	1	4	9	6	10	14
	5	2	I	1	-	9	0	10	14

Table 20.11. Distribution of Toads and Frogs in Peña Blanca Sites

	Red Sp Toa		Plains o Spotted		Woodho Toa		Northern L Frog		
	Skeleton	Parts	Skeleton	Parts	Skeleton	Parts	Skeleton	-	Total
LA 249									
Structure 6 Fill, Stratum 50	-	-	-	-	-	-	-	-	2
LA 265									
St. 1 infant burial-upper fill	-	-	-	-	-	-	-	-	2
St. 1 vent shaft	-	-	-	-	2	-	1	-	4
St. 1 floor	-	-	-	-	-	2	-	-	4
St. 4 vent shafts and tunnels	2	-	-	-	-	-	-	-	6
St. 4 floor features	-	-	-	-	-	-	-	-	1
St. 13 Feature 141	-	-	-	-	-	-	-	-	1
St. 13 floor	-	-	-	-	-	-	-	-	2
St. 13 vent shaft fill	-	1	-	-	-	-	-	-	1
St.13 human burial-subfloor	-	-	-	-	1	-	-	-	1
SU 2 large bell-shaped pits	-	-	-	-	-	-	-	-	4
SU 3 Feature 14-large pit	-	-	-	-	-	1	-	-	1
SU 3 Feature 15- large pit	1	-	-	-	1	1	-	-	3
SU 3 hearths/roasting pits	-	-	-	-	-	-	-	-	3
SU 9 other features	-	-	-	-	-	-	-	-	1
SU 12 hearths/roasting pits	-	-	-	-	-	-	-	-	1
SU 14small Pits	-	-	-	-	-	1	-	-	1
LA 6169									
St. 4 upper fill	-	-	-	1	-	-	-	-	2
St. 4 roof fall and floor fill	-	-	-	-	1	-	-	-	3
St. 4 floor	-	-	-	-	-	3	-	-	6
St. 47 upper fill	-	-	-	-	-	1	-	-	1
St. 47 floor	-	-	-	-	-	3	-	2	7
St. 76 st. collapse and trash	-	-	-	-	-	-	-	-	1
St. 76 roof and floor 1	-	-	-	-	-	1	-	-	1
St. 15 upper fill	-	-	2	-	-	1	-	-	3
St. 15 floor fill and floor	-	-	-	-	-	1	-	-	1
LA 6170									
Str 2 floor fill & contact	-	-	-	-	-	-	-	-	1
Feature 5	-	-	-	-	-	-	-	-	1
Str 5 roof & closing	-	-	-	-	-	-	-	-	1
Str 5 floor fill & contact	-	-	-	-	-	-	-	-	6
Str 5 pits w occup fill	1	-	-	-	-	-	-	-	3
Str 5 vent shaft	-	-	-	-	-	-	-	-	1
Area 2	-	1	-	-	-	-	-	-	2
Str 50 sealed features	1	-	-	-	-	-	1	-	4
SU 12	1	-	-	-	2	-	-	-	6
LA 6171									
SU 6 extramural features	-	-	-	-	-	3	-	-	3
Structure 60 fill	-	-	-	-	-	-	-	-	1
Earliest Dev. features					1				1
Total	6	2	2	1	8	18	2	2	93

Table 20.11. Continued.

ranging from grasslands to sagebrush flats, to river valleys, and agricultural land, as long as the soil is loose enough for burrowing, and over 90 cm deep for over-wintering. They are largely nocturnal and fall between the other two species in size, reaching 65 mm in length (BISON-M n.d.; Degenhardt et al. 1996:36–42). Specimens identified as spadefoot toads are all partial skeletons. Two of the spadefoot specimens are from the same structure, a New Mexico spadefoot from the ash pit and a Plains spadefoot plastered into the floor just east of the firepit in Structure 5 at LA 6170. A probable Plains spadefoot was found in Feature 141, a bell-shaped pit in the floor of Structure 13 at LA 265.

Size and morphology indicate that three species of Bufo are represented in the Peña Blanca assemblage. Distinctions were made mainly on the basis of size, with some on the shape of the ilium. Specimens that appeared mature but fell in the overlap in size ranges are considered as one or the other. Those labeled cf. Woodhouse's toad, are large and agree well with comparative specimens of this species. Woodhouse's toad (Bufo woodhousii) is the largest of the toads found in the area, often reaching 100 to 130 mm in length. It is found at lower elevations statewide and is most common in the Rio Grande Valley. It is confined to relatively mesic areas in the vicinity of water where it rests in shallow burrows during the day and feeds at dusk and after dark. The Great Plains toad (Bufo cognatus) is intermediate in size with males measuring between 63 and 103 mm and females between 49 and 112 mm. This toad is found in warmer grassland areas, including river bottoms and cultivated fields. A proficient burrower, it generally remains underground and is most active during summer rains when it is primarily nocturnal and breeds in shallow temporary pools of rain water. The smallest of the area toads, the red-spotted toad (Bufo punctatus), averages 38 to 63 mm in length. It prefers dry rocky areas near springs and pools in arroyos but can be found in just about any habitat from ponderosa woodlands to desert scrub. Largely nocturnal, it is most likely to be found under large flat rocks (BISON-M n.d.; Degenhardt et al. 1996:51–59). Woodhouse's and the Great Plains toad are considered the most likely to occur in the Cochiti area (US Army Corps of Engineers 1990:A-2). At least 36 toad skeletons and numerous parts were recovered from the Peña Blanca sites. Possible Woodhouse's toad skeletons were also recovered from the Alfred Herrera site (MNI = 1) (Harris 1968:220) and LA 70 (MNI = 1, plus two toads and seven frogs or toads) (Harris 1976:H-3, H-26).

One true frog is present in the site assem-

blages. Recognized by their long and slim limb proportions and distinctive pelvic morphology, two species, the bullfrog (Rana catesbeiana) and northern leopard frog (Rana pipiens) are considered most likely to occur in the Cochiti area (US Army Corps of Engineers 1990:A-2). Bullfrogs are large, reaching a size of 203 mm in length. Associated with permanent freshwater habitats below 2,100 m elevation, they prefer large bodies of water deep enough for overwintering and must have sufficient shallows with vegetation for cover and breeding. Bullfrog days are spent hiding in vegetation, becoming active at night. Biologists are unsure whether bullfrogs are native to New Mexico west of the Continental Divide (BISON-M n.d.; Degenhardt et al. 1996:83-85). None of the Peña Blanca specimens are overly large and all of the specimens are the size of a northern leopard frog. Generally associated with streams and rivers but also found in beaver ponds, small springs, marshes, irrigation ditches, and wet meadows, male northern leopard frogs average 68.3 mm in length and the females 74.2 mm. They rest near the waters edge but forage long distances from water during wet periods (BISON-M n.d.; Degenhardt et al. 1996:88-89). True frogs have a limited distribution within these sites. Partial skeletons were found in a sealed storage pit in Structure 50 at LA 6170 and in the Structure 1 vent shaft at LA 265. A vertebra and partial cranium were found at LA 6169 on the floor of Structure 47.

A large number of toads and frogs were recovered as skeletons (n = 41). Equal numbers (n = 15) are from structure fill, which includes intrusive burial pits, and from floor associations, with slightly fewer in extramural areas (n = 10), and only one in a roof fall context. The possibility that some were deliberately placed in the sites is considered in a later section of this report.

Fish

Fish were not an important resource for the early occupants of the Peña Blanca area. A rib from a small mouth buffalofish and two vertebrae from an unidentified sucker are the only fish bones found in the site assemblages, and these could have been deposited by nonhuman predators. Both are from the upper fill of Structure 4 at LA 6169 deposits ceramically dated as mainly Coalition. In contrast, Harris reports fish remains were widely distributed and likely used for food at the Classic period site of LA 70 (Harris 1976:H-3). Additional evidence for late use of fish for food comes from Bandelier's journal of April 4, 1882 where he gives a detailed account of Cochitis using long nets stretched across the river to dredge shallow stretches of the river for fish (recounted in Lange 1990:140).

The small mouth buffalofish (*Ictiobus bubalus*) lives in the larger pools of rivers with low velocity current. Today it is native to the Rio Grande in Sierra and Doña Ana counties but Sublette and others (1990:219–222) suggest a more northern range in the past based on the recovery of this species in archaeological assemblages from the Palace of the Governors in Santa Fe and from the Cochiti Dam sites. Native suckers observed in the Cochiti area include the river carpsucker (*Carpiodes carpio*) and Rio Grande sucker (*Pantosteus plebeius*) (US Army Corps of Engineers 1990:A-1).

SITE ASSEMBLAGES

Site Samples

The two smallest site assemblages, LA 249 (n = 205) and LA 115862 (n = 224), were not sampled. All bone collected by regular recovery techniques and that from flotation processing completed before the faunal analysis are included in the analysis. The remaining sites were sampled to various extents. Information concerning how the site analysts chose the sample are included in the site sections of this report. The following is a brief description of the samples and some of the rationale involved.

Of the 469 FS entries in the LA 265 inventory indicating a bag of bones, slightly less than half (227 or 48.0 percent) were analyzed. The proportion is not completely accurate as some of the inventoried bags are human bone and others were rocks or other material mistaken as bone. In addition, two of the bags selected for analysis could not be found. Even though the sampling percentage is smaller than the other sites, the sample is large (n = 3,472) and representative of the site and time period involved. Proveniences with relatively low sampling fractions include the upper fill (21 of 78 FS entries) and roof fall (21 of 36 FS entries) in Structure 1, resulting in a sample size of 700; the upper (0 of 9 FS entries), middle (0 of 8 FS entries), and roof fall (6 of 10 FS entries) layers of Structure 13; SU 2 bell-shaped pit 26 (6 of 21 FS entries), SU 2 general fill (0 of 10 FS entries) and other features (4 of 15 FS entries); and the ash in the upper fill of Feature 3 (0 of 27 FS entries); SU 3 other features (0 of 15 FS entries). As with the smaller sites, bone from those flotation samples processed after the faunal identifications were completed are not included.

LA 6169 has a larger sampling fraction; 341 (69.7 percent) of the 489 bone entries in the inventory were analyzed for a sample size of 3,859 specimens. Again, human bone is included in the inventory bag tally. A larger proportion was analyzed because the site is multicomponent. Proveniences with low sampling fractions include: the upper fill of Structure 47 (4 of 14 FS entries); Structure 76 collapse and trash (5 of 51 FS entries); Feature 68 in the upper fill of Structure 4 (1 of 9 FS entries); SU 12 general fill (1 of 6 FS entries); SU 1 general fill (4 of 10 FS entries); SU 6, 7, 8 general fill (2 of 21 FS entries); general fill of SU 8 and 9 (0 of 7 FS entries); and general fill of SU 11 (4 of 17 FS entries). Bone from those flotation samples processed after the analysis was completed are not included.

An even larger proportion of bags inventoried from LA 6170 was analyzed (202 of 238 or 84.9 percent). Again, this site is multicomponent so a larger portion was analyzed to attain a sample size of 2,260 specimens. Materials not analyzed are generally those from mixed proveniences or structure overburden. Those with low sampling fractions include: the Structure 1 area (0 of 5 FS entries); SU 3 (0 of 2 FS entries); the Structure 5 overburden (0 of 15 FS entries), and the Structure 50 overburden (0 of 2 FS entries). Bone from those flotation samples processed after the analysis was completed are not included.

Another multicomponent site, LA 6171 has a large sampling fraction (158 of 183 bags or 86.6 percent) and a relatively small sample size (n = 769). Human bone and missing bags comprise a good number of those not analyzed. The others are from proveniences that were so mixed their analysis would provide little information. Proveniences with low sampling fractions are SU 1 (1 of 5 FS entries) and SU 2 (1 of 6 FS entries). Feature 85 (2 of 20 FS entries) is mostly point-plotted human bone. Bone from those flotation samples processed after the analysis was completed are not included.

Provenience Types

In order to examine the contextual distribution of taxa and other characteristics of the assemblages, the components were classified into four provenience types: structure fill, structure roof fall, structure floor (including floor fill, floor contact, and feature fill), and extramural. Assignments are based on the verbal descriptions of the components and consulting with site directors when a description is ambiguous. In some instances, the roof fall was not distinguished from structure fill so that the fill provenience inevitably contains a small amount of roof fall material. Similarly, when roof fall overlay a floor, the lower 10 cm was treated as floor fill. Burials are considered with the context in which they were found, that is, if in an extramural pit, the burial is considered extramural, if in an intrusive pit in structure fill, then as structure fill, and if subfloor, then as floor associated. Vent shaft fill is treated as structure fill and over burden, generally as extramural, unless this was not distinguished from structure fill. Extramural samples are largely from extramural feature fill rather than sheet trash.

When examined by site (Table 20.12), there are clear differences in the proportions recovered and analyzed from these sites. Structure fill contributes between 22.7 and 88.3 percent of a site sample. Roof fall specimens are absent from three sites and concentrated in the two sites with burned roofs. Floor association also varies considerably, between 3.9 and 43.3 percent. Similarly, the amount of extramural excavation and sampling produced a range of 6.7 to 41.4 percent.

Field recovery methods also influence the distribution of taxa within the provenience groups. Structure fill was generally screened through 1/4-inch mesh and floor and feature fill through 1/8-inch mesh. Most of the flotation bone was from floors and features. Experiments conducted at two Hohokam sites in southern Arizona (James 1997:386-391) compared the findings from adjacent excavation grids, one screened through 1/4-inch mesh and three through 1/8-inch mesh, and found that up to five times the amount of bone was recovered from the smaller screen size. Taxa that were particularly influenced by screen size are rodents and rabbits. Not only was the sample size and content affected, but the commonly used lagomorph index, or the ratio of cottontail to jackrabbit bones, was 0.45 in the larger smaller-sized screen sample, 0.57 in the smaller-sized screen, 0.75 in flotation samples, and 0.53 for the site overall. Rabbit and rodent frequencies for Peña Blanca may be similarly influenced by screen size.

Chronology

Components, and often times individual features, were assigned ceramic dates based on the ceramic assemblage associated with that unit. However, because rodent and other kinds of disturbance can introduce later ceramic wares and make the dating uncertain, the ceramic dating assignments are not always representative of when a feature filled. Yet it is a convenient, if not completely accurate, means of evaluating temporal changes in artifact distributions. In this analysis, the original 13 ceramic date assignments are reduced to 8. Combinations that were designated as mainly Early Developmental but also have Late Developmental (n = 181) or Coalition (n =256) material are considered mainly Early Developmental. Similarly, those that are mainly Late Developmental with Early Developmental (n = 288) or Coalition (n = 180) or both (n = 125)

		Structure Fill	Structure Roof Fall	Structure Floor Associated	Extramural	Totals
LA 249	Count	181	0	8	<u>16</u>	205
	Expected	72.6	25.6	60.2	46.6	205
	% within site	88.3%	0.0%	3.9%	7.8%	100.0%
LA 265		1576	0.0 <i>%</i> 217	639	1015	3447
LA 205	Count					
	Expected	1221	430	1012	784	3447
	% within site	45.7%	6.3%	18.5%	29.4%	100.0%
LA 6169	Count	1202	565	1336	753	3856
	Expected	1365.9	520.5	1092.6	877	3856
	% within site	31.2%	14.7%	34.6%	19.5%	100.0%
LA 6170	Count	513	559	855	332	2259
	Expected	800.2	281.8	663.2	513.8	2259
	% within site	22.7%	24.7%	37.8%	14.7%	100.0%
LA 6171	Count	224	0	221	314	759
	Expected	268.9	94.7	222.8	172.6	759
	% within site	29.5%	0.0%	29.1%	41.4%	100.0%
LA 115862	Count	112	0	97	15	224
	Expected	79.3	27.9	65.8	50.9	224
	% within site	50.0%	0.0%	43.3%	6.7%	100.0%
Total	Count	3808	1341	3156	2445	10750
	Expected	3808	1341	3156	2445	10750
	% within site	35.4%	13.5%	28.3%	22.7%	100.0%

Table 20.12. Site Contribution to Provenience Types

Note: actual and expected counts based on site sample and provenience types, unknowns not included

are considered mainly Late Developmental while those that are mainly Coalition but also include Early Developmental (n = 908) or Early and Late Developmental (n = 68) become mostly Coalition. No pure Classic deposits were found. The mainly Classic deposits include some with Late Developmental (n = 80) and one that is mainly Classic with some Coalition and Early Developmental. The final or unknown group is comprised of components that were too mixed or had very small samples so that a ceramic date was not assigned (n = 195).

Only two of the six Peña Blanca sites are single component (Table 20.13), both Early Developmental. The others have components ranging from Early Developmental to Mixed Classic. Unfortunately, unmixed Late Developmental and Coalition deposits and deposits containing Classic period ceramics are rare, making temporal comparisons less reliable than if the sample sizes were more evenly distributed and the samples larger. As is, the Early Developmental period is well represented with 72.3 percent of the assemblage dating to this period and another 4.1 percent that are mainly Early Developmental. The sample comes from five different sites and a range of provenience types, which should make it a reliable reflection of activities during this period. Late Developmental deposits are not nearly as common with only a small sample that is unmixed (1.2 percent) and slightly larger mixed sample (5.5 percent). These are from three sites, but most of the sample is from LA 6169. Unmixed Coalition specimens (5.3 percent) are also rare while the mainly Coalition sample is the second largest (9.0 percent). Coalition deposits were found at only two sites, and again the sample is largely from LA 6169. Mixed Classic deposits are not well represented (0.8 percent) and all but one specimen are from a single site, LA 249. A small proportion of the assemblage (1.8 percent) is from undated deposits.

When the contribution of the provenience types is examined (Table 20.14), the Early

	LA 249	49	ΓA	_A 265	LA 6	LA 6169	LA 6	LA 6170	LA 6171	171	LA 115862	5862	Time Total	otal
	Count %	%	Count	%	Count	%	Count	%	Count	%	Count %	%	Count	%
Early Developmental	I	·	3473	44.50%	2059	26.40%	2012	25.80%	34	0.40%	224 2.90%	2.90%	7802	72.3
Mainly Early	ı	ı	ı	I	ı	I	ı	ı	ı	·	·	ı	'	•
Developmental	ı	ı	•		ı	'	181	41.4	256	58.6	·	ı	437	4.1
Late Developmental	ı	ı	ı	·	121	90.3	13	9.7	ı	ı	ı	ı	134	1.2
Mainly Late	ı	ı	ı	ı	'	ı	ı	'	•	ı	•	ı	•	'
Developmental	125	21.1	•	ı	432	72.8	36	6.1	ı	ı	·	ı	593	5.5
Coalition	ı	ı	ı	ı	543	94.9	·	ı	29	5.1	ı	ı	572	5.3
Mainly Coalition	ı	ı	ı	ı	680	69.7	·	ı	296	30.3	ı	ı	976	6
Mainly Classic	80	98.8	•		ı	'	'	ı	-	1.2	·	ı	81	0.8
Unknown	ı	ı	ı	·	24	12.3	17	8.7	154	79	ı	ı	195	1.8
Site total	205	1.9	3473	32.2	3859	35.8	2259	20.9	770	7.1	224	2.1	10790	100

Table 20.13. Site Contribution to Temporal Groups (percent of temporal group)

				Structure		
			Structure	Floor		
Time Group		Structure Fill	Roof Fall	Associated	Extramural	Totals
Early	Count	2139	951	2683	2003	7776
Developmental	Expected	2754.5	970	2282.9	1768.6	7776
	% within time	27.5%	12.2%	34.5%	25.8%	100.0%
Mainly Early	Count	79	144	191	23	437
Developmental	Expected	154.8	54.5	128.3	99.4	437
	% within time	18.1%	33.0%	43.7%	5.3%	100.0%
Late Developmental	Count	13	0	121	0	134
	Expected	47.5	16.7	39.3	30.5	134
	% within time	9.70%	0.00%	90.30%	0.00%	100.00%
Mainly Late	Count	303	246	8	36	593
Developmental	Expected	210.1	74	174.1	134.9	593
	% within time	51.1%	41.5%	1.3%	6.1%	100.0%
Coalition	Count	387	0	153	30	570
	Expected	201.9	71.1	167.3	129.6	570
	% within time	67.9%	0.0%	26.8%	5.3%	100.0%
Mainly Coalition	Count	786	0	0	181	967
	Expected	342.5	120.6	283.9	219.9	967
	% within time	81.3%	0.0%	0.0%	18.7%	100.0%
Mainly Classic	Count	64	0	0	17	81
	Expected	28.7	10.1	23.8	18.4	81
	% within time	79.0%	0.0%	0.0%	21.0%	100.0%
Unknown	Count	37	0	0	156	192
	Expected	68	24	56.4	43.7	192
	% within time	19.3%	0.0%	0.0%	80.7%	100.0%
Totals	Count	3808	1341	3156	2445	10750
	Expected	3808	1451	3156	2445	10750
	% within time	35.4%	12.5%	2940.0%	22.7%	100.0%

Table 20.14. Provenience Type Contribution to Temporal Groups

Note: actual and expected counts based on the temporal group and provenience types, unknowns not included

Developmental sample is largely from structure floor and fill and extramural proveniences with respectable amounts from roof fall contexts. This contrasts with the Late Developmental sample, which is primarily associated with floors (90.3 percent) and the Coalition, which is mostly from structure fill (67.9 percent).

Sample Strengths and Weaknesses

Sample size is not the only factor to consider when evaluating the representativeness of an assemblage. Having a range of provenience types can be critical to producing an even somewhat representative sample. For example, the relative amounts of artiodactyl and lagomorph bone are commonly used to test a variety of hypotheses concerning the increase or decrease in use of one or the other over time. Looking at the Peña Blanca Early Developmental assemblage, different conclusions can be reached, depending on which subset of data is used. The commonly used indices and ratios (e.g., Szuter and Bayman 1989; Spielman and Angstadt-Leto 1996) vary depending on the provenience type, while the total reflects the relative contributions of the different provenience types (Table 20.15). The lagomorph ratio, which compares the relative numbers of cottontail and jackrabbit bones, ranges from 2.73 to 4.78 with a ratio of 3.31 for all provenience types, indicating a heavy reliance on cottontails, regardless of the provenience type. The lagomorph index, which compares the amount of cottontail to the amount of

	Structure	Structure	Structure Floor and		
	Fill	Roof Fall	Association	Extramural	Total
Cottontail (S) (n=)	559	264	882	770	2482
Jackrabbit (L) (n=)	205	80	299	161	750
Lagomorph index (S/S+L)	0.73	0.78	0.75	0.83	0.77
Lagomorph ratio (S/L)	2.73	3.3	2.95	4.78	3.31
Artiodactyl* (n=)	463	247	252	295	1261
Artiodactyl index (A/A+S+L)	0.38	0.42	0.18	0.24	0.28
Artiodactyl ratio (A/S+L)	0.61	0.72	0.21	0.32	0.39
Turkey** (n=)	5	134	191	2	332
Turkey index (T/T+S+L)	0.01	0.28	0.14	0	0.09
Turkey ratio (T/S+L)	0.01	0.39	0.16	0	0.1

Table 20.15. Comparison of Lagomorph, Artiodactyl, and Turkey Indices and Ratios by Provenience Type for Early Developmental Assemblages

* total of large mammal, medium artiodactyl, medium to large artiodactyl, large artiodactyl, deer or elk, elk, deer, pronghorn, bighorn, bison, and cow or bison

** total of large bird, very large bird, and turkey

lagomorph bone, ranges from 0.73 to 0.83. The artiodactyl index, which is used as a gauge of the relative use of rabbits and artiodactyls, varies from 0.18 to 0.42, and is 0.28 for all deposits, while the artiodactyl ratio ranges from 0.21 to 0.72 and is 0.39 for all assemblages. While all of the indices indicate that rabbit bone is more common, conclusions regarding the relative use of artiodactyls could be quite different, depending on the kinds of deposits relied on. An assemblage dominated by floor fill, floor, and floor associated specimens could suggest far less reliance on artiodactyls than one dominated by roof fall or structure fill. The results are even more dramatic when the turkey indices are compared (ranging from 0.00 to 0.28). Turkey and potential turkey bones are very rare in structure fill and extramural contexts, intermediate in floor-associated proveniences, and high in roof fall, resulting in a low overall index (0.09)and ratio (0.10).

While combining the sites could mask some of the variability between sites, it probably results in a far more representative view of animal utilization for the area as a whole. Comparing these same indices and ratios (Table 20.16) by site for the Early Developmental period deposits results in a similar range for the lagomorph index if the very small sample from LA 6171 is discounted, a larger range for the lagomorph ratio, larger ranges for the artiodactyl index and ratio, and a considerably greater range for the turkey ratio. LA 6169 is given as a total and a total without Feature 29, an extramural pit that contributes over half of the rabbit for that site and arguably represents a single depositional episode that has an inordinate effect on the overall sample. Greater ranges for most indices are largely due to the sample composition rather than inherent differences in the sites. Two of the site assemblages have many of their samples drawn from structure fill while two have no structure fill. Only two have representative samples from roof fall, two are heavily drawn from floor associations, and only two have much of a sample from extramural contexts. Figures 20.1 through 20.3 graphically show the range of variation by plotting the lagomorph or turkey index on one axis and artiodactyl index or turkey index on the other for each site except LA 6171 and for the provenience types. This shows that interpretations of Early Developmental period subsistence could vary considerably depending on the site and whether an assemblage is dominated by a particular fill type. Any interpretation of subsistence must not only consider the sample size, but also the content and whether it is at all representative.

Overall, the Early Developmental sample is

			LA 6169				
	LA 265	LA 6169	w/o F. 29	LA 6170	LA 6171	LA 115862	Total
Cottontail S (n=)	960	899	396	545	6	72	2482
Jackrabbit L (n=)	366	170	123	179	10	25	750
Lagomorph index (S/S+L)	0.72	0.84	0.76	0.75	0.37	0.74	0.77
Lagomorph ratio (S/L)	2.62	5.29	3.22	3.04	0.6	2.88	3.31
Artiodactyl* (n=)	549	123	107	565	9	15	1271
Artiodactyl index (A/A+S+L)	0.29	0.1	0.17	0.44	0.36	0.13	0.28
Artiodactyl ratio (A/S+L)	0.41	0.12	0.21	0.78	0.56	0.15	0.51
Turkey** (n=)	10	321	321	1	0	0	332
Turkey index (T/T+S+L)	0.01	0.23	0.38	0	-	-	0.09
Turkey ratio (T/S+L)	0.01	0.3	0.81	0	-	-	0.13
% from structure fill	45.7	-	-	22.4	-	50	27.5
% from roof fall	6.3	15.5	23.1	20.6	-	-	13.6
% from floor associations	18.5	51.6	76.9	42.5	88.2	43.3	33.1
% from extramural	29.4	32.9	-	14.5	11.8	6.7	25.8

 Table 20.16. Comparison of Lagomorph, Artiodactyl, and Turkey Indices and Ratios by Site for Early

 Developmental Assemblages (percent of all taxa in provenience type)

* total of large mammal, medium artiodactyl, medium to large artiodactyl, large artiodactyl, deer or elk, elk, deer, pronghorn, bighorn, bison, and cow or bison

**total of large bird, very large bird, and turkey

the largest and most representative in terms of site and provenience type contribution (Table 20.17). While structure contents, particularly fill and floor associations comprise much of this sample (62.0 percent), extramural and roof fall context samples are large enough to compare and contrast with better-represented provenience groups. Mainly Early Developmental deposits contribute little in the way of a sample, given that the Early Developmental sample is so large and the provenience types are well represented.

The Late Developmental sample is not only small (n = 134) but it is dominated by structure floor deposits from one site (90.3 percent) with no roof fall or extramural specimens. The mainly Late Developmental sample is larger (n = 593), but is primarily from structure fill and floor (92.6 percent). Thus, in addition to the deposits being mixed, not all provenience types are well represented.

Coalition deposits are not well represented (n = 570) and are largely from the structure fill at one site (67.9 percent). Extramural specimens are sparse (n = 30) and no deposits were specifically designated as roof fall. The mainly Coalition sample is larger (n = 967) but is entirely structure fill (81.3 percent) and extramural (18.7 percent) that is mainly from one site. Small amounts of

roof fall material are included in the structure fill provenience from this site.

Mainly Classic deposits are from a single site and are mostly structure fill that has washed in from the Classic period pueblo upslope, with a small number from extramural contexts that are also washed in. The size of the sample, the context, and that all deposits are mixed, indicate it is not likely to be representative of this period.

Given the nature of the sample, the primary focus of this report must be subsistence and animal utilization during the Early Developmental period. This sample is robust and can provide the data needed to address questions concerning this period. Data from the later periods can be used to examine evidence for continuity or change in strategy, but cannot provide the same quality of information as the Early Developmental sample. Appendices 6.2 and 6.3 give the breakdown by ceramic date for each site and the totals for ceramic periods.

Early Developmental Period Animal Utilization

One of the primary issues for the Early Developmental period concerns the degree and form of mobility that characterizes groups

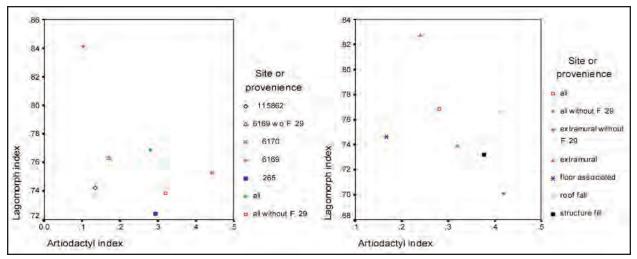


Figure 20.1. Scatterplots of lagomorph and artiodactyl indices for Early Developmental sites and provenience types.

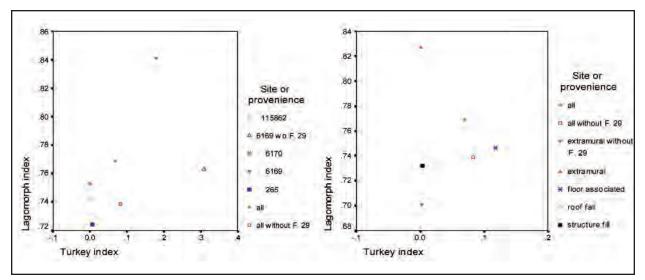


Figure 20.2. Scatterplots of lagomorph and turkey indices for Early Developmental sites and provenience types.



Figure 20.3. Scatterplots of artiodactyl and turkey indices for Early Developmental sites and provenience types.

			<i>,</i> ,	Structure		
		Structure	Structure	Floor		
		Fill	Roof Fall	Association	Extramural	Total
Early Develo	onmental					
LA 265	Count	1576	217	639	1015	3447
LA 205	Expected Count	948.2	421.6	1189.3	887.9	3447
	% within Site	45.7%	6.3%	18.5%	29.4%	100.0%
		43.7 <i>%</i> 73.7%	22.8%	23.8%	29.4 <i>%</i> 50.7%	44.3%
	% within Provenience type	20.3%		23.0% 8.2%		
	% of Total		2.8%		13.1%	44.3%
LA 6169	Count	0	319	1062	678 520 4	2059
	Expected Count	566.4	251.8	710.4	530.4	2059
	% within Site	0.0%	15.5%	51.6%	32.9%	100.0%
	% within Provenience type	0.0%	33.5%	39.6%	33.8%	26.5%
	% of Total	0.0%	4.1%	13.7%	8.7%	26.5%
LA 6170	Count	451	415	855	291	2012
	Expected Count	553.5	246.1	694.2	518.3	2012
	% within Site	22.4%	20.6%	42.5%	14.5%	100.0%
	% within Provenience type	21.1%	43.6%	31.9%	14.5%	25.9%
	% of Total	5.8%	5.3%	11.0%	3.7%	25.9%
LA 6171	Count	0	0	30	4	34
	Expected Count	9.4	4.2	11.7	8.8	34
	% within Site	0.0%	0.0%	88.2%	11.8%	100.0%
	% within Provenience type	0.0%	0.0%	1.1%	0.2%	0.4%
	% of Total	0.0%	0.0%	0.4%	0.1%	0.4%
LA 115862	Count	112	0	97	15	224
	Expected Count	61.6	27.4	77.3	57.7	224
	% within Site	50.0%	0.0%	43.3%	6.7%	100.0%
	% within Provenience type	5.2%	0.0%	3.6%	0.7%	2.9%
	% of Total	1.4%	0.0%	1.2%	0.2%	2.9%
Total	Count	2139	951	2683	2003	7776
	Expected Count	2139	951	2683	2003	7776
	% within Site	27.5%	12.2%	34.5%	25.8%	100.0%
	% within Provenience type	100.0%	100.0%	100.0%	100.0%	100.0%
	% of Total	27.5%	12.2%	34.5%	25.8%	100.0%
Mainly Early	Developmental					
LA 6170		32	144	0	5	181
	Expected Count	32.7	59.6	79.1	9.5	181
	% within Site	17.7%	79.6%	0.0%	2.8%	100.0%
	% within Provenience type	40.5%	100.0%	0.0%	21.7%	41.4%
	% of Total	7.3%	33.0%	0.0%	1.1%	41.4%
LA 6171	Count	47	0	191	18	256
_,	Expected Count	46.3	84.4	111.9	13.5	256
	% within Site	18.4%	0.0%	74.6%	7.0%	100.0%
	% within Provenience type	59.5%	0.0%	100.0%	78.3%	58.6%
	% of Total	10.8%	0.0%	43.7%	4.1%	58.6%
Total	Count	79	144	43.7 %	4.1%	437
, olai	Expected Count	79 79	144	191	23	437
	•					
	% within Site	18.1% 100.0%	33.0% 100.0%	43.7%	5.3% 100.0%	100.0%
	% within Provenience type	100.0%	100.0%	100.0%	100.0%	100.0%
	% of Total	18.1%	33.0%	43.7%	5.3%	100.0%

Table 20.17. Faunal Sample	, Site and Provenience	Type Contribution to Ceramic Dates
----------------------------	------------------------	------------------------------------

tructure Floor		
sociation	Extramural	Tota
121		121
109.3		121
00.0%		100.0%
00.0%		90.3%
90.3%		90.3%
0		13
11.7		13
0.0%		100.0%
0.0%		9.7%
0.0%		9.7%
121		134
121		134
90.3%		100.0%
00.0%		100.0%
90.3%		100.0%
00.070		100.070
8	0	125
1.7	7.6	125
6.4%	0.0%	100.0%
00.0%	0.0%	21.1%
1.3%	0.0%	21.1%
0	0.070	432
5.8	26.2	432
0.0%	0.0%	100.0%
0.0%	0.0%	72.8%
0.0%	0.0%	72.8%
0.070	36	36
0.5	2.2	36
0.0%	100.0%	100.0%
0.0%	100.0%	6.1%
0.0%	6.1%	6.1%
0.0 <i>%</i> 8	36	593
8	36	593
1.3%	6.1%	100.0%
00.0%	100.0%	100.0%
1.3%	6.1%	100.0%
1.570	0.170	100.070
153	1	541
145.2	ı 28.5	541
145.2 28.3%		100.0%
	0.2%	
00.0%	3.3%	94.9%
26.8%	0.2%	94.9%
0	29	29
		29
		100.0% 5.1%
	7.8 0.0% 0.0%	7.81.50.0%100.0%

Image: structure bispan: structu		Ia	ble 20.17. C	ontinued.			
FillRoof FailAssociationExtramuralTotalTotal0.0%0.0%5.1%5.1%Count38715330570% within Site67.9%26.8%5.3%100.0%% within Provenience type100.0%100.0%100.0%100.0%% of Total67.9%26.8%5.3%100.0%Mainly Coalitor67.9%26.8%5.3%100.0%LA 6169Count61070680Expected Count552.7127.3680% within Site89.7%10.3%100.0%% within Provenience type77.6%38.7%70.3%% within Provenience type77.6%127.3680% within Site63.1%11.2%29.7%% within Site61.3%53.7287% within Site61.3%53.7287% within Site61.3%11.5%29.7%TotalCount786181% of Total18.2%11.5%29.7%TotalCount78618.1% within Site81.3%18.7%100.0%% within Site80.0%181967Expected Count63.218.8%80% within Site80.0%100.0%100.0%% within Site80.0%100.0%100.0%% within Site80.0%20.0%100.0%% within Site0.0%100.0%100.0%% within Site0.0%100.0%1					Structure		
% of Total 0.0% 0.0% 5.1% 5.1% Total Count 387 153 30 570 % within Site 67.9% 26.8% 5.3% 100.0% % within Provenience type 100.0% 100.0% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% 100.0% Mainly Coalition 610 70 680 LA 6189 Count 610 70 680 % within Provenience type 77.6% 38.7% 70.3% % within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% LA 6171 Count 176 111 287 % within Site 61.3% 38.7% 100.0% % % within Site 61.3% 38.7% 100.0% % % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 Expe			Structure	Structure	Floor		
Total Count 387 153 30 570 Expected Count 387 153 30 570 % within Site 67.9% 26.8% 5.3% 100.0% % within Provenience type 67.9% 26.8% 5.3% 100.0% Mainly Coalition 67.9% 26.8% 5.3% 100.0% Mainly Coalition 610 70 680 Expected Count 552.7 127.3 680 % within Site 89.7% 10.3% 100.0% % of Total 63.1% 7.2% 70.3% LA 6171 Count 176 111 287 Expected Count 233.3 53.7 287 % of Total 18.2% 11.5% 29.7% % within Site 61.3% 29.7% 367 % within Site 81.3% 18.7% 100.0% % within Site 81.3% 18.7% 100.0% % within Site 81.3% 18.7% 100.0%			Fill	Roof Fall	Association	Extramural	Total
Expected Count 387 153 30 570 % within Site 67.9% 28.8% 5.3% 100.0% % within Provenience type 100.0% 100.0% 100.0% 100.0% Mainly Coalition 26.8% 5.3% 100.0% Mainly Coalition 610 70 680 Expected Count 552.7 127.3 680 % within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% LA 6171 Count 176 111 287 % of Total 61.3% 38.7% 70.3% LA 6171 Count 76 38.7% 70.3% Muthin Provenience type 22.4% 61.3% 29.7% % within Site 61.3% 29.7% 29.7% % of Total 18.2% 100.0% 100.0% % within Site 81.3% 100.0% 100.0% % within Site 81.3% 100.0% 100.0%		% of Total	0.0%		0.0%	5.1%	5.1%
% within Site 67.9% 26.8% 5.3% 100.0% % within Provenience type 100.0% 100.0% 100.0% 100.0% Mainly Coalition Expected Count 610 70 680 Expected Count 552.7 127.3 680 % within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% LA 6171 Count 176 111 287 % within Site 61.3% 38.7% 100.0% 90.0% % within Provenience type 22.4% 61.3% 29.7% 90.0% % within Provenience type 18.2% 11.5% 29.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% <td< td=""><td>Total</td><td>Count</td><td>387</td><td></td><td>153</td><td>30</td><td>570</td></td<>	Total	Count	387		153	30	570
% within Site 67.9% 26.8% 5.3% 100.0% % within Provenience type 100.0% 100.0% 100.0% 100.0% Mainly Coalition 67.9% 26.8% 5.3% 100.0% LA 6169 Count 610 70 680 % within Site 89.7% 127.3 680 % within Site 89.7% 10.3% 100.0% % within Site 63.1% 7.2% 70.3% % of Total 63.1% 7.2% 70.3% % of Total 61.3% 38.7% 100.0% % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% % of Total 18.2% 100.0% 100.0% % within Site 81.3% 18.7% 100.0% % within Site 81.3% 18.7% 100.0% % within Site 80.0% 20.0% 100.0% % within Site <td></td> <td>Expected Count</td> <td>387</td> <td></td> <td>153</td> <td>30</td> <td>570</td>		Expected Count	387		153	30	570
% of Total 67.9% 26.8% 5.3% 100.0% Mainly Coalition -		-	67.9%		26.8%	5.3%	100.0%
% of Total 67.9% 26.8% 5.3% 100.0% Mainly Coalition 6169 Count 610 70 680 LA 6169 Count 552.7 127.3 680 % within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% LA 6171 Count 176 111 287 Expected Count 233.3 53.7 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 % within Site 81.3% 18.7% 100.0% 100.0% % of Total 81.3% 18.7% 100.0% 100.0% 100.0% % within Site 80.0% 20.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 1		% within Provenience type	100.0%		100.0%	100.0%	100.0%
LA 6169 Count 610 70 680 Expected Count 552.7 127.3 680 % within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% % of Total 63.1% 7.2% 70.3% LA 6171 Count 176 111 287 Expected Count 233.3 53.7 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% % of Total 786 181 967 % within Site 81.3% 18.7% 100.0% % within Site 81.3% 18.7% 100.0% % within Site 80.0% 20.0% 100.0% % within Site 80.0% 20.0% 100.0% % within Site 80.0% 20.0% 100.0% % within Site 0.8 0.2 1 </td <td></td> <td></td> <td>67.9%</td> <td></td> <td>26.8%</td> <td></td> <td>100.0%</td>			67.9%		26.8%		100.0%
LA 6169 Count 610 70 680 Expected Count 552.7 127.3 680 % within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% % of Total 63.1% 7.2% 70.3% LA 6171 Count 176 111 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% % of Total 786 181 967 % within Site 81.3% 18.7% 100.0% % within Site 81.3% 18.7% 100.0% % within Provenience type 100.0% 10.0% 100.0% % within Site 80.0% 20.0% 100.0% % within Site 80.0% 20.0% 100.0% % within Site 80.02 16.8 80 % within Site 0.8 0.2 1<	Mainly Coa	lition					
% within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% % of Total 63.1% 7.2% 70.3% LA 6171 Count 176 111 287 Expected Count 233.3 53.7 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 Ky within Site 81.3% 18.7% 100.0% 100.0% % within Site 81.3% 18.7% 100.0% 100.0% % within Site 80.0% 20.0% 100.0% 100.0% 100.0% % within Site 80.0% 20.0% 100.0% 98.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 12% 1	-		610			70	680
% within Site 89.7% 10.3% 100.0% % within Provenience type 77.6% 38.7% 70.3% % of Total 63.1% 7.2% 70.3% LA 6171 Count 176 111 287 Expected Count 23.3 53.7 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% % of Total 18.2% 100.0% 29.7% Total Count 786 181 967 % within Site 81.3% 18.7% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% 100.0% % within Site 80.0% 20.0% 100.0% 100.0% 100.0% % within Site 80.0% 20.0% 100.0% 98.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 12% 12%		Expected Count	552.7			127.3	680
% within Provenience type 77.6% 38.7% 70.3% % of Total 63.1% 7.2% 70.3% LA 6171 Count 176 111 287 Expected Count 233.3 53.7 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% % of Total 18.2% 10.0% 29.7% Total Count 786 181 967 % within Site 81.3% 18.7% 100.0% 100.0% % within Site 81.3% 18.7% 100.0% 100.0% % of Total 81.3% 18.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 12% 1.2% 1.2% 1.2% 1.2%		-	89.7%			10.3%	100.0%
% of Total 63.1% 7.2% 70.3% LA 6171 Count 176 111 287 Expected Count 233.3 53.7 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 % within Site 81.3% 18.7% 100.0% % within Provenience type 100.0% 100.0% 100.0% % within Site 81.3% 18.7% 100.0% % within Site 81.3% 18.7% 100.0% % within Site 80.0% 20.0% 100.0% Mainly Classic 16.8 80 % LA 249 Count 64 16 80 % within Site 80.0% 20.0% 100.0% 98.8% % within Site 0.0% 101.0% 100.0% 100.0% LA 6171 Co		% within Provenience type	77.6%			38.7%	70.3%
Expected Count 233.3 53.7 287 % within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 % within Site 81.3% 18.7% 100.0% % within Provenience type 100.0% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% Mainly Class: Expected Count 63.2 16.8 80 Mainly Class: Expected Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 1 % within Provenience type 0.0% 100.0% 100.0% 100.0% % of Total 0.0%			63.1%			7.2%	70.3%
* within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 % within Site 81.3% 18.1 967 % within Provenience type 100.0% 100.0% 100.0% Mainly Classic Expected Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% 98.8% LA 249 Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0%<	LA 6171	Count	176			111	287
% within Site 61.3% 38.7% 100.0% % within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 Expected Count 786 181 967 % within Site 81.3% 18.7% 100.0% % within Provenience type 100.0% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% % of Total 81.3% 18.7% 100.0% Mainly Classiz Expected Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% 98.8% LA 6171 Count 63.2 16.8 80 % within Site 0.0% 10.0% 98.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 1.2%		Expected Count	233.3			53.7	287
% within Provenience type 22.4% 61.3% 29.7% % of Total 18.2% 11.5% 29.7% Total Count 786 181 967 % within Site 81.3% 18.1 967 % within Provenience type 100.0% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% % of Total 81.3% 18.7% 100.0% % within Provenience type 100.0% 100.0% 100.0% % of Total 81.3% 18.7% 100.0% Mainly Class: Expected Count 64 16 80 Mainly Class: Count 64 16 80 Mainly Class: Figure Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 1 % within Site 0.0% 5.9% 1.2%		•	61.3%			38.7%	100.0%
% of Total 18.2% 11.5% 29.7% Total Count 786 181 967 Expected Count 786 181 967 % within Site 81.3% 18.7% 100.0% % within Provenience type 100.0% 100.0% 100.0% % of Total 81.3% 18.7% 100.0% % of Total 81.3% 18.7% 100.0% % of Total 81.3% 18.7% 100.0% Mainly Classic 18.7% 100.0% 100.0% Kapected Count 64 16 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Site 0.0% 12% 1.2% Total Count 64 17 81							29.7%
TotalCount786181967Expected Count786181967% within Site81.3%18.7%100.0%% within Provenience type100.0%100.0%100.0%% of Total81.3%18.7%100.0%Mainly Class:-18.7%100.0%100.0%LA 249Count641680% within Site80.0%20.0%100.0%% within Provenience type100.0%94.1%98.8%% of Total79.0%19.8%98.8%LA 6171Count011Expected Count0.80.21% within Site0.0%100.0%100.0%% within Site0.0%100.0%1.2%% within Site0.0%1.2%1.2%% within Site0.0%1.2%1.2%TotalCount641781% within Site79.0%21.0%100.0%% within Site79.0%21.0%100.0%% within Site79.0%21.0%100.0%			18.2%			11.5%	29.7%
% within Site 81.3% 18.7% 100.0% % within Provenience type 100.0% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% Mainly Classic 81.3% 18.7% 100.0% LA 249 Count 64 16 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Provenience type 0.0% 100.0% 100.0% % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 1.2% 1.2% Total Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Site 79.0% 21.0% 100.0% % within Provenience type	Total						
% within Site 81.3% 18.7% 100.0% % within Provenience type 100.0% 100.0% 100.0% % within Provenience type 100.0% 100.0% 100.0% Mainly Classic 81.3% 18.7% 100.0% LA 249 Count 64 16 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Provenience type 0.0% 100.0% 100.0% % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 1.2% 1.2% Total Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Site 79.0% 21.0% 100.0% % within Provenience type							
% within Provenience type 100.0% 100.0% 100.0% Mainly Classic 81.3% 18.7% 100.0% LA 249 Count 64 80 Expected Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 100.0% 100.0% % within Provenience type 0.0% 1.2% 1.2% Total Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Site 79.0% 21.0% 100.0%		•					
% of Total 81.3% 18.7% 100.0% Mainly Classic LA 249 Count 64 16 80 LA 249 Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % of Total 79.0% 100.0% 100.0% LA 6171 Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% 100.0% % within Provenience type 0.0% 1.2% 1.2% 1.2% Total Count 64 17 81 % within Site 79.0% 21.0% 100.0% 100.0% % within Site 79.0% 21.0% 100.0% 100.0% % within Site 79.0% 21.0% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Mainly Classic LA 249 Count 64 16 80 Expected Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 100.0% 1.2% Total Count 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%							
LA 249 Count 64 16 80 Expected Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 100.0% 12% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%	Mainly Clas						
Expected Count 63.2 16.8 80 % within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 100.0% 100.0% % within Provenience type 0.0% 1.2% 1.2% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 1.2% 1.2% Total Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%	-		64			16	80
% within Site 80.0% 20.0% 100.0% % within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Site 0.0% 12% 12% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 10.0% 100.0% Total Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%		Expected Count					
% within Provenience type 100.0% 94.1% 98.8% % of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 100.0% 100.0% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 1.2% 1.2% % of Total 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%		-	80.0%				100.0%
% of Total 79.0% 19.8% 98.8% LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 5.9% 1.2% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 1100.0% 1.2% % of Total 0.0% 1.2% 1.2% % of Total 0.0% 1.2% 1.2% % within Provenience type 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%							
LA 6171 Count 0 1 1 Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 5.9% 1.2% % of Total 0.0% 1.2% 1.2% Total Count 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%							
Expected Count 0.8 0.2 1 % within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 5.9% 1.2% % of Total 0.0% 1.2% 1.2% Total Count 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%	LA 6171	Count					
% within Site 0.0% 100.0% 100.0% % within Provenience type 0.0% 5.9% 1.2% % of Total 0.0% 1.2% 1.2% Total Count 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%						0.2	1
% within Provenience type 0.0% 5.9% 1.2% % of Total 0.0% 1.2% 1.2% Total Count 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%		•	0.0%			100.0%	100.0%
% of Total 0.0% 1.2% 1.2% Total Count 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%							
Total Count 64 17 81 Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%							
Expected Count 64 17 81 % within Site 79.0% 21.0% 100.0% % within Provenience type 100.0% 100.0% 100.0%	Total						
%within Site79.0%21.0%100.0%%within Provenience type100.0%100.0%100.0%							
% within Provenience type 100.0% 100.0% 100.0%		•					
		% of Total	79.0%			21.0%	100.0%

Table 20.17. Continued.

and individuals during this time period and how this relates to animal procurement. This topic is approached in a number of ways. First, the faunal assemblage is evaluated in terms of whether it represents a garden hunting strategy, a long-distance hunting strategy, or both and whether either of these strategies is seasonal. Cooking methods, particularly in regards to potential boiling, roasting, and discard are then considered. Next, site structure is examined by looking for differences in context such as trash, roof fall deposits, and occupational debris. Nonsubsistence and ceremonial uses of animals and animal parts are then assessed, followed by a summary of the implications for mobility and an evaluation of whether the observed patterns are consistent with the findings and conclusions concerning other early agricultural populations in the Southwest.

Hunting Strategies

Maize-based diets need the addition of highquality protein. Maize is considered a lowquality protein because it is deficient in three essential amino acids and in niacin, and iron absorption is low (Larsen 1997:16; Speth and Scott 1989:74). High or balanced proteins, such as meat and eggs, contain amino acids in the proportion required by the human body. Deficiencies in the quality of protein can be compensated for, but only by providing other proteins to supply the deficient amino acids (Wing and Brown 1979:27). Since amino acids cannot be stored, high-quality protein must be obtained in regular quantities and all of the essential amino acids and nitrogen must be ingested at the same time in order to synthesize protein (Reitz and Wing 1999:245). Adding meat to an otherwise carbohydrate diet, also significantly enhances iron absorption (Larsen 1997:29).

Some form of hunting was necessary to provide the consistent supply of the high-quality protein needed by prehistoric groups. Both the role and pattern of hunting vary with the overall subsistence strategy and the degree of mobility. We know much more about the strategies employed by mobile hunters and gatherers and by sedentary agriculturalists than we know about transitional and early agricultural groups, but some of the same principals may apply depending on whether the mobile or the sedentary aspects are examined. For example, when the size of the subsistence area is constrained, historic era hunter-gatherers generally rely less on larger-sized animals and more heavily on fewer animals of smaller body size. Fewer large animals are supported by a given area and mobile hunters are forced to turn to short-lived species that grow and reproduce rapidly (Binford 2001:366-367; Speth and Scott 1989:76). Sedentary groups

tend to exploit a wider variety of animals, depend more on smaller animals, and use more traps, ambush hunting, and long-distance hunting than more mobile groups in the same general area. While sedentary groups often heavily rely on garden hunting, hunters may travel considerable distances to procure large animals (Kent 1989:3; Speth and Scott 1989:76). Hunting a wide range of small animals also helps sedentary populations avoid over-exploiting resources within the immediate catchment area (Reitz and Wing 1999:253).

Agricultural sites occupied by only part of a group on a year-round basis (non-traditional agricultural groups) should have faunal assemblages that resemble those of the more sedentary agriculturalists since these sites represent that aspect of their economy. What may be different, but difficult to demonstrate, is how the larger animals were used. We might expect nontraditional agricultural groups to use the most local of the artiodactyls along with select parts of animals brought to the site by the more mobile members when they returned to the site. Archaeological differences between this and the logistic hunts of sedentary groups may be few and subtle. The mobile group members should return to the site when their labor is most needed in the late spring to prepare the fields and plant and in the fall for harvesting and might also spend some of the coldest months there. If these groups returned with parts of large animals, these should represent late summer, and perhaps spring procurement. Logistic hunters from sedentary groups should concentrate their hunting efforts during times when their labor is not needed, e.g., mid summer and after the harvest, when large animals are in their best condition (summer and fall), or when stored resources are depleted (early spring). Also indicative of non-traditional agricultural groups may be cooking patterns that show periodic influxes of people but with little change in the kinds of animals eaten other than parts of animals brought with the mobile group members. Use of riverine resources and communal hunting of small mammals may also be more characteristic of sedentary groups, unless it is a seasonal strategy used to feed influxes of population in non-traditional agricultural groups.

Southwestern researchers have long recognized the impact of agriculture on animal populations. By disturbing the existing habitat and creating new ones that support higher densities of small mammals, one consequence of farming is an increase in the availability of small mammals for hunting (Speth and Scott 1989:80; Szuter and Gillespie 1994:69-70). Some have argued that as groups become more dependent on cultivars and more residentially stable, they increasingly focus on small mammal procurement. While this may be true for some areas, Speth and Scott have examined the data from a number of regions with time depth and conclude that in many the relative amount of artiodactyl bone actually increases over time (Speth and Scott 1989:71-73). They propose that this increase is not due to environmental or climatic conditions, is not driven by population in the sense that packing results in the depletion of local resources, and is not associated with technological innovations. Rather, it reflects a tendency for hunters to travel further and focus on species with the highest return as communities grow and the dependence on cultivars increases. Alternatives to this strategy include the use of fish and other aquatic resources, altering crop mixes, using domestic animals, intergroup exchange, or even reducing the commitment to agriculture by increasing mobility and shifting to a more generalized pattern of hunting and gathering by either segments or entire communities (Speth and Scott 1989:76-78).

While the preceding studies consider the type and changes in the pattern of hunting, other researchers are beginning to factor in gender relationships. Rather than relegating all hunting to the male sphere of activities, there is growing recognition that women and children engaged in hunting, particularly of small mammals, while long-distance hunting of large mammals may have been primarily a male activity (e.g., Nelson 1997:98; Reitz and Wing 1999:241; Szuter 1994:60, 2000:199–205). Hunting small mammals is a low-risk strategy that takes simple expedient technology for capture, such as snares and traps, capture from burrows, and the use of stones and sticks, and

can be accomplished embedded with other activities. Large game hunting is a high-risk activity that involves a wider range and more specialized technology and often includes ceremonies and rituals as part of the process (Reitz and Wing 1999:241; Szuter 2000:200-204). With increased agricultural intensification, and as hunting grew more and more specialized, women may have devoted less time to hunting as food processing occupied more of their time (Szuter 2000:220). Given this perspective, changes in the kind and proportions of animals used may not be the result of availability or choices made by hunters, rather these changes could reflect who does the hunting. An apparent shift away from garden hunting may indicate men assumed a greater role in providing animals for subsistence.

It may well be that in the early stages of the agricultural transition, women and children were responsible for much of the garden hunting and men for taking large mammals, mainly through long-distance hunts. This is consistent with one view of sedentism, that is, the entire group was at least seasonally sedentary (e.g., Kelley 1992:49) and males ventured out to hunt large game. However, it is also consistent with the kind of sedentism suggested by the Peña Blanca burial data, one of simultaneous sedentism and mobility, a phrase borrowed from Varien (1999:11), but used quite differently. As used here, it refers to a form of sedentism where older and less mobile women, the infirm, and children tended the fields and occupied the sites on a more or less permanent basis while the more mobile females, males, and older children maintained a largely hunter and gatherer strategy, returning to the permanent residences seasonally or when their labor was needed for agricultural pursuits. Varien uses the concept of simultaneous sedentism and mobility to describe the relatively high frequency residential movement of households within and among communities that have persisted within established areas (Varien 1999:194).

Demonstrating that a group practiced garden hunting accompanied by the use of large game procured at a distance is relatively easy. Distinguishing between the different types of sedentism is far more difficult (e.g., Kelley 1992:59) and requires considering how a mainly logistic strategy employed by a largely sedentary population would differ from one where a part of the population remains mobile so that residential site artifact assemblages reflect seasonal influxes of population. This can be approached by examining the seasons when large and small animals were procured and through methods of initial and culinary processing. It may also be evident in some aspects of chipped stone technology and with evidence for a high degree of mobility in the human burial population.

The species most likely to benefit from cultivation are rabbits, rodents, and birds. Clearing wooded areas may promote an increase in jackrabbits, who depend on visibility and speed for survival. Jackrabbits are also more likely to be hunted communally using rabbit drives and nets, especially when settlement size and population size has increased (e.g., Szuter 2000:201; Szuter and Gillespie 1994:70). Cottontails and some rodents would find the food and cover provided by crops and weedy species advantageous. Since it is unlikely that any woodlands or dense brush were cleared to plant the Peña Blanca fields, jackrabbit abundance in the general vicinity should not have changed greatly. Rather, a focus on cottontail rabbit procurement and an age distribution that reflects the growing season may be the best indicator of a garden hunting strategy.

Ample evidence for the use of small mammals, especially cottontails, is found in the Early Developmental assemblage. There are more cottontail rabbit bones (n = 2,482 or 31.8 percent of the assemblage) than any other taxon. Jackrabbit bones are far less common (n= 750 or 9.6 percent), while small mammal bones comprise the second largest taxon (n =1,529 or 19.6 percent). Squirrels and rodents are far less numerous (n = 445 or 5.7 percent) but enough are burned (n = 56 or 12.6 percent) to suggest that some were dietary items.

The body part distribution for cottontail and jackrabbits is somewhat different (Table 20.18), which could reflect different hunting strategies for the two species or that the larger rabbits required more processing resulting in fewer pieces recognizable as jackrabbit. Proportionately more jackrabbit leg elements were recovered but fewer crania and pelvises. Examining the completeness of the body parts by species finds that all parts are more likely to be highly fragmented in jackrabbits. Overall, 19.9 percent of cottontail bones are complete compared to 13.7 percent of the jackrabbit bones while 38.8 percent of cottontail bones are highly fragmented (less than 25.0 percent of the element) compared to 61.1 percent of the jackrabbit. Yet burning patterns are remarkably similar with 78.6 percent of the cottontail bone unburned and 79.9 percent of the jackrabbit bone unburned. Proportions of burns indicative of roasting (light scorches and light

	cvciopinci			
	Cotto	ontail	Jack	rabbit
	Count	Percent	Count	Percent
Cranium	562	22.6	137	18.3
Vertebrae	139	5.6	41	5.5
Ribs and sternum	108	4.4	36	4.8
Pelvis	195	7.9	30	4
Front limb*	330	13.3	149	19.9
Front foot	25	1	17	2.3
Rear leg	568	22.9	220	29.3
Rear foot	537	21.6	106	14.1
Front or rear foot	18	0.7	14	1.9
Totals	2482	100	750	100

Table 20.18. Rabbit Body Part Distribution for Early Developmental Period

* includes scapula

to heavy burns) are also similar, 14.2 percent for cottontails and 11.3 percent for jackrabbits. When provenience type and just these two taxa are considered, the relative proportions are similar in all provenience types with cottontails comprising 73.3 percent of the rabbit in structure fill, 76.7 percent in roof fall, 74.7 percent of floor associations, and 82.7 percent of extramural contexts. Furthermore, there are no components that suggest communal rabbit drives aimed at jackrabbits, that is, where counts are large and jackrabbit bones far outnumber those of cottontails. The relatively uniform distribution and similarities in burning are not consistent with different procurement patterns for the two species. Rather, they suggest both were taken in a similar manner and that differences in the body part distribution are most likely due to the additional processing required for the larger body size. Both species were probably taken as part of a garden hunting strategy and by individuals hunting near the sites. In at least one episode documented at LA 6169, a number of rabbits, mostly cottontails, were caught, roasted, and deposited in a single feature. This pit is considered in detail in the cooking methods section of this report.

Accounts of rabbit hunting are a common feature of Pueblo ethnographic reports. However, these reports emphasize communal hunts with little or no description of the dayto-day procurement that must have characterized prehistoric hunting patterns. The Hopis are said to have hunted rabbits communally, most often in early summer and fall to protect fields from rabbits and less frequently in winter when hunts provided a chance to get outdoors. Hunts were also held in connection with ceremonies in order to provide meat for feasting (Beaglehole 1936:11-12). The Santa Claras also held communal hunts for rabbits. When the hunts were economic, men and women participated. Individuals commonly hunted rabbits near the pueblo using dogs and bows and arrows or clubs. Rabbits were tracked in the snow and cottontails removed from their burrows by flooding or with a stick (Hill 1982:52). At Cochiti, communal rabbit hunts

were held in early spring in conjunction with planting. Men and women participated in a surround throwing sticks or shooting rabbits and digging up those that ran into a hole (Goldfrank 1927:89-90). Specific references to garden hunting (e.g., Linares 1976:331) on an ongoing basis to protect the growing crops are absent in the ethnographic literature reviewed. Communal efforts aimed at reducing the number of crop predators before planting and throughout the growing season may have become a more common strategy when men and domestic animals assumed larger roles in providing animal protein, and the communal hunts assumed an integrating and socioreligious function.

If small-scale garden hunting was the predominant hunting method for hunting both rabbits, most deposits should have a range of ages since both cottontails and jackrabbits reproduce throughout the growing season, from at least February or March through September (BISON-M n.d.). We might also expect that summer or growing season deposits would have the greatest number of immature rabbits as young rabbits would be easier to snare and stone. Yet, relatively few components have a substantial amount of young rabbits (Table 20.19) and the prevalence differs between species. Fewer young cottontails were found in disposal contexts (extramural and structure fill) than roof and floor associations while more structure fill contexts have young jackrabbit bones. The proportion of components with young rabbits is not significantly correlated with the mean sample size (from Table 20.19) for cottontails (Pearson Correlation 0.985, sig. 0.205), jackrabbits (Pearson Correlation 0.480, sig. 0.520), or all rabbits (Pearson Correlation 0.936, sig. 0.064).

Certainly the ubiquity of rabbits suggest they were an important resource and one that was utilized throughout the year. At least one feature (Feature 29 at LA 6169) has evidence of communal rabbit hunting, and it has no immature and very few juvenile bones (1.3 percent) suggesting a late fall or even winter event rather than one associated with clearing the area of rabbits before planting or during the growing season when some very young rabbits would be expected. Most deposits have smaller proportions of rabbits mixed with other animal bone more indicative of regular trash deposition. Garden hunting undoubtedly provided a portion of the rabbit found in these sites, but the extent is difficult to estimate. The predominance of cottontails may be the best evidence of such as strategy.

Few bird remains were found. Evidence for use of aquatic birds is negligible, only two duck bones, and indicates no concerted effort was made to obtain birds on and along the river. Species that could have been killed or snared in or near fields (quail, cranes, horned larks, flickers, meadowlarks, and passerines) also have relatively limited counts and distributions. Of the 20 structure fill components, 5 (25.0 percent) have one or more of these taxa. Slightly more floor components (8 of 18 or 44.4 percent) have bird bones than roof fall (3 of 7 or 42.9 percent) or extramural contexts (4 of 31 or 12.9 percent). In terms of the co-occurrence that might be expected from indiscriminate trapping, the quail and horned lark combination is most common (n = 4 components) followed by flicker and meadowlark (n = 2). Only two components have more than two of these species,

one with quail, flicker, and horned lark (a general extramural area at LA 6170) and another from the floor of Structure 47 at LA 6169 with quail, crane, horned lark, and meadowlark. The later is both a very large sample (n = 656) and a floor context with possible ceremonial deposition.

Long-distance artiodactyl hunting patterns are more difficult to discern, due in part to relatively small sample sizes (Table 20.20). In theory, most elements from species living near the site will be returned to the site while those taken at a greater distance will be represented by the more desirable and transportable parts. In addition to parts used for food, elements that offer convenient handles, serve as raw material for tools, or crania, which house brains used in dressing leather and are used in ceremonial gear, would have been transported and may be recovered in archaeological contexts (Reitz and Wing 1999:204).

In the Peña Blanca assemblage, almost all of the artiodactyl taxa are represented by cranial parts, some with evidence of ceremonial deposition. With the exception of bighorn, vertebrae are rare enough to suggest these parts were not returned to the site. Even if all of the medium to large and large mammal flat bones

		Mean Count			
	Number of	for	% with	% with	% with
	Components	Components	Immature	Juvenile	Both
Cottontail	64	39	15.6	48.4	12.3
Structure fill	18	31	5.5	50	5.5
Structure roof fall	6	44	33.3	83.3	33.3
Structure floor associations	17	52	23.5	64.7	23.5
Extramural	23	33	17.4	26.1	8.7
Jackrabbit	56	13	8.9	33.9	5.3
Structure fill	16	13	18.7	31.2	12.5
Structure roof fall	7	11	0	57.1	0
Structure floor associations	16	19	12.5	50	6.2
Extramural	17	9	0	11.8	0
Rabbit	66	49	21.2	53	16.7
Structure fill	18	42	22.2	61.1	16.7
Structure roof fall	7	49	14.3	85.7	14.3
Structure floor associations	17	69	29.4	70.6	29.4
Extramural	24	39	16.7	25	8.3

Table 20.19. Early Developmental Period Rabbit Age Distribution, Percent of Components Within Provenience Type

were vertebra fragments, these would not account for the missing vertebrae. Ribs and sternums are fairly well represented while pelvises are virtually absent and again may not have been returned to the site. Vertebrae and pelvises are parts that carry more meat than grease (e.g., Lyman 1994:227) so that the meat could have been removed and the bones left at the kill site. Alternatively, these parts could have been removed from the site area by carnivores and/or were deposited outside the areas excavated. Overall, the most common parts are foot elements, which comprise 77 percent of the elk parts, 66 percent of the deer parts, 54 percent of the pronghorn parts, all of the bison parts, but only 5 percent of the bighorn and 8 percent of the medium artiodactyl parts. Phalanges, tarsals, and carpals are low in utility in that they are associated with little meat or grease. However, these articulate with metapodials, which have considerable marrow and some grease (e.g., Lyman 1994:227) and were commonly used in making bone tools. The presence of these low utility bones along with a good number of metapodials, indicates that feet came back as packages and the phalanges, carpals, and tarsals were discarded while the metapodials were broken and boiled or used for tools. Most artiodactyl bones were heavily processed, as indicated by the counts for large mammal and medium artiodactyl long and flat bone fragments and comparatively few parts that are complete enough to identify the species. Relative numbers, the ubiquity, and the distribution of parts suggests that deer was the most commonly taken artiodactyl, followed by pronghorn, elk, and bighorn.

When co-occurrence of species in components is considered (Table 20.21), it is clear that deer is not only the most numerous of the artiodactyls, but also the most widespread. Concentration on any one species, which we might expect of logistic hunts from sedentary agricultural communities, is not apparent, unless that species is deer. Rather, components with concentrations of artiodactyl bones tend to have more than one species. When relatively large numbers of bones from a single species occur within a component, either the component has a large sample size so that more parts are expected or the concentration of parts is from articulated feet discarded as units.

Pronghorn and deer have fairly similar distributions across the provenience types (Table 20.22), as does the general artiodactyl taxon. Bighorns have the most unusual part distribution and are concentrated in a few locations, mainly (17 of 21) at one site (LA 265) where 10 of the specimens (cranial, axis vertebrae, and front limb and foot parts) are from the same structure (SU or Structure 1) and another 5 (a tooth, axis vertebrae, and a sacrum fragment) are from a keyhole structure at the same site (Structure 27). The remaining two (an axis vertebra and a rear leg part) are from a large bellshaped pit (Feature 60) at that site. The axis vertebrae are from three different animals. Elk is mainly from two sites (LA 265 and LA 6170) with a single specimen from a third (LA 6169). Parts from LA 6170 are an articulated foot found in the fill of a structure. Those from LA 265 are from five separate structures or features with the most (n = 6) from Feature 26, a large bell-shaped pit where they represent a single foot. A scattering of parts (tooth, scapula, metacarpal, femur, and rib fragments) were found in the other features. Bison was found at two sites, a metacarpal from the floor of Structure 50 at LA 6170 and several foot parts from a provenience with no associated artifacts at LA 265.

All of the sites with Early Developmental deposits have deer and the three largest sites have pronghorn. Proportionately more pronghorn are found at LA 6169 and LA 6170 than at LA 265, which has about twice as much deer as pronghorn and more bighorn and elk. The part distribution is somewhat different (Table 20.23); feet are always the most abundant. This is due in large part to a high degree of identifiability and less breakage in these small compact elements. Vertebrae, ribs, and long bone shafts are almost always highly fragmented so that few can be identified to the species level. Overall, the species distribution seems to suggest a greater focus on southeastern grassland species at LA 6169 and LA 6170 and a more northern montane focus at LA 265.

	Med-Lrge Mammal	Large Mammal	Medium Artio	Med-Lrg Artio	Large Artio	Deer or Elk	Щ	Deer	Pronahorn	Bison	Bison or Cow	Bighorn Sheep
Unknown	4	2	-	1	1	•			л Э		1	-
	1.1%	1.3%	0.2%									
Long bone	210	281	345	ю		'	•		I	ı	I	'
)	58.7%	73.9%	54.7%	60.0%								
Flat bone	103	58	27	~	I	'	ı	I	I	ı	I	I
	28.8%	15.3%	4.3%	20.0%								
Horn or antler	I	I	~	ı	I	5	ı	4	4	ı	I	I
			0.2%			100.0%		3.8%	7.4%			
Cranium	16	ო	32	ı	I	'	.	14	7	ı	~	9
	4.5%	0.8%	5.1%				3.2%	13.2%	13.0%		50.0%	28.6%
Vertebra	~	ı	15	ı	I	'	·	I	ı	ı	ı	5
	0.3%		2.4%									23.8%
Ribs and sternum	24	33	125	~	19	'	ю	N	I	ı	I	~
	6.7%	8.7%	19.8%	20.0%	100.0%		9.7%	1.9%				4.8%
Pelvis		·	~	'	'	ı	ı	1	'	'	·	-
			0.2%									4.8%
Front limb	ı	ı	15	'	ı	'	~	10	ъ С	ı	ı	4
			2.4%				3.2%	9.4%	9.3%			19.0%
Front foot			8	'	'	ı	-	20	Ø	ო	·	~
			1.3%				3.2%	18.9%	14.8%	50.0%		4.8%
Rear leg		ı	16	'	'	ı	N	10	ი	'	~	ო
I			2.5%				6.5%	9.4%	16.7%		50.0%	14.3%
Rear foot		ı	18	'	'	ı	7	33	15	ო	·	ı
			2.9%				22.6%	31.1%	27.8%	100.0%		
Front or rear foot		·	27	'	'	'	16	13	9	'	ı	'
			4.3%				51.6%	12.3%	11.1%			
Total	358	380	631	5	19	2	31	106	54	9	0	21
	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

	Elk	Deer	Pronghorn	Bighorn	Bos
Elk	7	6	5	4	0
	100.0%	85.7%	71.4%	57.1%	0.0%
Deer	6	36	14	8	2
	16.7%	100.0%	38.9%	22.2%	5.5%
Pronghorn	5	14	16	5	0
	33.3%	87.5%	100.0%	31.2%	0.0%
Bighorn	4	8	5	8	0
	50.0%	100.0%	62.5%	100.0%	0.0%
Bos	0	2	0	0	3
	0.0%	66.7%	0.0%	0.0%	100.0%

Table 20.21. Co-occurrence of Artiodactyl Species in Early Developmental
Period Components (percent of row)

Table 20.22. Provenience Type Distribution for Large Mammal and Artiodactyls in Early DevelopmentalDeposits

		Structure		Floor		
		Fill	Roof Fall	Associated	Extramural	Total
Large mammal	Count	129	60	72	119	380
-	Expected count	139.8	74.7	76.5	88.9	380
	% within taxon	33.9%	15.8%	18.9%	31.3%	100.0%
Artiodactyl	Count	244	128	142	114	628
	Expected count	231	123.5	126.5	147	628
	% within taxon	38.9%	20.4%	22.6%	18.2%	100.0%
Large artiodactyl	Count	2	15	1	1	19
	Expected count	7	3.7	3.8	4.4	19
	% within taxon	10.5%	78.9%	5.3%	5.3%	100.0%
Medium-large artiodactyl	Count	0	1	1	3	5
	Expected count	1.8	1	1	1.2	5
	% within taxon	0.0%	20.0%	20.0%	60.0%	100.0%
Deer or elk antler	Count	0	3	2	0	5
	Expected count	1.8	1	1	1.2	5
	% within taxon	0.0%	60.0%	40.0%	0.0%	100.0%
Elk	Count	4	9	1	17	31
	Expected count	11.4	6.1	6.2	7.3	31
	% within taxon	12.9%	29.0%	3.2%	54.8%	100.0%
Deer	Count	46	15	21	23	105
	Expected count	38.6	20.6	21.2	24.6	105
	% within taxon	43.8%	14.3%	20.0%	21.9%	100.0%
Pronghorn	Count	24	11	10	9	54
	Expected count	19.9	10.6	10.9	12.6	54
	% within taxon	44.4%	18.5%	18.5%	16.7%	100.0%
Bison	Count	0	0	1	5	6
	Expected count	2.2	1.2	1.2	1.4	6
	% within taxon	0.0%	0.0%	16.7%	83.3%	100.0%
Bos/Bison	Count	0	0	1	1	2
	Expected count	0.7	0.4	0.4	0.5	2
% within taxon	-	0.0%	0.0%	50.0%	50.0%	100.0%
Bighorn	Count	13	5	1	2	21
-	Expected count	7.7	4.1	4.2	4.9	21
	% within taxon	61.9%	23.8%	4.8%	9.5%	100.0%

			Deer				Pronghorn	
	LA 265	LA 6169	LA 6170	LA 6171	LA 115862	LA 265	LA 6169	LA 6170
Horn or antler	2	-	2	-	-	-	-	4
	4.0%		4.4%					12.5%
Cranial	7	4	3	-	-	6	-	1
	14.0%	50.0%	6.7%			35.3%		3.1%
Ribs and vertebrae	2	-	-	-	-	-	-	-
	4.0%							
Front leg (and scapula)	8	1	1	-	-	2	1	2
	16.0%	12.5%	2.3%			11.8%	20.0%	6.3%
Front foot	8	1	8	1	2	-	1	7
	16.0%	12.5%	17.8%	100.0%	100.0%		20.0%	21.9%
Rear leg	6	-	4	-	-	2	-	7
-	12.0%		8.9%			11.8%		21.9%
Rear foot	11	-	22	-	-	6	2	7
	22.0%		48.9%			35.3%	40.0%	21.9%
Front or rear foot	6	2	5	-	-	1	1	4
	12.0%	25.0%	11.1%			5.9%	20.0%	12.5%
Total	50	8	45	1	2	17	5	32
	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Table 20.23. Deer and Pronghorn Parts Recovered from Early Developmental Period Assemblages

Fetal and neonate artiodactyl bones provide evidence of hunting females from late spring into fall. Sources vary on when fawning occurs. Some place it in late May and early June, while in parts of Arizona it occurs from early July until September (BISON-M n.d.). Fawning on a limited scale may begin as early as March and continue until late November in the Sangre de Cristo Mountain area (Lang and Harris 1984:51). Deer grow rapidly in the first six months of life. Weighing less than 5 kg at birth, by six months of age they average 30 kg and by 12 months weight 50 to 60 kg (Mackie et al. 1982:863). Pronghorn in central Arizona are born between April and June (BISON-M n.d.), and are leanest during the fawning season and in their best condition in late summer during the rainy season. Large herds form during winter, breaking up into bachelor and nursery herds then into even smaller groups or solitary animals in late summer (Kitchen and O'Hara 1984:963-965).

Neonatal medium artiodactyl, deer, and pronghorn elements indicating summer or fall procurement occur in a limited number of Peña Blanca Early Developmental period components. At LA 6169, the Structure 47 floor assemblage contains a long bone fragment, five ribs, a metacarpal shaft, a tibia shaft, and a metapodial shaft fragment from a medium

artiodactyl. A pit in the floor of Structure 50 at LA 6170 had a pronghorn tooth and a deer mandible fragment was found in the ventilator shaft. At LA 265, Structure 1 fill had a medium artiodactyl distal metacarpal and a deer distal radius, and Structure 13 a medium artiodactyl rib. Only 5 (7.6 percent) of the 66 components with artiodactyl bones have neonatal remains while 59 (89.4 percent) have more than 90.0 percent mature bones and only 12 (18.2 percent) have any from near full sized or juvenile animals. This suggests that while artiodactyls may have been hunted year-round, they either selected full-sized and mature animals, spent more time hunting when young animals were absent or not as common, or the remains of very small artiodactyls were rarely transported to the sites.

Shedding stages for mule deer antler provide another seasonal indicator. Small bulbs appear in April or May with growth completed by late summer. Antlers are usually shed in late January and early February but occasionally as late as March (Mackie et al. 1982:864). Few antlers were found in the Peña Blanca sites. At one site, as part of closing ritual, a partial deer cranium was placed on the floor of Structure 50 at LA 6170. The antler was in the process of detaching, suggesting this deer was killed shortly before January or February when antler is shed. A partial cranium found in the fill of Structure (SU) 1 at LA 265 is from a deer that had already shed its antlers and had not begun to grow a new set, and was killed between January and April. The vent shaft of Structure 4 at LA 6169, an Early Developmental structure (but coded as mainly Coalition), had a partial cranium with fully formed antler attached, suggesting it was killed during the fall. The rest of the antler (n = 8) is pieces that could be from fully formed racks or shed racks. While ceremonial deposition is probably a poor indicator of the season a structure was abandoned, this and the other antler indicate that deer were killed throughout most of the year. This is not contradicted by the two deer mandibles complete enough to age based on tooth wear (following Severinghaus 1949 criteria for white-tailed deer). One from a bell-shaped pit at LA 265 (SU2, Feature 26) was approximately 1.5 years old and one from the floor of Structure 47 at LA 6169 was approximately 2.5 years, suggesting both were killed between October and May.

If deer hunting was a logistic strategy of sedentary agriculturalists, we might expect that hunts would be rare in spring and late summer/early fall when males were occupied with agricultural chores and would be directed at animals in their best condition, probably after the harvest. On the other hand, local hunting by permanent or seasonal residents could have been opportunistic, occurring at any time or reflecting the colder months when animals move to lower elevations. Both male and female artiodactyls are in their poorest, fat-depleted condition in late winter (March, males) and early spring (April, females) (Speth and Spielmann 1983:3) when they weight about 20 percent less than at their peak (Mackie et al. 1982:863). Ethnographic accounts agree somewhat. The Santa Claras hunted deer in small groups during fall when animals were in better condition and the pressure of other economic activities was minimal. Pronghorn were hunted communally (Hill 1982:49, 51). Hopi logistic hunts of deer and pronghorn took place in August and October when the animals were fattest, in December when snow slows the animals down and they are easy to track,

and in March and April when the animals have their young with them (Beaglehole 1936:4–8). Although hunting practices have more than likely changed from prehistoric times, the rational involved when animals were hunted may resemble that of prehistoric groups. March and April hunts would seem unlikely if animals are in poor condition, but these could have augmented stored resources.

The Early Developmental period Peña Blanca faunal data shows a high reliance on cottontail rabbits with deer, the most commonly taken artiodactyl. This in itself suggests that garden hunting provided a large part of the animal subsistence during this period. Deer appear to have been hunted year-round with most parts returned to the sites and heavily processed. Pronghorn may have been taken less often but the part and age distributions are similar to deer, again suggesting that most parts were returned to the sites and heavily processed. Elk and bison are less common and are mostly lower limb and foot elements indicating only parts were brought back and suggesting more distant procurement locations. The abundance of bighorn crania and vertebra along with few foot elements is difficult to explain, especially since this species was probably transported. None of the elk or bighorn elements are from immature or juvenile animals, suggesting that either the hunters selected mature animals or they were hunted during seasons when the number of young animals was limited. Unfortunately, small sample sizes and heavy processing for the Peña Blanca artiodactyls have not provided clear patterns that would indicate whether these animals were hunted from a sedentary base or in part by more mobile groups returning to aid in agricultural endeavors. Also perplexing is the near total absence of riverine birds and mammals, which may simply mean that adequate animal resources could be obtained without exploiting riverine species.

Cooking Methods

Cooking and processing patterns also provide information concerning the residents of these early sites. When cooking involves boiling, as in stews, it is generally done by women. When men participate, it is usually in roasting or baking, methods that are also more common when preparing for feasts or ceremonials rather than in routine food preparation (Crown 2000:223; Speth 2000:102). Meat that is roasted in a pit oven will have no evidence of burning while over half of the bones can show burning when meat is spitted over an open fire (Speth 2000:89). Day-to-day domestic activities should result in deposits with evidence of animals being rendered into pot-sized units and with little of the graded burning caused by roasting over an open fire. When pit roasting of large parts of animals did occur, this should have resulted in a fair number of complete bones and a good representation of body parts. Substantial trash deposits should have a mix of cooking techniques that reflects the composition of the resident population as well as taphonomic considerations such as bone preservation and the effect of dogs.

Before examining the components for evidence of different cooking methods, one particular feature is considered in detail. Much of the fauna deposited in Feature 29 at LA 6169 was probably the result of a single event (see Post, Volume 2, for a description of this pit). At least 21 cottontails, 2 to 4 jackrabbits, perhaps a woodrat and a flicker, and artiodactyl parts were roasted and the bones discarded in a pit that may have already contained some waste parts. Feature fill was screened through 1/8inch mesh and 55 (8.1 percent) of the 678 specimens are from flotation samples (11 small mammal and 44 cottontail bones). One of the most unusual aspects of this feature is the concentration of cottontail bones (n = 503 or 74.2 percent of the feature assemblage). Jackrabbits bones are much less common (n = 47 or 6.9 percent) as are unidentifiable small mammal bones (n = 87 or 12.8 percent). The cottontail part distribution (Table 20.24) definitely indicates selection of parts and uniform processing of those parts deposited in Feature 29. None of the cottontail bones and only one bone (from a medium artiodactyl) is heavily burned. Instead, a large proportion of the cottontail (26.5 percent), jackrabbit (14.9 percent), and medium artiodactyl (13.3 percent) bones are scorched or have graded burns generally indicative of roasting or baking. Given that baking or even open-fire roasting of parts with a thick layer of flesh can show no signs of roasting, the amount of roasted bone is undoubtedly much higher.

The cottontail part and portion distribution suggests that the parts roasted and deposited in Feature 29 were mainly heads and rear legs with rear feet sometimes roasted and sometimes just disposed of in the pit. The most consistent breakage and burning pattern is on distal tibiae, which are almost always broken at the distal end with slight scorches or scorches grading into heavier burns on the broken distal ends. Mandible bodies are largely intact and either lightly scorched or scorched along the lower margin. Virtually no vertebrae, ribs, scapulae, and very few front limb elements were found (Table 20.24). Complete (39.2 percent) and nearly complete (9.9 percent) elements are common. No immature and only nine (1.3 percent) of the cottontail bones are recorded as juvenile animals. If this age distribution reflects the rabbit population at the time they were captured, this lack of young animals indicates a winter event, too late to suggest protecting crops and too early for clearing fields of potential crop predators.

Jackrabbits have a different part distribution as well as a much smaller sample size. No mandibles were found. The most numerous parts are hind foot elements (19.1 percent) but even this is less than half the proportion for cottontails (41.5 percent). Cranial fragments are more common (17.0 percent compared to 10.5 percent) and more ribs and ulnas were found (10.6 percent each compared to 1.4 percent for cottontail ribs and 1.0 percent for cottontail ulnas). However, the burning pattern is similar, all scorches (12.8 percent) or graded (2.1 percent) burns, and complete (29.8 percent) or nearly complete (6.4 percent) bones are common.

When compared to a much larger sample of cottontail (n = 3,975, MNI = 128) and prairie dog (n = 877, MNI = 64) bones from the

Element	Fragmentation	Burning	Count
Cranium	face or case fragment	none	32
	maxilla	none	21
Mandible	partial to fragmentary body	none	33
	complete to fragmentary body	completely scorched	8
	body fragment	margin scorched	3
Lumbar vertebra		none	3
	partial	none	4
Ribs	shafts, some with one end	none	7
Scapula	glenoid	none	4
	blade fragment	none	3
Innominate	complete	none	4
	fragment including acetabulum	none	22
	hagment moldaring acclabularit	completely scorched	7
		graded superior	1
	ilium	none	2
Humerus			2
numerus	complete	none	2 1
	proximal	none	•
	distal and shaft	none	1
	shaft	completely scorched	1
Radius	complete	none	1
	proximal and shaft	completely scorched	2
	distal and shaft	completely scorched	1
Ulna	proximal and shaft	none	3
		completely scorched	1
	distal and shaft	none	1
Metacarpal	complete	none	1
Manus phalanx	complete	none	2
Femur	shaft fragment	none	8
		completely scorched	3
		scorch distal end	1
	proximal shaft fragment	none	2
		completely scorched	3
	distal shaft fragment	completely scorched	2
	end fragment	graded	1
	proximal and partial shaft	none	5
	F	completely scorched	1
	distal	completely scorched	1
		none	1
	distal and partial shaft	none	12
	distal and partial shart	completely scorched	4
Tibia	complete	• •	2
INA	complete	none scorch distal end	2
	choft or choft frogmost		2 5
	shaft or shaft fragment	none	
		completely scorched	9
		distal scorched	6
		distal graded	2
	proximal fragments	none	3

Table 20.24. Summary of Cottontail Rabbit Parts, Fragmentation, and Burning forFeature 29 at LA 6169

Element	Fragmentation	Burning	Count
Tibia	proximal and partial shaft	none	3
		completely scorched	4
		distal scorched	9
		distal graded	4
		shaft graded	1
	proximal shaft fragment	none	2
		distal scorched	1
	distal fragments	none	2
	distal and partial shaft	none	4
		shaft scorched	1
		graded distal	2
	distal shaft	completely scorched	1
Fibula	shaft fragment	none	1
	proximal fragment	none	1
	proximal and partial shaft	none	5
Tarsal	complete	none	1
Astragalus	complete	none	10
Calcaneus	complete	none	17
		completely scorched	9
		graded distal	1
	fragment	none	2
Metatarsals	complete	none	60
		completely scorched	11
	proximal and partial shaft	none	15
		completely scorched	6
		graded distal	1
	distal and partial shaft	none	8
		completely scorched	3
		scorched margin	1
	shaft	scorched margin	1
Pes phalanges	complete or nearly so	none	51
		completely scorched	13
Carpal or tarsal	complete	none	8

Table 20.24. Continued.

Henderson site in southeastern New Mexico (Speth 2000), the Feature 29 assemblage is distinctive in many aspects of element distribution (Table 20.25). Comparing the percent of the total MNI represented by a particular element or element portion for jackrabbits, cottontails, prairie dogs, and pocket gophers, Speth uses ethnographic descriptions of cooking practices of Southwestern groups to infer that the part distribution pattern for cottontails found at the Henderson site results from boiling and that for prairie dogs from roasting and heavy attrition by dogs (Speth 2000:102). While the Feature 29 part distribution may be more similar to that of the Henderson site prairie dogs than of the cottontails, there are still considerable differences. Some could be due to greater interference from dogs at that site or other factors may be involved. The relative absence of vertebrae and front limbs in Feature 29 could be because those parts were used in stews, discarded elsewhere, or even fed to dogs with only parts of the rabbits being roasted. If the deposits in Feature 29 pit are characteristic of a roasting event, either a ceremonial hunt and feast or an influx of persons, and males did the cooking, then what we should look for in other deposits is a concentration of

	Henderson	Henderson	
	Cottontail %	prairie dog	LA 6169, F. 29
	MNI (128)	% MNI (64)	% of MNI (21)
Mandible	97.7	100	100
Atlas	2.3	-	-
Axis	2.3	-	-
Cervical	0.8	-	-
Thoracic	0.8	-	-
Lumbar	8.6	-	4.8
Scapula	100	53.1	14.3
Proximal humerus	21.9	7.8	9.5
Distal humerus	86.7	54.7	4.8
Proximal radius	47.7	31.2	9.5
Distal radius	25	9.4	4.8
Proximal ulna	31.2	64.1	9.5
Distal ulna	-	-	4.8
Proximal metacarpal	4.7	-	4.8
Distal metacarpal	3.9	-	-
Innominate	83.6	67.2	76
Proximal femur	35.9	29.7	19
Distal femur	53.9	9.4	38.1
Proximal tibia	42.2	3.1	66.7
Distal tibia	92.2	48.4	38.1
Astragalus	9.4	-	33.3
Calcaneus	72.7	-	85.7
Proximal metatarsal	45.3	-	90.5
Distal metatarsal	25	-	100

Table 20.25. Comparison of Percent of MNI Represented for Henderson Site Boiled Cottontail and Roasted Prairie Dog Assemblages and LA 6169 Feature 29 Roasted Assemblage

Note: vertebrae, metapodials, carpals, and tarsals not coded for Henderson (Speth 2000:100) prairie dog and distal ulna not reported for cottontails or prairie dogs

one or a few species, a relatively large proportion of complete or nearly complete bones, and greater than usual amount of scorched and graded burns, but not necessarily a similar part distribution.

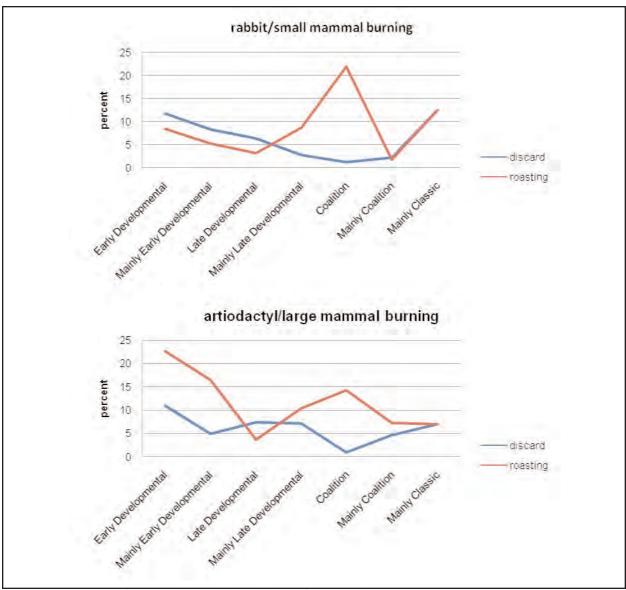
Unfortunately, only 6 other Early Developmental components have sample sizes of 100 or more cottontail specimens and virtually all are multiple-event fill deposits or include a number of features. None of the 6 has more than 26.8 percent complete to nearly complete elements (compared to 49.1 percent for Feature 29). The highest proportion of roasting-like burns is 29.4 percent from a burned roof layer with a small sample (n = 17) followed by 28.6 percent for another small sample (n = 7) (compared to 26.4 percent for

Feature 29, n = 503). If the mere presence of roasting-like burns on cottontails is considered, then 3 of 6 or 50.0 percent of the Structure fill, 11 of 18 or 61.1 percent of the roof fall, 12 of 17 or 70.6 percent of the floor associated, and only 5 of 22 or 22.7 percent of the extramural components (other than Feature 29) with cottontail bones have this type of burning. The small proportion for extramural contexts is mainly due to small samples, 18 have sample sizes of 7 or less and 10 of these have only one cottontail bone. High proportions for the roof fall and floor associations are in part taphonomic burns. Burned roofs result in a larger amount of burned and scorched bone and both are common in fire and ash pits where these are essentially dis-

	N =	% Roasting- like Burn	% Discard Burn
Rabbit/small mammal			
Early Developmental	4823	11.8	8.5
Mainly Early Developmental	229	8.3	5.2
Late Developmental	63	6.3	3.2
Mainly Late Developmental	184	2.7	8.7
Coalition	256	1.2	21.9
Mainly Coalition	544	2.2	1.8
Mainly Classic	16	12.5	12.5
Artiodactyl/large mammal			
Early Developmental	1622	11	22.7
Mainly Early Developmental	121	5	16.5
Late Developmental	54	7.4	3.7
Mainly Late Developmental	250	7.2	10.4
Coalition	84	1.2	14.3
Mainly Coalition	191	4.7	7.3
Mainly Classic	57	7	7

Table 20.26. Proportion of Roasting and Discard Burns for Rabbit/Small Mammal and Artiodactyl/Large Mammal

Note: Roasting-like burns include light and graded light to heavy burns discard burns are dry burns and heavy to calcined burns


card burns. Still, the fact that so many components have roasting-like burns suggests this was a fairly common cooking practice during the Early Developmental period.

Later dating components have roastinglike burns but generally in much smaller proportions, except when sample sizes are low. Grouped by provenience type, only the Mixed Early Developmental period deposits have anything near the amount of potentially roasted bone (Table 20.26) and only the Coalition period structure fill has the amount of complete bone. While sample sizes for the later periods are smaller, there does seem to be a reduction in the amount of roasting for cottontails after the Early Developmental period.

Proportions of roasting-like burns (light or scorched and graded light to heavy) are greatest in the Early Developmental period deposits and smallest during the Coalition for both the rabbits and likely rabbits and the artiodactyls and likely artiodactyls (Table 20.26, Fig. 20.4), increasing at the end of the occupation but based on relatively small sample sizes. Discard burns (heavy to calcined and graded combinations) proportions peak during the Coalition for the rabbits and likely rabbits and in the Early Developmental for the artiodactyl and likely artiodactyls. Coalition deposits are mainly structure fill that could contain some roof fall (67.9 percent) and floor (26.8 percent) and predominantly from one site (94.0 percent) and may not be all that representative since few components contribute to these totals. Overall, these data suggest that roasting was a more common cooking practice for both small and large forms early in the occupation. If this does indicate more cooking by males, it could be interpreted as influxes in population that required more expedient cooking practices.

Site Structure

Rarely is cultural material uniformly deposited throughout a site. Ethnoarchaeological studies from the Mayan area find that refuse disposal is structured by how much effort it takes to dispose of an item, its potential value for reuse, and how much of a problem or hindrance the items are if not disposed of. Discard behavior is

Figure 20.4. Percent of roasting-like and discard burns for Peña Blanca.

also strongly influenced by the length of occupation (Hayden and Cannon 1983:117–118), along with factors that alter the disposition of an object before it is permanently discarded or once it reaches the discard location, e.g., children playing, recycling, animal breakage and dispersal, and idiosyncratic human actions (Hayden and Cannon 1983:154–155). As the length of occupation and number of occupations increase, so should the formalization of space use and the amount of site maintenance (Schmader 1994:59).

While the historic Pueblos were undoubtedly more sedentary and less dependent on hunting than the prehistoric inhabitants of the Upper Middle Rio Grande Valley, some of their disposal practices may have roots in prehistory. Pueblo ethnographic reports frequently contain accounts of special treatment of artiodactyl bones. For example, the Hopis divided communally hunted deer, pronghorn, and bighorn among the hunters, drying most of the meat but reserving some for a feast following the hunt. Bones from the feast were carefully placed aside, were not broken or given to the dogs, but were streaked with ochre and placed on a shrine near the village, as were skulls with antlers (Beaglehole 1936:7–8, 11). At Santa Clara, pronghorn bones were saved and deposited in the river (Hill 1982:52), as were deer bones at Cochiti (Goldfrank 1927:86). The Zia threw deer bones on refuse dumps and did not allow dogs to gnaw them (White 1974:304).

These accounts suggest that practical matters and/or ceremonial practices could result in the differential distribution of faunal remains at a site. Bones with reuse potential (as in tools) could have been cached in roof beams, on floors, or in features while those with hindrance potential (large, sharp, smelly, or vermin attracting) would be deposited away from living and working areas. Common refuse and floor and feature sweepings with neither use nor hindrance potential would again be deposited away from the living and working areas but not necessarily in the same place as the larger hindrance bone. We might also expect that the more substantial the occupation, the more structure will be displayed in refuse treatment, that is, refuse would be placed in pits and depressions or in mounds rather than generally broadcast across the area.

Distributional differences in animal groups, parts, and treatment (completeness and burning) are examined by provenience type. As described in an earlier section of this report, the site components were classified as structure fill, structure roof fall, structure floor and floor associated, or extramural. These divisions are not completely exclusive and subject to different strategies for screening and sample selection. Floor and feature excavations were screened with finer mesh and include some flotation bone. Furthermore, the site component divisions rarely reflect the nature of the deposit, e.g., whether it is trash, wind and water, mixed, or primary deposition. The extramural samples are largely from extramural feature fill with non-feature or sheet trash comprising only 11.3 percent of the Early Developmental extramural sample (n = 2,003), 8.7 percent of the mainly Early Developmental extramural deposits (n = 23), 26.7 percent of those from the Coalition (n = 30), 19.9 percent of the mainly Coalition (n = 181), and 5.9 percent of the mostly Classic (n = 17). Material dumped or washed into pits is far better represented than sheet midden material.

Even with the above-mentioned problems, these divisions should produce somewhat different faunal assemblages if there was some form of order in refuse disposal. Structure fill and extramural deposits are the most likely to contain regular refuse and some refuse with hindrance potential. Those with hindrance potential or from the earlier phases of butchering and discard should have been dumped farther from the current habitation structures, probably in pits. Roof fall layers could contain tools and raw material cached for future use. Floor and floor feature deposits could contain both the remains of caches and small pieces of bone that were missed during routine cleaning or had been tossed into floor features that were not cleaned out when the structure was abandoned.

Since artiodactyl/large mammal bones have the most potential for reuse and for hindrance, their distribution is unlikely to be completely random. When the Early Developmental assemblage is examined by part and provenience type, few parts appear to be randomly or uniformly distributed (Table 20.27). Small pieces of long bones and front limbs occur more frequently than expected in structure fill, roof fall, and floor deposits while flat bones, vertebra, ribs, and front or rear foot elements are more likely to be found in extramural deposits. Front limbs and front and rear feet (mostly metapodials) are disproportionately found in structure fill while rear limbs are found in roof fall and extramural deposits. This seems to confirm that some artiodactyl bone was cached in roof beams and on floors for further use and that potential hindrance bone or waste (flat bones, vertebrae, ribs, and phalanges) was disposed of in extramural pits. Extramural contexts also have far less burning than expected (Table 20.28) possibly because butchering waste with high hindrance potential (feet, ribs, and vertebra) was disposed of before cooking, which also results in a greater than expected number of complete bones (Table 20.29). In addition, bones from most of the larger artiodactyls (including the medium to large artiodactyl, elk, and bison) are

		Тур	be			
				Structure		
		Structure	Structure	Floor		
		Fill	Roof Fall	Association	Extramural	Tota
Early Developm	ental					
Unknown	Count	2	0	0	4	6
	Expected Count	2.2	1.2	1.2	1.4	6
Longbone	Count	239	141	130	120	630
-	Expected Count	231.7	123.9	126.9	147.5	630
Flat bone	Count	22	10	21	33	86
	Expected Count	31.6	16.9	17.3	20.1	86
Horn or antler	Count	3	5	3	3	14
	Expected Count	5.1	2.8	2.8	3.3	14
Cranial	Count	28	8	12	16	64
	Expected Count	23.5	12.6	12.9	15	64
Vertebral	Count	8	1	1	10	20
	Expected Count	7.4	3.9	4	4.7	20
Thorax	Count	63	31	38	50	182
	Expected Count	66.9	35.8	36.7	42.6	182
Pelvis	Count	1	0	0	0	1
	Expected Count	0.4	0.2	0.2	0.2	1
Front limb	Count	18	10	4	3	35
	Expected Count	12.9	6.9	7.1	8.2	35
Front foot	Count	20	6	9	6	41
	Expected Count	15.1	8.1	8.3	9.6	41
Rear leg	Count	10	11	7	12	40
	Expected Count	14.7	7.9	8.1	9.4	40
Rear foot	Count	31	17	12	17	77
	Expected Count	28.3	15.1	15.5	18	77
Front or rear foot		17	7	16	20	60
	Expected Count	22.1	11.8	12.1	14	60
Total	Count	462	247	253	294	1256
	Expected Count	462	247	253	294	1256
Mainly Early Dev	velopmental					
Longbone	Count	19	6	23	2	50
	Expected Count	15.2	8.4	23	3.4	50
Flat bone	Count	1	4	8	1	14
	Expected Count	4.2	2.4	6.4	0.9	14
Horn or antler	Count	1	0	0	0	1
	Expected Count	0.3	0.2	0.5	0.1	1
Thorax	Count	0	2	2	0	4
	Expected Count	1.2	0.7	1.8	0.3	4
Front limb	Count	1	0	0	1	2
_	Expected Count	0.6	0.3	0.9	0.1	2
Front foot	Count	2	0	5	0	7
	Expected Count	2.1	1.2	3.2	0.5	7
Rear leg	Count	1	0	1	0	2
	Expected Count	0.6	0.3	0.9	0.1	2

Table 20.27. Actual and Expected Counts for Artiodactyl/Large Mammal Parts by Provenience Type

		04	Ohment	Structure		
		Fill	Structure Roof Fall	Floor Association	Extramural	Тс
Rear foot	Count	1	3	1	1	
	Expected Count	1.8	1	2.8	0.4	
Front or rear foot		1	0	1	1	
	Expected Count	0.9	0.5	1.4	0.2	
Total	Count	27	15	41	6	8
	Expected Count	27	15	41	6	8
Late Developme	ntal					
Longbone	Count	0		11		
U	Expected Count	0.5		10.5		
Flat bone	Count	1		7		
	Expected Count	0.4		7.6		
Horn or antler	Count	0		1		
	Expected Count	0		1		
Cranial	Count	0		1		
	Expected Count	0		1		
Vertebral	Count	1		5		
	Expected Count	0.3		5.7		
Thorax	Count	0		3		
	Expected Count	0.1		2.9		
Pelvis	Count	0		1		
	Expected Count	0		1		
Front limb	Count	0		8		
	Expected Count	0.4		7.6		
Front foot	Count	0		3		
	Expected Count	0.1		2.9		
Rear foot	Count	0		3		
	Expected Count	0.1		2.9		
Total	Count	2		43		
	Expected Count	2		43		
Mainly Late Deve	elopmental					
Unknown	Count	1	0	0	0	
	Expected Count	0.3	0.6	0	0	
Longbone	Count	13	59	0	4	
	Expected Count	26.1	46.2	0.4	3.2	
Flat bone	Count	7	13	0	2	
	Expected Count	7.6	13.4	0.1	0.9	
Cranial	Count	7	3	0	0	
	Expected Count	3.4	6.1	0.1	0.4	
Vertebral	Count	12	7	0	0	
	Expected Count	6.5	11.6	0.1	0.8	
Thorax	Count	11	11	1	0	
	Expected Count	7.9	14	0.1	1	
Pelvis	Count	0	1	0	0	
	Expected Count	0.3	0.6	0	0	

Table 20.27. Continued.

		Table 20.27.	Continued.			
				Structure		
		Structure	Structure	Floor		
		Fill	Roof Fall	Association	Extramural	Total
Front limb	Count	5	13	0	0	18
	Expected Count	6.2	11	0.1	0.8	18
Front foot	Count	1	2	0	1	4
	Expected Count	1.4	2.4	0	0.2	4
Rear leg Rear foot	Count	2	1	0	0	3
	Expected Count	1	1.8	0	0.1	3
	Count	4	2	0	0	6
	Expected Count	2.1	3.7	0	0.3	6
Front or rear foot		2	3	0	1	6
	Expected Count	2.1	3.7	0	0.3	6
Total	Count	65	115	1	8	189
	Expected Count	65	115	1	8	189
Coalition						
Longbone	Count	12		4	5	21
U	Expected Count	7.2		4.8	9	21
Flat bone	Count	1		3	1	5
	Expected Count	1.7		1.1	2.1	5
Horn or antler	Count	3		0	0	3
	Expected Count	1		0.7	1.3	3
Cranial	Count	2		3	11	16
	Expected Count	5.5		3.7	6.8	16
Vertebral	Count	1		0	2	3
	Expected Count	1		0.7	1.3	3
Thorax	Count	1		2	6	9
	Expected Count	3.1		2.1	3.8	9
Front foot	Count	1		2	0	3
	Expected Count	1		0.7	1.3	3
Front or rear foot	Count	0		0	1	1
	Expected Count	0.3		0.2	0.4	1
Total	Count	21		14	26	61
	Expected Count	21		14	26	61
Mainly Coalition						
Longbone	Count	32			28	60
20195010	Expected Count	33			20	60
Flat bone	Count	7			8	15
	Expected Count	8.3			6.7	15
Horn or antler	Count	12			0.1	12
	Expected Count	6.6			5.4	12
Cranial	Count	5			6	11
	Expected Count	6.1			4.9	11
Vertebral	Count	0.1			3	3
	Expected Count	1.7			1.3	3
Thorax	Count	5			4	9
	Expected Count	5			4	9
Front limb	Count	3			0	3
	Expected Count	1.7			1.3	3

Table 20.27. Continued.

				01		
		0.4	Othersteine	Structure		
			Structure	Floor	F	T . (.)
		Fill	Roof Fall	Association		Total
Front foot	Count	0			3	3
	Expected Count	1.7			1.3	3
Rear leg	Count	5			2	7
	Expected Count	3.9			3.1	7
Rear foot	Count	5			5	10
	Expected Count	5.5			4.5	10
Front or rear foot		2			3	5
	Expected Count	2.8			2.2	5
Total	Count	76			62	138
	Expected Count	76			62	138
Mainly Classic						
Longbone	Count	21			2	23
	Expected Count	20.5			2.5	23
Flat bone	Count	4			1	5
	Expected Count	4.5			0.5	5
Vertebral	Count	3			0	3
	Expected Count	2.7			0.3	3
Thorax	Count	10			2	12
	Expected Count	10.7			1.3	12
Pelvis	Count	1			0	1
	Expected Count	0.9			0.1	1
Rear leg	Count	1			0	1
	Expected Count	0.9			0.1	1
Rear foot	Count	1			0	1
	Expected Count	0.9			0.1	1
Total	Count	41			5	46
	Expected Count	41			5	46

Table 20.27. Continued.

frequently found in extramural pits, suggesting their larger size increased the hindrance potential and caused these to be placed in pits more often than expected. Both structure fill and roof fall have more burned and roasted bone than expected, some of which is due to the burned roofs in a number of the early structures. Floor bone is more likely to be unburned. As for fragmentation, both structure fill and roof fall bone tend to be slightly more fragmentary than expected while the floor-associated bone is fairly close to the expected numbers and the extramural bone less fragmented than expected.

All but two of the other assemblages have sample sizes of artiodactyl/large mammal bone that are too small to consider. The mainly Late Developmental assemblage is comprised almost totally of structure fill and roof fall. Here the fill has more than the expected counts for vertebra and ribs while the roof fall has more long bone and front limb fragments (Table 20.27). This suggests that structure fill during this period was like that of extramural deposits during the Early Developmental, and could indicate a change in refuse disposal in extramural features to abandoned structures. Also similar is the greater than expected amount of complete bone in structure fill (Table 20.29). Burning is much less common in mainly Late Developmental deposits with slightly more unburned bone than expected in the fill and slightly more in the roof fall (Table 20.28). Mainly Coalition deposits are almost evenly divided between structure fill and extramural, and because both are likely disposal locales, great differences should not be

	Camples of Antodacty/Large Maninals by Provenience						
				Structure			
		Structure	Structure	Floor			
		Fill	Roof Fall	Association	Extramural	Total	
Early Develop	omental						
Unburned	Count	251	106	173	224	774	
	Expected Count	284.7	152.2	155.9	181.2	774	
Roasted	Count	78	36	34	12	160	
	Expected Count	58.9	31.5	32.2	37.5	160	
Discard burn	Count	133	105	46	38	322	
	Expected Count	118.4	63.3	64.9	75.4	322	
Total	Count	462	247	253	294	1256	
	Expected Count	462	274	255	294	1256	
Pearson Chi-s	quare=119.19, df=6,	sig=.001					
Mainly Late D	evelopmental						
Unburned	Count	56	89	1	8	154	
	Expected Count	53	93.7	0.8	6.5	154	
Roasted	Count	4	9	0	0	13	
	Expected Count	4.5	7.9	0.1	0.6	13	
Discard burn	Count	5	17	0	0	22	
	Expected Count	7.5	13.4	0.1	0.9	22	
Total	Count	65	115	1	8	189	
	Expected Count	65	115	1	8	189	
Pearson Chi-s	quare=4.501, df=6, s	sig=.609					
Mainly Coalit	ion						
Unburned	Count	68			53	121	
	Expected Count	66.6			54.4	121	
Roasted	Count	2			7	9	
	Expected Count	5			4	9	
Discard burn	Count	6			2	8	
	Expected Count	4.4			3.6	8	
Total	Count	76			62	138	
	Expected Count	76			62	138	
Pearson Chi-square=5.271, df=2, sig.=.072							

Table 20.28. Actual and Expected Counts and Chi-Square Values for Burn Type of Larger Samples of Artiodactyl/Large Mammals by Provenience

expected. Horn or antler and long bones are disproportionately found in structure fill and cranial parts and vertebra in extramural deposits, otherwise the expected numbers are quite close to the actual counts (Table 20.27). The same is true for burning (Table 20.28) and fragmentation (Table 20.29).

Poor preservation of the more generally broadcast items or sheet trash and sampling that emphasizes fill of structures and features gives a less than complete picture of disposal behavior. Yet, in all three samples, the artiodactyl/large mammal bones are distributed in a manner that suggests removing those parts with the most hindrance potential while retaining those with the potential for use and basically ignoring those with little hindrance potential.

The distribution of rabbit remains is more likely to reflect day-to-day waste disposal since these are less likely to be reused and have somewhat less hindrance potential than the larger artiodactyl bones. Since it is unlikely that individual rabbits were widely shared and much less processing is needed than for larger animals, there should be fewer differences in

		Structure	Structure	Structure Floor		
		Fill	Roof Fall	Association	Extramural	Total
Early Dev	elopmental					
Complete	Count	8	10	10	27	55
•	Expected Count	20.2	10.8	11.1	12.9	55
>75%	Count	1	1	2	2	6
	Expected Count	2.2	1.2	1.2	1.4	6
50-75%	Count	8	2	2	3	15
	Expected Count	5.5	2.9	3	3.5	15
25-50%	Count	27	8	13	8	56
	Expected Count	20.6	11	11.3	13.1	56
< 25%	Count	418	226	226	254	1124
	Expected Count	413.4	221	226.4	263.1	1124
Total	Count	462	247	253	294	1256
	Expected Count	462	247	253	294	1256
Pearson C	hi-square=31.904,					
Mainly La	te Developmental					
Complete	Count	7	4	0	1	12
	Expected Count	4.1	7.3	0.1	0.5	12
>75%	Count	0	1	0	0	1
	Expected Count	0.3	0.6	0	0	1
50-75%	Count	1	0	0	0	1
	Expected Count	0.3	0.6	0	0	1
25-50%	Count	5	3	0	0	8
	Expected Count	2.8	4.9	0	0	8
< 25%	Count	52	107	1	7	167
	Expected Count	57.4	101.6	0.9	7.1	167
Total	Count	65	115	1	8	189
	Expected Count	65	115	1	8	198
Pearson C	hi-square=10.335,	df=12, sig=.5	587			
Mainly Co	alition					
Complete	Count	2			2	4
	Expected Count	2.2			1.8	4
>75%	Count	0			2	2
	Expected Count	1.1			0.9	2
50-75%	Count	0			1	1
	Expected Count	0.6			0.4	1
25-50%	Count	3			3	6
	Expected Count	3.3			2.7	6
< 25%	Count	71			54	125
	Expected Count	68.8			56.2	125
Total	Count	76			62	138
	Expected Count	76			62	138
Pearson C	hi-square=3.932, d	f=4, sig=.415	5			

	Table 20.29. Actual and Expected Counts and Chi-square Values for Completeness of
	Larger Samples of Artiodactyl/Large Mammals by Provenience
-	Structure

how they were distributed throughout the sites and time periods.

The Early Developmental period sample is by far the largest but is heavily influenced by Feature 29 at LA 6169, which comprises half of the extramural sample, so the numbers are given with and without this feature (Tables 20.30-31). In both samples, structure fill has considerably more small unidentifiable fragments than expected. The amount of roasted bone is less than expected in the whole sample and more in that without Feature 29. Both roof fall samples have fewer small unidentifiable pieces than expected and more limb and pelvis pieces and more roasting-like burns. Deposits associated with floors have an abundance of parts that are likely to be waste (cranial, vertebral, ribs) and more are unburned. As expected, the extramural samples differ the most. In the whole sample, unidentifiable fragments, waste (cranial, vertebral, and thorax parts), and front limbs are under-represented with an abundance of rear legs and rear feet, and considerably more than expected have roasting burns and are complete.

Without Feature 29, the extramural sample resembles the structure fill sample in that there is more unidentifiable and waste pieces than expected. They differ in the parts that are more common than expected. Structure fill has more front limbs while the extramural sample has more rear legs and has fewer roasting burns and more discard burns than expected. In sum, the more fragmented bone is often found in structure fill and extramural pits but recognizable waste parts (cranium, vertebral, thorax, and feet) are found in larger than expected numbers in floor-associated proveniences. This association suggests that some processing took place in the structures and/or that small pieces of bone were missed during routine cleaning, but this may also be influenced by the use of finer screens. Since structure fill from this period is often wind and water deposited with some cultural material being naturally deposited, the unidentifiable pieces may be more a result of poor preservation than of deliberate deposition of household waste. Roasting burns are more often found in structure fill and roof

fall and it is quite likely that much is from burned roofs and imprecise delineation of these two provenience types. Discard or heavy burns are found in roof fall, as expected, and in extramural contexts where hearth sweepings may have been deposited. Complete and nearly complete bones occur in frequencies that are about as expected in structure fill and roof fall, are more frequent in floor deposits, and are relatively rare in extramural deposits. All of this may indicate a tendency to dispose of waste in extramural areas and indicates a degree of organization in the disposal of even these small remains.

Few other time groups have appreciable counts. The mainly Late Developmental sample compares structure fill with roof fall and finds small unidentifiable fragments of bone are more common in fill and recognizable parts in roof fall (Table 20.30). Similarly, the roof fall has more complete bones than expected while the fill has more very fragmentary bone (Table 20.32). Unburned bone is distributed about as expected but more from the roof fall is roasted or lightly burned while that in the fill is heavy or discard burns (Table 20.31). This suggests that the mainly Late Developmental period structure deposits are essentially day-to-day trash disposal while that from the roof fall is slightly different. At least some waste was placed in abandoned structures.

Coalition period deposits are predominantly from structure fill with some that are associated with floors. Like the Early Developmental period sample, the floor deposits contain more waste parts (cranial, vertebrae, pelvis, and front limbs) than expected (Table 20.30), some of which could be small pieces missed when cleaning or recovered by the finer screen size (Table 20.32). Differences in burning are not significant (Table 20.31). Mainly Coalition deposits are overwhelmingly from structure fill and are largely long bone and limb parts (Table 20.30). Vertebrae, thorax, and pelvis parts are rare enough to suggest these parts were deposed of elsewhere or missed by the larger screen size. Few bones are burned (Table 20.31) and are highly fragmented (Table 20.32). The small extramural sample has many small fragments

		Structure	Structure	Structure Floor		
		Structure Fill	Roof Fall	Association	Extramural	Т
Early Developme	ontal		1 tool 1 uii	7.00001041011	Extramarar	
Unknown	Count	2	0	2	0	
UTIKITOWI		2 1.1	0.4	2 1.4	1.1	
Levenheine	Expected Count					4.
Longbone	Count	376	83	402	247	1
	Expected Count	304.1	103.2	401.3	299.4	1
Flat bone	Count	129	13	93	89	;
Oranial	Expected Count	88.9	30.2	117.3	87.6	:
Cranial	Count	158	63	322	193	7
.,	Expected Count	202	68.6	266.5	198.9	-
Vertebral	Count	54	11	88	33	
	Expected Count	51	17.3	67.4	50.3	
Thorax	Count	38	13	93	35	
	Expected Count	49.1	16.7	64.8	48.4	
Pelvis	Count	54	40	64	71	2
	Expected Count	62.8	21.3	82.9	61.9	2
Front limb	Count	155	68	166	90	4
	Expected Count	131.5	44.6	173.5	129.4	4
Front foot	Count	9	3	19	11	
	Expected Count	11.5	3.9	15.2	11.3	
Rear leg	Count	178	102	257	247	-
	Expected Count	215.2	73	283.9	211.9	
Rear foot	Count	137	46	202	255	(
	Expected Count	175.6	59.6	231.8	173	6
Front or rear foot	Count	12	0	10	11	
	Expected Count	9.1	3.1	12	8.9	
Total	Count	1302	442	1718	1282	47
	Expected Count	1302	442	1718	1282	47
Early Developme	ental without LA 6	169 Feature	29			
Unknown	Count	2	0	2	0	
	Expected Count	1.3	0.4	1.7	0.6	
Longbone	Count	376	83	402	197	10
-	Expected Count	335.4	113.9	442.3	166.2	10
Flat bone	Count	129	13	93	52	2
	Expected Count	91	30.9	120.1	45.1	2
Cranial	Count	158	63	322	88	(
	Expected Count	200	67.9	264	99.1	(
Vertebral	Count	54	11	88	26	
V ON CONTRACT	Expected Count	56.7	19.3	74.9	28.1	
Thorax	Count	38	13	93	23	
	Expected Count	52.9	18	69.9	26.2	
Pelvis	Count	54	40	64	33	
	Expected Count	60.6	20.6	79.9	30	
Front limb	Count	155	20.0 68	166	50 59	
	Expected Count	133	48.2	187.4	70.4	4
Front foot	Count	9	40.2	107.4	6	·
	Jounn	3	3	13	0	

		able 20.30.	Continued.								
				Structure							
		Structure	Structure	Floor							
		Fill	Roof Fall	Association	Extramural	Total					
Early Developme	Early Developmental without LA 6169 Feature 29										
Front or rear foot	Count	12	0	10	0	22					
	Expected Count	7	2.4	9.2	3.5	22					
Total	Count	1302	442	1718	645	4107					
	Expected Count	1302	442	1718	645	4107					
Mainly Late Deve	elopmental										
Unknown	Count	1	0	0	0	1					
	Expected Count	0.6	0.3	0	0.1	1					
Longbone	Count	38	5	2	0	45					
-	Expected Count	24.9	15.2	1.2	3.7	45					
Flat bone	Count	5	2	0	0	7					
	Expected Count	3.9	2.4	0.2	0.6	7					
Cranial	Count	10	10	2	2	24					
	Expected Count	13.3	8.1	0.7	2	24					
Vertebral	Count	7	3	0	1	11					
	Expected Count	6.1	3.7	0.3	0.9	11					
Thorax	Count	7	6	0	0	13					
	Expected Count	7.2	4.4	0.4	1.1	13					
Pelvis	Count	2	7	0	5	14					
	Expected Count	7.7	4.7	0.4	1.2	14					
Front limb	Count	7	12	0	2	21					
	Expected Count	11.6	7.1	0.6	1.7	21					
Front foot	Count	1	0	0	0	1					
	Expected Count	0.6	0.3	0	0.1	1					
Rear leg	Count	11	12	0	4	27					
	Expected Count	14.9	9.1	0.7	2.2	27					
Rear foot	Count	11	4	1	1	17					
	Expected Count	9.4	5.7	0.5	1.4	17					
Total	Count	100	61	5	15	181					
	Expected Count	100	61	5	15	181					
Coalition											
Unknown	Count	18	-	0	0	18					
	Expected Count	13.2	-	4.7	0.2	18					
Longbone	Count	41	-	17	0	58					
-	Expected Count	42.5	-	15	0.5	58					
Flat bone	Count	6	-	2	0	8					
	Expected Count	5.9	-	2.1	0.1	8					
Cranial	Count	13	-	8	0	21					
	Expected Count	15.4	-	5.4	0.2	21					
Vertebral	Count	2	-	4	0	6					
	Expected Count	4.4	-	1.6	0.1	6					
Thorax	Count	5	-	3	0	8					
	Expected Count	5.9	-	2.1	0.1	8					

Table 20.30. Continued.

				Structure		
		Structure	Structure	Floor		
		Fill	Roof Fall	Association	Extramural	Tota
Coalition						
Pelvis	Count	5	-	8	0	13
	Expected Count	9.5	-	3.4	0.1	13
Front limb	Count	12	-	8	1	21
	Expected Count	15.4	-	5.4	0.2	21
Front foot	Count	10	-	0	0	10
	Expected Count	7.3	-	2.6	0.1	10
Rear foot	Count	36	-	5	0	41
	Expected Count	36	-	10.6	0.4	41
Front or rear foot	Count	2	-	0	0	2
	Expected Count	1.5	-	0.5	0	2
Total	Count	170	-	60	2	232
	Expected Count	170	-	60	2	232
Mainly Coalition	•					
Unknown	Count	4	-	-	0	4
	Expected Count	3.7	-	-	0.3	4
Longbone	Count	82	-	-	19	101
-	Expected Count	94.1	-	-	6.9	101
Flat bone	Count	27	-	-	8	35
	Expected Count	32.6	-	-	2.4	35
Cranial	Count	56	-	-	4	60
	Expected Count	55.9	-	-	4.1	60
Vertebral	Count	19	-	-	0	19
	Expected Count	17.7	-	-	1.3	19
Thorax	Count	11	-	-	0	12
	Expected Count	7.9	-	-	1	12
Pelvis	Count	26	-	-	1	27
	Expected Count	25.2	-	-	0.8	27
Front limb	Count	59	-	-	1	60
	Expected Count	55.9	-	-	4.1	60
Front foot	Count	14	-	-	0	14
-	Expected Count	13	-	-	1	14
Rear leg	Count	97	-	-	3	100
5	Expected Count	93.2	-	-	6.8	100
Rear foot	Count	103	-	-	0	103
	Expected Count	96	-	-	7	103
Front or rear foot	Count	6	-	-	0	6
	Expected Count	5.6	-	-	0.4	e
Total	Count	504	-	-	37	541
	Expected Count	504	-	_	37	541

Table 20.30. Continued.

	·		Structure	Structure Floor		
		Structure Fill	Roof	Association	Extramural	Total
Early Deve	elopmental					
Unburned	Count	1043	330	1394	1011	3778
	Expected Count	1036.9	352	1368.2	1021	3778
Roasted	Count	148	61	158	194	561
	Expected Count	154	52.3	203.2	151.6	561
Discard	Count	111	51	166	77	405
	Expected Count	111.2	37.7	146.7	109.4	405
Total	Count	1302	442	1718	1282	4744
	Expected Count	1302	442	1718	1282	4744
	Pearson Chi-squar		•			
-	elopmental without					
Unburned	Count	1043	330	1394	515	3282
	Expected Count	1040.5	353.2	1372.9	515.4	3282
Roasted	Count	148	61	158	53	420
	Expected Count	133.1	45.2	175.7	66	420
Discard	Count	111	51	166	77	405
	Expected Count	128.4	43.6	169.4	63.6	405
Total	Count	1302	442	1718	645	4170
	Expected Count	1302	442	1718	645	4170
	Pearson Chi-squar	e =19.870 df=6,	sig=.003			
•	e Developmental				. –	
Unburned	Count	87	55	4	15	161
	Expected Count	89	54.3	4.4	13.3	161
Roasted	Count	1	4	0	0	5
D . 1	Expected Count	2.8	1.7	0.1	0.4	5
Discard	Count	12	2	1	0	15
-	Expected Count	8.3	5.1	0.4	1.2	15
Total	Count	100	61	5	15	181
	Expected Count	100	61	5	15	181
O a alifia n	Pearson Chi-squar	e =10.741, dt=6,	sig=.097			
Coalition	Count	106		45	2	170
Unburned	Count	126	-	45	2	173
Roasted	Expected Count Count	126.8 1	-	44.7 2	1.5 0	173 3
Roasieu		2.2	-	2 0.8	0	3
Discard	Expected Count		-		-	
Discard	Count Expected Count	43 41	-	13 14.5	0 0.5	56 56
Total	Count	170	_	60	2	232
Total	Expected Count	170	_	60	2	232
	Pearson Chi-squar		- sia= 475	00	2	202
Mainly Coa		c –0.010, ul–4, c	Jg+/0			
Unburned	Count	487	-	-	32	519
2	Expected Count	483.5	-	-	35.5	519
Roasted	Count	10	-	-	2	12
	Expected Count	11.2	-	-	0.8	12
Discard	Count	7	-	-	3	10
	Expected Count	9.3	-	-	0.7	10
Total	Count	504	-	-	37	541
	Expected Count	504	-	-	37	541
	Pearson Chi-squar		sia=.005			2

Table 20.31. Actual and Expected Counts and Chi-square Values for Burn Type of Larger Samples of Rabbits/Small Mammals by Provenience

	Larger Samples	of Rabbits S	Small Mam		enience	
			e t <i>i</i>	Structure		
		Structure	Structure	Floor	F , due	Tatal
		Fill	Roof Fall	Association	Extramural	Total
Early Deve	elopmental					
Complete	Count	120	47	200	233	600
	Expected Count	164.7	55.9	217.3	162.1	600
>75%	Count	43	16	82	74	215
	Expected Count	59	20	77.9	58.1	215
50-75%	Count	51	30	110	91	282
	Expected Count	77.4	26.3	102.1	76.2	282
25-50%	Count	195	86	253	202	736
	Expected Count	202	68.6	266.5	198.9	736
< 25%	Count	893	263	1073	682	2911
	Expected Count	798.9	271.2	1054.2	786.7	2911
Total	Count	1302	442	1718	1282	4744
	Expected Count	1302	442	1718	1282	4744
	Pearson Chi-square	e = 99.603, df=	=12, sig=.00	C		
Early Deve	elopmental without		-			
Complete	Count	120	47	200	22	389
	Expected Count	123.3	41.9	162.7	61.1	389
>75%	Count	43	16	82	21	162
	Expected Count	51.4	17.4	67.8	25.4	162
50-75%	Count	51	30	110	18	209
	Expected Count	66.3	22.5	87.4	32.8	209
25-50%	Count	195	86	253	96	630
	Expected Count	199.7	67.8	263.5	98.9	630
< 25%	Count	893	263	1073	488	2717
	Expected Count	861.3	292.4	1036.5	426.7	2717
Total	Count	1302	442	1718	645	4107
	Expected Count	1302	442	1718	645	4107
	Pearson Chi-square					
Mainly Lat	e Developmental	,	, 0			
Complete	Count	6	7	1	2	16
·	Expected Count	8.8	5.4	0.4	1.3	16
>75%	Count	3	5	0	5	13
	Expected Count	7.2	4.4	0.4	1.1	13
50-75%	Count	2	5	0	5	12
	Expected Count	6.6	4	0.3	1	12
25-50%	Count	26	13	0	1	40
	Expected Count	22.1	13.5	1.1	3.3	4(
< 25%	Count	63	31	4	2	100
	Expected Count	55.2	33.7	2.8	8.3	100
Total	Count	100	61	5	15	181
	Expected Count	100	61	5	15	181
	Pearson Chi-square				10	10

Table 20.32. Actual and Expected Counts and Chi-Square Values for Completeness of Larger Samples of Rabbits Small Mammals by Provenience

		Table 20.3	2. Continue	ed.		
		Structure Fill	Structure	Structure Floor	Extromural	Total
		FIII	Roof Fall	Association	Extramural	Total
Coalition						
Complete	Count	36	-	6	0	42
	Expected Count	30.8	-	10.9	0.4	42
>75%	Count	4	-	4	0	8
	Expected Count	5.9	-	2.1	0.1	8
50-75%	Count	7	-	2	0	9
	Expected Count	6.6	-	2.3	0.1	9
25-50%	Count	33	-	12	1	46
	Expected Count	33.7	-	11.9	0.4	46
< 25%	Count	90	-	36	1	127
	Expected Count	93.1	-	32.8	1.1	127
Total	Count	170	-	60	2	232
	Expected Count	170	-	60	2	232
	Pearson Chi-square	e =7.383, df=8	, sig=.496			
Mainly Co	alition					
Complete	Count	96	-	-	0	96
	Expected Count	89.4	-	-	6.6	96
>75%	Count	33	-	-	0	33
	Expected Count	30.7	-	-	2.3	33
50-75%	Count	23	-	-	1	24
	Expected Count	22.4	-	-	1.6	24
25-50%	Count	116	-	-	1	117
	Expected Count	109	-	-	8	117
< 25%	Count	236	-	-	35	271
	Expected Count	252.5	-	-	18.5	271
Total	Count	504	-	-	37	541
	Expected Count	504	-	-	37	541
	Pearson Chi-square	e =32.018, df=	4, sig=.000			

Table 20.32. Continued.

and more burned bone than expected.

At this level of analysis there is limited evidence for different disposal practices for rabbit/small mammal parts that cannot be at least partially attributed to sampling practices. However, the use of finer screens for floors, floor features, and extramural features may account for some of the observed differences between provenience types. Small mammals probably were heavily processed or broken into small fragments in the structures and disposed of after boiling or cooking in stews with fewer of the small waste parts finding their way into trash areas. Deposits such as that in Feature 29 at LA 6169 are a rare picture of a discrete event and far from the norm.

When the provenience distribution of the

major taxa groups is considered (Table 20.33), there are distinct patterns for some animal groups and some time groups. Rabbit/small mammals are almost always more numerous than expected in structure fill and floor-associated deposits, fewer than expected in roof fall layers and if lacking in any other provenience, it is in extramural contexts. Rodents differ by time period, tending to be more frequent than expected in proveniences with fine screening in some time groups (Early Developmental, Coalition, mainly Coalition), but more common in roof fall in one (mainly Early Developmental) and in fill in another (mainly Late Developmental), probably reflecting the diverse array and distribution of rodents comprising this group. Early and Mainly Early Developmental period dog specimens are rarely found in struc-

		01	01	Structure		
		Structure Fill	Structure	Floor	Extromurel	Toto
		ſШ	Roof Fall	Association		Tota
Early Developmental						
Rabbit/small mammal	Count	1302	442	1718	1282	4744
	Expected Count	1274	590.7	1651	1228.3	4744
Rodent	Count	109	23	178	134	444
_	Expected Count	119.2	55.3	154.5	115	444
Dog	Count	9	22	53	84	168
	Expected Count	45.1	20.9	58.5	43.5	168
Artioactyl/large	Count	463	247	252	295	1257
	Expected Count	337.6	156.5	437.5	325.5	1257
Wild bird	Count	11	17	45	18	91
	Expected Count	24.4	11.3	31.7	23.6	91
Turkey/large bird	Count	5	136	192	13	346
	Expected Count	92.9	43.1	120.4	89.6	346
Reptile	Count	12	3	23	10	48
	Expected Count	12.9	6	16.7	12.4	48
Toads and frogs	Count	15	3	35	21	74
	Expected Count	19.9	9.2	25.8	19.2	74
Total	Count	1926	893	2496	1857	7172
	Expected Count	1926	893	2496	1857	7172
Mainly Early Develop	mental					
Rabbit/small mammal	Count	42	61	109	15	227
	Expected Count	42.1	77.9	94.4	12.5	227
Rodent	Count	2	19	15	1	37
	Expected Count	6.9	12.7	15.4	2	37
Dog	Count	0	36	0	0	36
5	Expected Count	6.7	12.4	15	2	36
Artioactyl/large	Count	27	15	41	6	89
,	Expected Count	16.5	30.6	37	4.9	89
Wild bird	Count	0	1	1	0	2
	Expected Count	0.4	0.7	0.8	0.1	2
Turkey/large bird	Count	2	1	0	0	3
	Expected Count	0.6	1	1.2	0.2	
Reptile	Count	0.0	3	0	0.2	
	Expected Count	0.6	1	1.2	0.2	
Toads and frogs	Count	1	1	0	0.2	
	Expected Count	0.4	0.7	0.8	0.1	
Total	Count	74	137	166	22	399
	Expected Count	74	137	166	22	399
Late Developmental						
-	Count	~		F 4		~
Rabbit/small mammal	Count	9	-	54	-	63
Dedect	Expected Count	6.7	-	56.3	-	63
Rodent	Count	0	-	9	-	ę
	Expected Count	1	-	8	-	ç

Table 20.33. Counts and Expected Counts for Major Animal Groups by Time and Provenience Type

	Table	e 20.33. Con	itinued.			
		01		Structure		
		Structure Fill	Structure Roof Fall	Floor Association	Extramural	Total
		ГШ	RUUIFall	Association		TOLAI
Late Developmental	Qaunt	2		0		2
Dog	Count	2	-	0	-	2
Articentul/lorge	Expected Count	0.2 2	-	1.8 43	-	2 45
Artioactyl/large	Count Expected Count	∠ 4.8	-	43 40.2	-	45 45
Turkey/large bird	Count	4.0 0	-	40.2	-	45 2
Turkey/large bitu	Expected Count	0.2	_	1.8	-	2
Reptile	Count	0.2		2	_	2
Repuie	Expected Count	0.2		1.8	_	2
Total	Count	13	_	110	_	123
	Expected Count	13	-	110	_	123
Mainly Late Developm	-					.20
Rabbit/small mammal	Count	100	61	5	15	181
	Expected Count	83.7	82.6	2.9	11.8	181
Rodent	Count	52	35	2.9	4	93
Nodelit	Expected Count	43	42.4	1.5	6.1	93
Dog	Count	-5	++ 1	0	1	2
Dog	Expected Count	0.9	0.9	0	0.1	2
Artioactyl/large	Count	65	115	1	8	189
, and doily mange	Expected Count	87.4	86.2	3.1	12.3	189
Wild bird	Count	0	1	0	0	1
	Expected Count	0.5	0.5	0	0.1	1
Turkey/large bird	Count	6	9	0	3	18
· ···· · · · · · · · · · · · · · · · ·	Expected Count	8.3	8.2	0.3	1.2	18
Reptile	Count	1	1	0	0	2
·	Expected Count	0.9	0.9	0	0.1	2
Toads and frogs	Count	3	1	0	1	5
-	Expected Count	2.3	2.3	0.1	0.3	5
Total	Count	227	224	8	32	491
	Expected Count	227	224	8	32	491
Coalition						
Rabbit/small mammal	Count	170	-	60	2	232
	Expected Count	163.5	-	55.9	12.6	232
Rodent	Count	14	-	19	0	33
	Expected Count	23.3	-	7.9	1.8	33
Artioactyl/large	Count	21	-	14	26	61
-	Expected Count	43	-	14.7	3.3	61
Wild bird	Count	4	-	0	0	4
	Expected Count	2.8	-	1	0.2	4
Turkey/large bird	Count	150	-	29	0	179
	Expected Count	126.2	-	43.1	9.7	179
Reptile	Count	1	-	1	0	2
	Expected Count	1.4	-	0.5	0.1	2

Table 20.33. Continued.

		20.33. 001		Structure		
		Structure	Structure	Floor		
		Fill	Roof Fall	Association	Extramural	Total
Coalition						
Toads and frogs	Count	3	-	1	0	4
	Expected Count	2.8	-	1	0.2	4
Total	Count	363	-	124	28	515
	Expected Count	363	-	124	28	515
Mainly Coalition						
Rabbit/small mammal	Count	504	-	-	37	541
	Expected Count	441.2	-	-	99.8	541
Rodent	Count	47	-	-	53	100
	Expected Count	81.6	-	-	18.4	100
Dog	Count	15	-	-	0	15
	Expected Count	12.2	-	-	2.8	15
Artioactyl/large	Count	77	-	-	63	140
	Expected Count	114.2	-	-	25.8	140
Wild bird	Count	7	-	-	1	8
	Expected Count	6.5	-	-	1.5	8
Turkey/large bird	Count	51	-	-	1	52
	Expected Count	42.4	-	-	9.6	52
Reptile	Count	0	-	-	1	1
	Expected Count	0.8	-	-	0.2	1
Toads and frogs	Count	2	-	-	3	5
	Expected Count	4.1	-	-	0.9	5
Total	Count	703	-	-	159	862
	Expected Count	703	-	-	159	862
Mainly Classic						
Rabbit/small mammal	Count	10	-	-	5	15
	Expected Count	12.4	-	-	2.6	15
Rodent	Count	1	-	-	1	2
	Expected Count	1.7	-	-	0.3	2
Artioactyl/large	Count	41	-	-	5	46
	Expected Count	38.1	-	-	7.9	46
Reptile	Count	1	-	-	0	1
-	Expected Count	0.8	-	-	0.2	1
Total	Count	53	-	-	11	64
	Expected Count	53	-	-	11	64

Table 20.33. Continued.

ture fill and many more than expected are from extramural contexts. After this period, counts are very low and most are found in structure fill. Artiodactyl/large mammal bone varies considerably with the only distinctive patterns being the greater than expected abundance in structure fill in the Early Developmental sample and in extramural contexts during the Coalition. Wild bird counts are low except in the Early Developmental sample where they are overwhelmingly found in roof fall and floor contexts. Turkey is disproportionately found in roof fall and floor associations in the Early Developmental deposits but in structure fill in Coalition and mainly Coalition deposits. Reptiles are rare and most often found associated with floors in Early Developmental deposits. Toads and frogs are considerably more likely to be associated with floor-associated proveniences in Early Developmental deposits.

Overall, disposal practices closely adhere to many of the basic principals outlined in the beginning of this section. Bones with more hindrance potential were deposited farther away in structure or extramural fill while those with reuse value may have been cached. Where the larger bone is deposited changes through time. The artiodactyl/large mammal bone is disproportionately found in structure fill of the Early Developmental deposits and in extramural contexts during the Coalition. However, it is unlikely that this signals any major change in the structure of trash disposal and it more likely reflects a greater availability of structure depressions for disposal during the early period. Rabbit remains are small enough that they posed little hindrance. The presence of more small pieces of waste bone in floor associated proveniences does suggest that much of the processing and cooking took place in the structures. The use of larger screen sizes in structure roof and fill proveniences may limit the recovery of these parts when they were disposed of in those contexts.

Nonsubsistence and Ceremonial Use of Animals

Humans use and relate to animals in a variety of ways. This section explores how dogs, turkeys, toads, frogs, and reptiles and certain wild bird, artiodactyl, and carnivore parts were used by the Early Developmental and later populations. Non-food and special use are primarily inferred from the context and the distribution of parts.

Dogs. Mitochondrial DNA evidence indicates that dogs descended from wolves, becoming morphologically distinct between 10,000 and 15,000 years ago (Reitz and Wing 1999:284). Changes include an overall reduction in size, shortening of the facial region of the cranium, and large crowded teeth that are probably the result of selection for size reduction and alterations in reproductive timing associated with a domestic way of life (Morey 1992:182, 199). Domestic dogs probably entered the new world with humans. Modern-looking mandibles dat-

ing from 9500 to 8000 BC were found in a hunting camp in a cave in Idaho (Schwartz 1997:16). In the Southwest, relatively early evidence of dogs comes from Ventana Cave dating about 2000 BC (Reitz and Wing 1999:87). Haag (1948:253–254) suggests that dogs lost much of their importance with the advent of agriculture indicating they were primarily used by hunters. Where dogs survived in large numbers they were used for transportation, for food, or for companionship.

Dogs were relatively common in the Early Developmental period deposits at Peña Blanca. With the exception of several (n = 15) specimens from mixed Coalition deposits in the upper fill of an Early Developmental period structure that had two dog burials near the floor (LA 6169, Structure 4), Late Developmental (n = 2) and Mainly Late Developmental (n = 1) deposits within an Early Developmental structure containing four somewhat disturbed dog burials at LA 6170, and a single mainly Late Developmental period element from the roof and floor of Structure 76 at LA 6169, all of the partial and articulated dogs and dog elements are from either Early Developmental or mainly Early Developmental period deposits. Many of the Early Developmental period dogs were recovered as complete or partial animals (Table 20.34) placed in structures at abandonment or in extramural pits. None of the dogs was carefully placed and virtually all of the burials had considerable disturbance so that elements from individual dogs were found throughout the provenience. Comparing the loose elements with dogs from the same feature resulted in relatively few new individuals that are only represented by scattered bones. Table 20.35 summarizes the individuals and isolated parts by age and site. Measurements are given in Appendix 6.3. Only the three largest sites have dog bones and since all three were sampled, additional animals are possible as isolated elements. No dogs or elements have evidence of butchering and the only burning is on two dogs thrown or placed on a smoldering roof at LA 6170.

In the Middle and Upper Rio Grande region, dogs have a limited distribution weighted toward the early end of the time spectrum, and perhaps the result of a greater

6169 488 St. 4, Feature 13, cobble young mature, 平 Covered with cobbles; articulated just above floor; fairly complete concentration 6169 488 St. 4 SW quad, Feature 13, cobble 4-6 m, ? Covered with cobbles; articulated just above floor; fairly complete; concentration concentration bealed fractures on 2 right ribs and probable fracture 1 left rib; old	6170 1821 St. 5 SE quad, roof fall and closing 4-6 m, ? Fairly complete; mostly articulated; root etched and pitted
	St. 4, Feature 13, cobbleyoung mature, ♀concentrationst. 4 SW quad, Feature 13, cobble4-6 m, ?St. 4 SW quad, Feature 13, cobble1-2 m, ?9St. 5 SW quad, roof fall and closing1-2 m, ?5St. 5 SE quad, roof fall and closing1-2 m, ?0St. 5 SE quad, roof fall and closingyoung mature, ♂
	St. 5 SE quad, roof fall and closing $% f(x) \in \mathcal{S}$ young mature, \mathcal{S}
St. 5 SW quad, roof fall and closing 1-2 m, ? St. 5 SE quad, roof fall and closing 1-2 m, ?	

	LA	265	LA 6	6169	LA 6	6170	Total
	Individuals	Elements	Individuals	Elements	Individuals	Elements	
0-2 months	-	2	-	-	2	-	4
3-4 months	2	-	-	1	-	-	3
4-6 months	4	-	1	-	1	-	6
6+ months	1	-	-	-	-	-	1
8-14 months ♀	1	-	-	-	-	-	1
mature 👌	3	-			1	-	4
mature ${\mathbb Q}$	-	-	1	-	-	-	1
mature	1	-	-	1	-	1	3
Total	12	2	2	2	4	1	23

 Table 20.35. Summary of Dogs and Dog Elements Recovered from Early Developmental and

 Mixed Early Developmental Period Deposits

dependence on hunting and a more mobile lifestyle. None of the Cochiti Dam sites reports dog burials. Dog elements were generally few and with one exception left at the canid level of identification. Harris (1968:209) felt that one of the nine canid MNIs from the North Bank site was sufficiently different from the wild canids to tentatively identify as a dog. The counts or parts are not identified.

At LA 835, a Late Developmental period site on Pojoaque tribal land, about 20 dog skeletons ranging from new born to older individuals were found in the fill of a single pit structure. All three of the mature dogs and one nearmature male dog have damaged anterior teeth that could be the result of hunting and running down artiodactyls. Similar damage was not present on any of the immature dogs, a young female, or another young male. Another site from the same time period and that area, LA 103919, with a fair sample of bone (n = 1,865)had no canid burials and no elements that were diagnostically dog (Akins 2005). At LA 3333, a Late Developmental/Early Coalition site in the Galisteo Basin, a mature female and three puppies were placed in a pit containing a human burial. The pit also contained elements from an additional mature dog. An ulna, possibly from the adult female dog has several chop marks on the shaft and a piece of cranium has an impact fracture. The dog bones from this site were confined to the burial feature and one other feature (Akins n.d.a). At the Coalition and Classic period site of Arroyo Hondo, the only possible dog

burial was a few bones from a small mature dog found in the backfill of a kiva excavated by N. C. Nelson in 1916. Otherwise, the MNI for dog was relatively low as was the amount of carnivore-gnawed bone. Elements identified as dog ranged from individuals between a fox and coyote in size to some that were larger and heavier than coyote but smaller than wolf. None of the definite dog bones have evidence of skinning or butchering but Lang and Harris felt that since their context and general condition did not differ from that of food animals, they were probably used for food, or at the very least did not receive preferential treatment upon death (1984:88–89).

To the south, Developmental period sites on the West Mesa of Albuquerque commonly have dog burials. Frisbie (1967:121–122) reports dog burials in cists and on a pithouse floor from the Artificial Leg site. Dogs were placed in the pits with no evidence of special preparation or offerings. Reviewing the reports of reported dog interments, Frisbie concluded that dogs were more important in the earlier period when hunting probably played a larger role in daily life and before increased agriculture made hunting less important (Frisbie 1967:127-129). Subsequent excavations in the same area have recovered additional dogs. At NM I:10:4:16, three dogs were found in the fill of pit structures and three in large pits (Akins 1986b). A dog was found on the floor of Pit Structure 2 at River House (Schmader 1993:54a, b). A few scattered canid bones were

found at the Coors Road site, a Late Developmental/Early Coalition site in the South Valley (Sullivan and Akins 1994:132).

Emslie (1978:181) notes a similar trend for the Mancos Mesa Verde area. Dog burials were most common in the period from AD 900 to 975 and decreased after that time. By the Pueblo III period only scattered bones are found in sites in the Mesa Verde region. In the Chaco Center excavations, dog burials were most common during Pueblo II when dogs of all ages were found in pit structures and vent shafts. Only scattered dog bones were found at Pueblo Alto, and Judd reports finding only five articulated and reasonably complete dogs in the fill of kivas and rooms at Pueblo del Arroyo and Pueblo Bonito (Akins 1985:349-353). Frisbie (1967:128-129) also lists dog burials from the Basketmaker site of Shabikeschee and Pueblo II sites of Bc 50 and Bc 51.

The role of dogs at Peña Blanca underwent a similar change. Dog counts and the proportion of possible scatological bone are higher in the early deposits but the amount of carnivore gnawing and punctures on bone varies through time (Table 20.36). The latter suggests that dogs were present, but they were treated differently. Early on, dogs seem to have been more important and more esteemed so that when a dog died or was killed, it was placed in a pit with an attempt to protect the body. The amount of carnivore punctured dog remains (see Table 20.34), especially the puncture holes in the cranium of a four- to six-month-old dog, suggests that in some instances dog parts were rescued and buried to prevent further ravaging. Furthermore, a considerable number of the dogs have healed fractures including those of ribs, vertebral spines, an ulna, a tibia and fibula, and a metacarpal. And, in three instances, dogs were placed in structures in contexts suggesting they were part of closing rituals. At LA 265, a young female dog was found lying on the left side with head to the west just above the floor of Structure 13. Structure 4 at LA 6169 had a young mature male and a four- to six-month-old dog covered with cobbles, fire-cracked rocks, and ground stone just above the floor in the southwestern quadrant. The dogs were somewhat twisted but lying side by side, oriented east to west with heads in opposite directions. One was on the right side and the other on the left. At LA 6170, four dogs were found among the burned roof fall just above the floor in the south half of Structure 5. The mature dog was partially articulated but quite contorted. The older of the immature dogs was mostly articulated, lying the left side with the head to the northwest. The two youngest were so small and fragile they were not mapped. All this suggest that dogs played a much more important role in the Early Developmental period, perhaps due to a greater emphasis on hunting, especially of artiodactyls, or as guardians when fewer people occupied the residences.

Sc	atological Bone		
	Sample Size	% Gnawed and/or Punctured	% Possible Scatological
Early Developmental	7802	1.6	3.6
Mainly Early Developmental	437	0.7	0.7
Late Developmental	134	5.1	3.7
Mainly Late Developmental	593	2.5	3.4
Coalition	572	1.6	1.9
Mainly Coalition	976	3.8	0.6
Mainly Classic	81	1.2	-
Unknown	195	1	1
Total	10790	1.7	3

 Table 20.36. Carnivore Gnawed and Punctured Bone and Possible

 Scatological Bone

Turkeys. Turkeys have a more limited distribution than dogs in the Early Developmental period. Table 20.37 lists the components that have turkey as well as large and very large bird that could be turkey, but the pieces are not diagnostic. Large and very large bird in contexts that do not also have turkey are less likely to be turkey and are suspect. LA 265, SU3, Feature 14, has no other bird, but two turkey elements were found in mainly Early Developmental deposits in higher fill units of Structure 5 at LA 6170 and another was in the fill of Feature 5 overlying Structure 5, making the very large bird bone from that structure more likely to be turkey. None of the Peña Blanca Early Developmental turkey bones is burned. Carnivore gnawing and tooth punctures are present on turkey bones from two structures. The impacts and spiral breaks are also from one of those structures and most likely are the result of carnivores crunching and breaking the bones.

Considerable debate surrounds the use and domestication of turkeys in the Southwest. Domestication dates back to at least AD 700 to 900 (Schorger 1966:20) with abundant and often conflicting archaeological evidence as to whether or not turkeys were eaten. Both Coronado in 1540 and Oñate in 1598 observed that the inhabitants of Hawikuh raised a few

Table 20.37. Peña Blanca Early Developmental and Mainly Early Developmental (*) Period Components with Turkey and Probable Turkey Remains

Site/component	Taxon	Count	Comments
LA 265			
Structure 1 upper fill	turkey	3	Humerus and tarsometatarsus shaft fragments; 1 with carnivore gnaws and punctures
	large bird	2	long bone fragments
Structure 1 roof fall	turkey	3	tibiotarsus fragments and muscle splints
SU 3, Feature 14	large bird	1	rib shaft
SU 3, Feature 34 or 15/19 LA 6169	turkey	1	turkey burial; male with fractured tibiotarsus
Structure 4 roof fall, floor fill	large bird	10	long and flat bone fragments; 4 with impact-like breaks and 1 spiral break
	very large bird	41	long and flat bone fragments; 4 with spiral breaks
	turkey	79	scattered parts of at least 2 birds; 8 with carnivore punctures; 10 with spiral breaks
Structure 4 floor	large bird	13	long and flat bones
	very large bird	24	long and flat bones
	turkey	153	scattered parts of at least 4 birds (2 could be the same as in roof fall & floor fill; 26 with carnivore gnaws, punctures, or both; 1 with a spiral break
Structure 47 roof fall, floor fill LA 6170	turkey	1	ulna shaft fragment
Structure 5 wind, water deposits*	very large bird	1	flat bone fragment
	turkey	1	tarsometatarsus fragment
Structure 5 roof, closing*	turkey	1	phalanx
Structure 5 floor fill, contact	very large bird	1	long bone shaft fragment; juvenile

turkeys mainly so their feathers could be used for religious purposes and that rabbits furnished most of their meat and skins (Schorger 1966:34). Turkeys were more abundant at the Rio Grande Pueblos as Espejo found abundant turkeys in and around Puaray at Bernalillo and Rodriguez observed large flocks of turkeys in the Galisteo area pueblos. Early Spanish accounts either make no mention of the Pueblos eating turkeys or repeat claims that turkeys were not eaten, yet the near universal list of food items contributed to the Spanish was corn, beans, pumpkins, and turkeys (Schorger 1966:36-39). Although feathers were undoubtedly important, some archaeological evidence indicates turkeys were eaten, perhaps when other sources of animal protein became scarce or when sufficient crops were available to provision larger numbers of birds.

Evidence of turkey husbandry at Peña Blanca is virtually absent except in deposits from the very latest time period at LA 249. A single piece of egg shell was recovered from Area 2 at LA 265 in a large irregular pit of indeterminate function. A piece of egg shell was also recovered in a flotation sample from a mainly Late Developmental period deposit in the fill of Structure 76 at LA 6169. The lack of egg shell and young birds strongly suggest that turkeys were not bred and raised at these sites, at least until the very end of the prehistoric occupation as represented at these sites. Finding only mature birds and mostly males is consistent with keeping birds for their feathers rather than for eating. The single turkey burial, a male from LA 265, was in the fill of a bellshaped pit and had a double fracture of the left tibiotarsus. The upper fracture had never reunited but the ends of the bones were rounded from friction. The lower fracture had slipped considerably and a large callous unites the bone. This was not a very mobile turkey and it is doubtful that it was able to forage for itself. Pollen recovered from among the gizzard stones, and well protected from contamination within the stomach cavity, was largely economic species including cactus, cholla, corn, and globemallow (Holloway, Chapter 23), This, the injury, and formal burial all indicate this was a kept bird who was provisioned and given treatment similar to a dog when it died. A similar fracture, a femur that was completely fractured, slipped, and callused together, was found near the floor in a Coalition period pit room (Structure 70) at LA 6169. Again, this bird would have had limited mobility and was probably fed and kept for feathers. In this instance, the bone has a carnivore puncture in the shaft so it may have been killed by or fed to the dogs.

Turkeys from the Early Developmental period and possibly the Coalition were probably tamed rather than domestic birds, tamed in the sense that some restraint was necessary to keep them at the site (e.g., Schorger 1966:20). Penning and broken legs would have prevented birds from returning to nearby riverine and piñon-juniper environs. It takes only a few turkeys to provide a family with a supply of feathers for making blankets. Wild turkeys have up to 400 suitable feathers and turkeys molt twice a year providing a harvest of feathers. Blankets made from turkey feathers are warmer than rabbit fur blankets and last much longer (Blinman 2001:21). Keeping a few tamed or domesticated turkeys to provide a steady supply of feathers seems to be the strategy employed at Peña Blanca, as there is no evidence they were eaten, at least by humans.

Turkey and large bird remains occur mostly in relatively small numbers after the Early Developmental period occupation (Table 20.38). The only exceptions are the Coalition period deposits in the fill of Structure 70 at LA 6169 (n=135) and the mainly Coalition period deposits in the fill of Structure 4 at that same site (n=49). No more than two birds are represented by the specimens from Structure 70 and about a quarter (26.6 percent) are muscle splints, an indication that some parts were discarded while still covered with flesh, and even some of the large and delicate elements are complete. Carnivore gnawing and tooth punctures are relatively rare. None of those from the fill of Structure 70 have gnawing or punctures recorded but one of each was observed from Structure 4 as were 4 impact and 15 spiral breaks that could result from the carnivores or

		Very Large		
Time/site/component	Large Bird	Bird	Turkey	Total
Late Developmental				
LA 6169, St. 76 floor	1	-	1	2
Mainly Late Developmental				
LA 249, St. 6 fill	1	-	-	1
LA 6169, St. 76 roof & floor fill	5	-	2	7
LA 6169, burials in St. 76 fill	2	-	-	2
LA 6170, Feature 5	-	2	1	3
Coalition				
LA 6169, St. 10 fill	1	-	-	1
LA 6169, St. 10 floor fill & floor	1	-	1	2
LA 6169, St. 15 fill	2	-	2	4
LA 6169, St. 15 floor fill & floor	4	-	2	6
LA 6169, St. 16 fill	2	-	7	9
LA 6169, St. 16 floor fill & floor	2	-	9	11
LA 6169, St. 70 fill	16	-	119	135
LA 6169, St, 70 floor fill & floor	2	-	8	10
LA 6169, SU 10	1	-	-	1
Mainly Coalition				
LA 6169, St. 4 fill	6	-	43	49
LA 6170, SU 12	-	-	1	1
LA 6171, St. 9 fill	-	1	-	1

Table 20.38. Summary of Late Developmental, Coalition, and Classic Period Large Bird and Turkey Bones

from processing. Burning is relatively rare and found only in the Late Developmental (one of two) and the Coalition (7 of 177 or 3.9 percent) specimens.

For the Cochiti Dam sites, at LA 9154 (Late Coalition/Early Classic period) turkey bones were abundant and at least one bone was burned and several had cut marks or evidence of use (Harris 1971:70) with no mention of turkey burials. Turkey bones were also recovered from the Coalition period sites of LA 6461 (15 percent in a sample of 59) and North Bank or LA 6462 where they were abundant and included a fractured tibiotarsus that had healed but at a slight angle and a fractured humerus that had slipped before healing, as well as young birds and egg shells. A few were charred and Harris presumes that turkeys were used as food (Harris 1968:198-199, 204-205). Alfred Herrera or LA 6455 (Classic period) also had abundant turkey remains including at least eight young birds and egg shell. Three turkey bones had healed fractures

and one distal tibiotarsus was burned (Harris 1968:222). LA 70 (Classic period) has the only mention of a turkey burial. Otherwise, turkey comprised 20.5 percent of the identifiable bone. Some bone was burned and several had evidence of utilization (Harris 1976:H-7, H-26).

To the east, at the Galisteo Basin Late Developmental/Early Coalition period site of LA 3333, turkey bones are fairly sparse (2.0 percent) but widespread. Juvenile birds and a few eggshells (n = 9) were found suggesting some birds were raised at that site. Enough processing and fragmentation and infrequent burning suggest that turkeys may have been eaten (Akins n.d.a). At Arroyo Hondo, slightly north and dating later, evidence for raising turkeys is abundant. Egg shell, an egg clutch with unhatched poults, immature turkeys, healed fractures of wing and leg bones, and pens containing manure provide good evidence of husbandry throughout the occupation. Turkeys were presumably eaten (Lang and Harris 1984:101, 107) and feather cord textiles were commonly found with human burials (Lang 1984:255). Like Arroyo Hondo, Pindi Pueblo (Late Coalition/Early Classic) had turkey bins, egg shell, numerous turkey bones, and human burials wrapped in feather cloth. These, too, were presumed to have been eaten, based on large numbers and their scattering throughout the refuse (Stubbs and Stallings 1953:47).

Thus, while keeping turkeys has a long history in the Cochiti area, raising turkeys appears to have come later, perhaps in the Coalition but with the best evidence in the Classic period. Likewise, turkeys were not eaten early on and were probably much more important for the feathers that the live birds provided. In sites with evidence of domestication and of relatively large scale production of birds, these may also have been used for food and provided an alternative or substitute source of protein when wild resources became scarce or difficult to obtain. A near absence of large animals at the Cochiti Dam site of LA 9154, led Harris (1971:74) to suggest that domestic turkeys, along with local small game, provided meat for the site inhabitants.

Wild Birds. Early accounts document the ceremonial use of feathers at all of the Pueblos (Schroeder 1968; Tyler 1979), as do archaeological remains and other evidence at prehistoric sites. At Pottery Mound, a Classic period site just south of Albuquerque, as many as 50 species of bird were identified in the faunal remains (Emslie 1981:853) and painted kiva murals frequently display bird images or feathers (73 of the 105 murals) (Roler 1999:36-37) suggesting that birds and feathers were as important in prehistoric rituals as they are to the modern Pueblos. Birds also played an important ritual role in the northwestern part of the state. At Pueblo Alto, wing elements were almost always the most common parts found (Akins 1987a:479) and a single extramural pit from that site contained 17 left and 12 right wings, 5 left and 7 right legs, and few axial parts from several species of hawk and eagles along with other offerings of calcite, argilite, and shell (Akins 1985:382).

Unlike the turkey remains, wild bird parts at Peña Blanca were often found in locations suggesting ceremonial deposition (Table 20.39). Provenience types with one or more bird wing elements, cranial parts, or talons include roof fall and closing deposits, structure floors, vent shafts and tunnels, occasional floor features, and human burials. The most consistently found birds are the scaled quail, horned lark, western meadowlark, and flicker. Birds of prey are rare and elements are often talons found on floors or in closing deposits. Wild bird parts were occasionally found in the upper fill of structures (n = 1 horned lark carpometacarpus from the upper fill of Structure 1 at LA 265) or in extramural areas (n = 1 horned lark ulna from SU2 Feature 24 at LA 265 and n = 11 from the area around the vent shaft for Structure 50 at LA 6170). Those from LA 6170 were found in excavations to locate the vent shaft and could have been ceremonially deposited. Elements include a partial left wing, a right ulna, and sternum from a horned lark, a duck coracoid, a scaled quail humerus and ulna, and bones from a partial left wing of a flicker.

Later assemblages from Peña Blanca have few wild bird bones and these are almost always single elements rather than parts suggesting wings or other ceremonial use. The two exceptions are a scaled quail scapula and humerus from the upper fill of Structure 4 at LA 6169 and a scorched golden eagle talon from the fill of Structure 9 at LA 6171. Both are from mainly Coalition deposits.

While none of the bird elements have distinctive processing marks indicating disarticulation or removal of feathers, many could be the remains of bird wing fans or skins. Lang and Harris (1984:73–74) describe a raven skin from Arroyo Hondo that retained the legs, wings, and bill and other instances of disarticulation they believed were examples of manufacture of wing fans. The main differences between the Peña Blanca bird remains and those from Arroyo Hondo are in the abundance and the kinds of birds recovered. Wild birds comprised between 7.7 and 17.3 percent

	Deposits	
	Species	Parts
LA 265		
Structure 4 floor	golden eagle	talon
Structure 4 vent shaft 1	scaled quail	sternum
	horned lark	R & L humerus
Structure 4 vent shaft 2	scaled quail	R coracoid
	horned lark	L coracoid
Structure 4 vent tunnel	horned lark	R carpometacarpus
Structure 13 vent shaft	western meadowlark	beak
Structure 13, subfloor human burial	flicker	R humerus to carpometacarpus
		L radius to wing digit
	western meadowlark	L humerus to wing digit
SU2, F. 23 bell-shaped pit w/	scaled quail	R tarsometatarsus
human burial	horned lark	L ulna
LA 6169		
Structure 4 roof and floor fill	flicker	L ulna
	western meadowlark	L tarsometatarsus
Structure 4 floor	merlin	R humerus
Structure 4 vent, F. 66	scaled quail	scapula & R humerus**
Structure 47 roof fall & floor	duck	L radius
Structure 47 floor	sandhill crane	L tibiotarsus
Structure 47 ash pile	horned lark	vertebrae (3)
		L humerus to carpometacarpus
		R ulna
	Passeriformes	R ulna
Structure 47 vent tunnel	scaled quail	L humerus - scorched
	western meadowlark	tarsometatarsus
SU 1, Feature 29	flicker	L ulna and carpometacarpus
LA 6170		
Structure 5 roof fall & closing*	golden eagle	talon
Structure 5 ashpit	Passeriformes	sternum, R ulna & coracoid
Structure 5 vent tunnel	scaled quail	L ulna
Structure 50 floor fill & floor	flicker	R ulna
Structure 50 ashpit	horned lark	L ulna
	Passeriformes	R humerus – scorched
St. 50 sealed storage pit, F. 156	horned lark	L ulna
St. 50 sealed storage pit, F. 171	horned lark	L humerus
LA 6171		
Structure 26 floor*	great horned owl	talon - burned

Table 20.39. Possible Ceremonial Disposition of Wild Bird Parts in Early Developmental Period Deposits

*coded as Mainly Early Developmental period ** coded as Mainly Coalition period

of the MNI for the eight Arroyo Hondo components and are far more diverse (Lang and Harris 1984:59–62). Similar MNI calculations have not been made for Peña Blanca but the proportion would be much lower.

Bird parts found at the Late Coalition/Early Classic Cochiti Dam site of LA 9154 were commonly wing elements. Five pairs of raven wings and a pair of crow wings were found in the same field specimen bag, and hawk and owl bones from this site were mainly wing elements with some lower legs and feet. Harris interprets the wings as likely ceremonial, probably traded from the south or east. An abundance of lower legs from a variety of hawks suggests these, too, were ceremonial (Harris 1971:69–70, 73). At LA 3333, pieces of a sternum, wings, and lower legs from a red-tailed hawk were found during surface stripping. Other bird elements include hawk talons, eagle ulnas made into whistles, a kestrel wing bone, a horned lark ulna, raven wing and leg elements, and a crow beak and ulna, some or all of which could have been ceremonial deposits (Akins n.d.a).

At Peña Blanca, potential ceremonial use of bird wings and feet or talons occurs throughout the occupation. Frequencies seem to decrease through time but the lack of comparative data from other regional sites makes it difficult to determine whether this is a function of smaller sample sizes or a real trend that could indicate changes in ritual practices or in the populations inhabiting these sites.

Artiodactyls. Some artiodactyl parts appear to have been ceremonially deposited (Table 20.40). This is especially true of the burned antler and partial cranium of a deer with a corn cob inside the cranial case and kernels scattered around it on the floor of Structure 50, a partial bighorn cranium with the horn on the floor of Structure 9 at LA 6171, a partial deer cranium with antler in the vent shaft fill of Structure 4 (Feature 66) at LA 6169, and possibly the complete mandible left on the floor of Structure 47 at LA 6169. Other finds in components that commonly have potential ceremonial deposition are usually teeth or mandible or maxilla fragments that may or may not have any significance. Unlike the wild bird wing parts, artiodactyl teeth and associated bone are commonly found elsewhere in the site deposits. However, cranial parts with attached antler or horn are not and could well represent the remains of ceremonial head dresses left behind when a structure was abandoned. Henderson and Harrington (1914:14) report that bighorn skulls were found in ruins on the Pajarito Plateau. Burned antler and horn, often attached to cranial parts, and mandibles have also been found on floors of some large pit houses in Hohokam sites (Szuter 2000:211-213). According to Hill, the

Santa Claras used deer antlers and pronghorn horns for dance costumes, and antlers were placed on shrines (Hill 1982:50, 52). Zia hunters placed decorated deer heads with horns on the roofs of houses, burying them when they got very old (White 1974:304).

Other parts may also have been used in ceremonies like feet and hoofs that could have been used on ceremonial canes, but again, few of these were found and could also represent no more than disposal of feet. The more suggestive occurrences include much of an elk foot from SU2 bell-shaped storage pit Feature 26 at LA 265; a first and second phalanx from a deer on the floor of Structure 4 at LA 6169; an articulated left hind foot of an elk (distal tibia, tarsals, and the proximal third of the metatarsal) and an articulated partial right rear foot of a deer (distal tibia and two tarsals) from the roof fall layer of Structure 2, LA 6170; and second and third phalanges from a mule deer on or near the floor in Structure 50 at LA 6170. Little of the LA 265, Feature 26 fauna was analyzed, but it did contain parts of several dogs.

Only one similar find came from later dating deposits. In Structure 76 at LA 6169 a partial deer cranium (face region) was found in the roof fall and floor fill component (mainly Late Developmental). No combinations of foot elements that could suggest use of feet were analyzed.

At the Cochiti Dam site of the North Bank site (LA 6462) in a Late Developmental period pit structure (Unit IV pithouse), two bison horns were found on the floor and a deer mandible on the hearth (Lange 1968a:39). A photo of the bison horn in situ (1968a:39) looks suspiciously like bighorn and the only mention of *bos*/bison in the accompanying faunal report is of a phalanx and tooth fragment where the species could not be determined (Harris 1968:200–218). Unfortunately, no other similar information is reported for the Cochiti Dam excavations or Arroyo Hondo.

Carnivore Parts. A few carnivore parts also suggest ceremonial deposition. These include the partial bear mandible on the floor of Structure 4, a carnivore tooth on the floor of

	Species	Parts
LA 265		
Structure 1 F. 18 human burial	bighorn sheep	mandible fragment
SU 2 F. 23 bell-shaped pit with human burial	pronghorn	mandibular premolar
LA 6169		
Structure 4 roof & floor fill	deer	maxillary molar
Structure 4 floor	deer	mandibular molar
Structure 4 vent, F. 66**	deer	partial cranium with antler (coded Mainly Coalition)
	pronghorn	mandibular tooth fragment
Structure 47 floor	deer	complete L mandible
St. 47 F. 121 storage bin	deer	R mandible - partial
LA 6170		
Structure 50 roof & closing	pronghorn	horn shaft
Structure 50 floor	deer	basioccipital and parietal with attached antler
Structure 50 vent shaft	deer	mandible fragment
LA 6171		
Structure 9 floor	bighorn sheep	R posterior vault with horn
LA 115862		
Structure floor	cow or bison	molar or premolar fragment

Table 20.40. Possible Ceremonial Disposition of Artiodactyl Cranial Parts in Early Developmental Period Deposits

** coded as Mainly Coalition period

Structure 47 at LA 6169, and a canid canine tooth with a human burial in the fill of Structure 1, a badger ulna in an extramural pit containing a human burial, a badger radius on the floor of Structure 1, and a weasel mandible in a sealed pit in Structure 4 at LA 265. The other carnivore parts were found in fill or extramural contexts with no other evidence they were deliberately placed.

Amphibians and Reptiles. Both the proveniences and the habits of some species suggest that some toads, frogs, and snakes may have been ceremonially deposited. A conceptual link between rain and water and toads and frogs seems natural but no references to their use has been found in the ethnographic literature reviewed. However, horned snakes, lizards, and frogs or tadpoles are found on the Zia medicine bowls of the Koshari society (White 1974:316–317). At Peña Blanca, toads, frogs, and sometimes snakes and lizards (Table 20.41) were found as complete or partial skeletons. Partial skeletons are generally those that were not recognized in the field so have passed through screens retaining only the largest elements.

Some of these animals could have reached their final resting place by burrowing, inhabiting the burrows of other animals, or accidentallv falling into pits and structures. Woodhouse's toads in the North Valley of Albuquerque have a propensity to fall into deep holes and more than one can be found in the same posthole left uncovered overnight. However, this propensity does not account for the toads, spadefoots, and frogs found in sealed pits and plastered into floors nor does it account for the diversity of species and the consistent presence in components with other potential offerings at Peña Blanca. Two of the three spadefoot toad species found in the vicinity were tentatively identified in the Early Developmental deposits, both from the same structure (Structure 5 at LA 6170). The Plains spadefoot toad occupies rodent or self-constructed burrows, emerging at night after a

	Species	Part
_A 265		
Structure 1 F. 238 burial in upper fill	Plains or Woodhouse's toad	2 partial skeletons
Structure 1 floor	nonvenomous snake	skeleton
	Great Plains toad	partial skeleton
	Woodhouse's toad	L femur and tibiofibula
Structure 1 vent shaft	Woodhouse's toad	2 partial skeletons
	Plains or Woodhouse's toad	partial skeleton
	northern leopard frog	partial skeleton
Structure 4 sealed floor pit F.76	Great Plains toad	partial skeleton
Structure 4 vent shaft 1	red-spotted toad	2 partial skeletons
Structure 4 vent shaft 2	Great Plains toad	partial skeleton
Structure 4 vent tunnel	Plains or Woodhouse's toad	, partial skeleton
Structure 13 floor	Plains or Woodhouse's toad	, both tibiofibulae
Structure 13, subfloor human burial	Woodhouse's toad	skeleton
Structure 13 vent shat	red-spotted toad	R innominate
SU 2, F 23 bell-shaped pit with human	Plains or Woodhouse's toad	partial skeleton
burial	lizard	maxilla
buildi	snake	4 vertebrae
SU 3 F. 14 large pit	red-spotted toad	partial skeleton
	Woodhouse's toad	partial skeleton
2113 E 11 Jargo thormal facture	Plains or Woodhouse's toad	partial skeleton
SU 3 F. 11 large thermal feature _A 6169	Fights of Woodhouse's toad	partial skeleton
Structure 4 roof fall and floor fill	Woodhouse's toad	nortial akalatan
Structure 4 floor	true toads	partial skeleton
	Plains or Woodhouse's toad	partial skeleton
Structure 4 cobble concentration		partial skeleton
Structure 4 vent, F. 66**	Plains or red-spotted toad	radio-ulna
Structure 47 F. 119 storage bin	box turtle	carapace marginal
Structure 47 F. 121 storage bin	northern leopard frog	cranium and vertebra
Structure 47 vent tunnel and shaft	Great Plains toad	partial skeleton
	Woodhouse's toad	cranium and tibia
Structure 47 second vent tunnel	Woodhouse's toad	vertebra
_A 6170		
Structure 2 floor	true toads	atlas vertebra
Structure 5 roof & closing*	nonvenomous snake	ribs and throacic verte
	Great Plains toad	R innominate
Structure 5 floor	nonvenomous snake	skeleton
	Great Plains toad	pelvis and 2 R humeri
Structure 5 vent tunnel	whiptail	partial skeleton
	Great Plains toad	2 partial skeleton
Structure 5 floor plaster	Plains spadefoot	partial skeleton
Structure 5 ashpit	New Mexico spadefoot	partial skeleton
	red-spotted toad	partial skeleton
	nonvenomous snake	2 thoracic vertebrae
Structure 50 roof and closing	nonvenomous snakes	3 thoracic vertebrae
Structure 50 F. 166 sealed storage pit	Great Plains toad	2 skeletons
- •	red-spotted toad	partial skeleton
	northern leopard frog	, partial skeleton
SU12 F. 69 large bell-shaped pit	Plains or Woodhouse's toad	2 partial skeletons
5 1 1	red-spotted toads	partial skeleton
	Woodhouse's toad	2 partial skeletons

 Table 20.41. Possible Ceremonial Disposition of Reptile and Amphibian Parts in Early

 Developmental Period Deposits

summer rain. New Mexico spadefoot toads burrow as deep as 90 cm in loose soils and are largely nocturnal (BISON-M n.d.; Degenhardt et al. 1996:36-42). While these habits could allow for natural deposition, one was plastered into the floor and the other was in the ashpit, both of which are unlikely locations if the deposition was natural. Of the three potential toad species, Woodhouse's toad is found in mesic areas near water and rests in shallow burrows. The terraces where the Peña Blanca sites are located are neither mesic nor that near water but this species seems to be one of the more likely to have been accidentally deposited and is one of the more common in both skeletons and parts. They were found on floors, in vent shafts, with human burials, in pits, and in roof fall layers, most of which contained some other potential ceremonial items. Great Plains toads are proficient burrowers and may be more likely to be found in situations like at these sites. They are also nocturnal. The most common toad found as skeletons, Great Plains toads were found on floors, in sealed pits, in vent shafts, and in roof fall and closing deposits. Probably the least numerous of the toads, redspotted toads, prefer rocky areas near springs and pools in arroyos and are largely nocturnal and often live under large flat rocks (BISON-M n.d.; Degenhardt et al. 1996:51-59). Again, this species is not impossible for the site area but is unlikely in deep deposits. Here they were found in vent shafts, extramural pits, sealed floor pits, and an ashpit, most or all of where accidental deposition is unlikely. Northern leopard frogs live in wet environs but will venture some distance during wet periods (BISON-M n.d.; Degenhardt et al. 1996:88-89) making this species an unlikely natural find in the Peña Blanca sites. Relatively rare, frogs were found in a vent shaft, a storage bin, and a sealed pit.

Like the toads, snakes and lizards occupy rodent burrows and could be accidental additions to the archaeological deposits. It is largely the presence of complete snakes and lizard crania in contexts with other potentially ceremonial deposits that suggests that these, too, could have been intentionally placed with human burials, on floors, in roof and closing deposits, in ash pits, and in a vent tunnel.

Summary of Ceremonial Use

When the presence or absence of potential ceremonial deposition of animal remains is considered (Table 20.42), less than half (20 of 43) have only one of the animal groups considered. Dogs were always found with at least one other animal group. Of the 12 components with artiodactyl crania parts, 2 (16.7 percent) had no other animal group. Bird parts were found in 20 components and had no other animal group in 6 (30 percent). Carnivore parts appear in only 5 and were always with some other group. Snakes were relatively rare, found in only seven components and only once (14.3) percent) without another animal group. Toads and frogs are the most common, found in 29 components and with no other animal group 10 times (34.5 percent). Components with two animals groups (n = 16) are most likely to have bird and toad or frog (n = 5) with several groups having two each (artiodactyl and toad or frog, artiodactyl and bird, artiodactyl and toad or frog, and carnivore and toad or frog), and single incidences of artiodactyl crania and carnivore, artiodactyl crania and snake, and of snake and toad or frog. When three are found (n = 4), the most common combination is artiodactyl, bird, and toad or frog (n = 2) with single instances of bird, snake, and toad or frog and of carnivore, snake, and toad or frog. Only three components have four, a human burial with artiodactyl, bird, snake, and toad or frog, a structure floor with artiodactyl, bird, carnivore, and toad or frog, and a roof fall and closing layer with dog, bird, snake, and toad or frog. Sample size alone cannot account for the variation as two of those with four animal groups have relatively small samples, 21 and 141, and those with only one animal group have sample sizes ranging from 1 to 678 specimens.

The frequent occurrence of potential ceremonially deposited animals or animal parts in

	Sample Size	Dog Burial	Artiodactyl Cranial	Bird Cranium, Wing, or Talon	Carnivore	Snake Skeleton or Vertebrae	Toad Frog
LA 265							
Structure 1 F. 18 human burial	107	-	Х	-	Х	-	-
Structure 1 F. 238 human burial	82	-	-	-	-	-	Х
Structure 1 floor	277	-	-	-	Х	Х	Х
Structure 1 vent shaft	266	-	-	-	-	-	Х
Structure 4 floor	28	-	-	Х	-	-	-
Structure 4 F. 76 sealed pit	19	-	-	-	Х	-	Х
Structure 4 vent shaft 1	77	-	-	Х	-	-	X
Structure 4 vent shaft 2	169	-	-	X	-	-	X
Structure 4 vent tunnel	21	-	_	X	_	-	X
Structure 13 floor	6	х	_	-	_	-	X
Structure 13 subfloor human	21	-	×	×	_	×	X
burial		-	X				~
Structure 13 vent shaft	26	-	-	Х	-	-	-
SU 2 F. 23 bell-shaped pit w. human burial	154	-	-	-	Х	-	Х
SU 3 F. 14 large pit	50	-	-	-	-	-	Х
SU 3 F. 11 large thermal pit	19	-	-	-	-	-	Х
LA 6169							
Structure 4 roof fall and floor fill	255	-	Х	Х	-	-	Х
Structure 4 floor	328	-	Х	Х	Х	-	Х
Structure 4 floor cobble concentration	68	Х	-	-	-	-	Х
Structure 4 vent, F. 66**	217	-	Х	Х	-	-	Х
Structure 47 floor	74	-	Х	Х	-	-	-
Structure 47 ash pile	231	-	-	Х	-	-	-
Structure 47 F. 121 storage bin	26	-	Х	-	-	-	Х
Structure 47 vent tunnel & shaft	158	-	-	Х	-	-	Х
Structure 47 second vent tunnel	61	-	-	-	-	-	Х
SU 1, Feature 29	678	-	-	Х	-	-	-
LA 6170							
Structure 2 floor	1	-	-	-	-	-	Х
Structure 5 roof fall & closing*	141	Х	-	Х	-	Х	X
Structure 5 floor	79	-	_	-	_	x	X
Structure 5 ashpit	144	-	-	X	_	X	X
Structure 5 vent shaft	17	-	-	-	-	-	X
Structure 5 vent tunnel	30	-	-	×	-	-	X
Structure 5 floor plaster	1	-	-	-	-	-	X
Structure 50 roof & closing	503	-	×	-	-	×	
Structure 50 floor	30	-	X	×	-	^	-
Structure 50 ashpit	163	-	^	^	-	×	-
•	103	-	-	×	-	^	-
Structure 50 sealed storage pit 156	13	-	-	^	-	-	×
Structure 50 sealed storage pit 166		-	-	-	-	-	
Structure 50 sealed storage pit 171	63 57	-	-	Х	-	-	-
Structure 50 vent shaft	57	-	Х	-	-	-	X
SU 12, F. 69 bell-shaped pit	45	-	-	-	-	-	Х
LA 6171	~		N N				
Structure 9 floor	9	-	Х	-	-	-	-
Structure 26 floor* LA 115862	63	-	-	Х	-	-	-
Structure floor	48	-	Х	-	-	-	-

 Table 20.42. Summary of Early Developmental Components with Potential Animal Ceremonial Deposition (from Tables 20.34, 20.39-20.41)

* Mainly Early Developmental period ** coded as Mainly Coalition period

similar proveniences is certainly suggestive. It is possible that time is a factor in what kinds of animals were used in closing rituals. Structures that have dogs in the closing deposits (LA 265, Structure 13 and LA 6170, Structure 5) may have been abandoned earlier than those with horn or antler (LA 6170, Structure 50 and LA 6171, Structure 9), while the one structure with both (LA 6169, Structure 4) seems to date in between. Data on ceremonial use of animals needs to be integrated with other kinds of material to explore and confirm the ceremonial nature of these deposits.

Implications for Mobility Strategies

Several aspects of the Peña Blanca Early Developmental period faunal assemblage suggest that these early residents were more mobile than most of those who followed. Any conclusions are somewhat problematic in that the faunal samples from later periods are not as large and often come from a limited number of sites and provenience types. Yet, it is within a comparative framework that the evidence for mobility and changes in animal utilization is best evaluated.

The Early Developmental period faunal

data provides evidence for both a heavy reliance on garden hunting, consistent with a population that was at least seasonally sedentary, and for hunting at a distance (Fig. 20.5). If the relative proportion of cottontail to jackrabbits (a high lagomorph index) is an indication of garden hunting, which it seems to be for at least this general area, then reliance on garden hunting during the Early Developmental period was high, but surpassed by that during the Coalition and perhaps the Classic, a very small and mixed sample. Relative to rabbits, the number of artiodactyl bones (artiodactyl index) is almost always fairly small (Fig. 20.5), but the proportions of identified species vary. Residents of the Early Developmental sites may have frequented different areas for artiodactyl hunting either logistically or before returning to the residential sites. LA 6169 and LA 6170 have more southeastern grassland species (pronghorn) while LA 265 has more highland species (bighorn and elk).

With few exceptions, deer is the most numerous of the artiodactyl species and is almost always followed by pronghorn. Elk, bighorn, and bison are rare. The exceptions are the mainly Early Developmental and Coalition deposits, disregarding the large contribution of

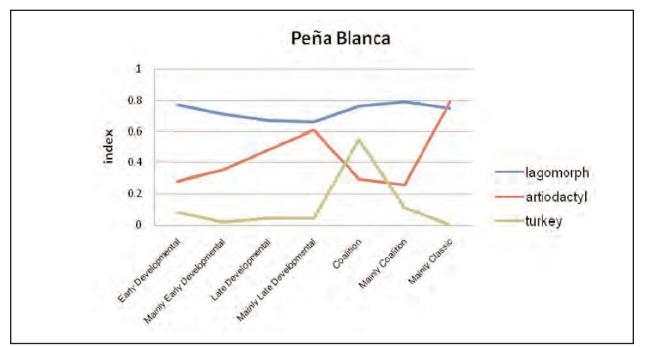


Figure 20.5. Peña Blanca faunal indices.

	N =	Elk	Deer	Pronghorn	Bighorn	Bison	Bos/ Bison
Early Developmental Mainly Early	220	14.1	48.2	24.5	9.5	2.7	0.9
Developmental	13	-	23.1	61.5	15.4	-	-
Late Developmental	13	7.7	61.5	15.4	15.4	-	-
Mainly Late							
Developmental	41	-	53.7	34.1	12.2	-	-
Coalition*	10	-	30	50	10	-	10
Mainly Coalition	28	3.6	57.1	28.6	10.7	-	-
Mainly Classic	2	-	50	-	50	-	-

Table 20.43. Summary of Identified Artiodactyl Specimens by Time Period for Peña Blanca (percent of identified)

* pieces of the same immature bovid counted as one element

a single cow or bison in the later deposit (Table 20.43). When viewed in terms of percent of identified artiodactyl bone and discounting the very small sample sizes, the proportion of deer is lowest in the Early Developmental period (48.2 percent), increases in the mainly Late Developmental period deposits (53.7 percent) and again in the mainly Coalition (57.1 percent). Pronghorn and bighorn both increase then decrease slightly (pronghorn 24.5, 34.1, 28.6 percent; bighorn 9.5, 12.2, 10.7 percent). Elk comprises a significant proportion of the Early Developmental period identified artiodactyl (n = 31 or 14.1 percent) and is present as single specimens in the mainly Late Developmental (7.7 percent) and mainly Coalition (3.6 percent) deposits. Because the sample sizes are small and very uneven, statements regarding the significance of these changes in the proportions of artiodactyls are tentative. One possible interpretation is that the smaller proportion of deer and more use of species hunted at a distance reflects a more mobile strategy during the Early Developmental period. Women and children are likely to have done much of the garden hunting, especially early in the time sequence when some men and women were more mobile. Male mobility may have changed from a more general or seasonal mobility to one of logistic mobility by the Coalition accounting for the apparent decrease in artiodactyl use and perhaps a return to more garden hunting as males assumed more of a role in local hunting,

field protection, and tending the turkeys, and less time was devoted to long-distance hunting.

Greater mobility and the importance of hunting are also indicated by other aspects of the faunal assemblage. More evidence of male cooking (roasting) is found in the early deposits (see Fig. 20.4), which could indicate influxes of people during certain times of the year. The episode documented at LA 6169 was most likely a winter event, suggesting that the more mobile group members spent winters at the residential sites, staying until the fields were cleared and planted. Most cooking was by boiling or stewing, a method usually attributed to women, but influxes of people or ceremonial events often alter day-to-day cooking practices.

Dogs must have had a much greater significance for the earliest settlers. All of the dog burials and most of the dog elements were found in either Early Developmental or mainly Early Developmental period deposits or in mixed deposits that contain Early Developmental period material. Dogs were found in contexts suggesting ritual placement and even scattered and carnivore damaged parts were placed in pits. These findings are consistent with an early emphasis on hunting artiodactyls that declined as males played a greater role in agriculture.

Artiodactyl hunting generally has a ritual aspect so that finding more evidence for the ritual use of animal parts is consistent with a greater importance for hunting regardless of the amount of hunting. Ritual placement of artiodactyl crania, carnivore parts, and bird wings are almost all confined to Early Developmental period deposits.

Taken together, garden hunting paired with procurement of a greater diversity of artiodactyls, more roasting, and the greater importance of dogs and hunting ritual, can be interpreted as supporting greater mobility at the early end of the time spectrum. The same may be true of what seems to have been a complete disregard of the nearby riverine resources, these resources either were not needed or too costly and were not pursued. At the same time, substantial permanent structures with little evidence of the kinds of remodeling found when the entire population abandons a site on a seasonal basis, evidence for occupation during the cold months, and virtually no change in refuse disposal in later periods suggest an essentially sedentary community. Probably the best, but far from definitive faunal evidence, for dual or simultaneous sedentism and mobility may be in the greater amount of male cooking or roasting that took place early on. Other sources of data, such as the robusticity of the females and near absence of males in the burial population, add credence to this interpretation.

Other Southwest Assemblages

Comparable data sequences covering the transition to and progressive intensification of agriculture are rare for the Southwest. Working with Hohokam assemblages from southern Arizona, Szuter and Bayham (1989:92) conclude that variability in the lagomorph index depends on site function (small farmsteads versus village-hamlets) and the length of occupation. Based on the premise that jackrabbits prefer open spaces with high visibility and cottontails prefer dense brush cover where they can hide, they propose that clearing land for farming or collecting wood and depleting the brush cover should favor jackrabbits. The same would be true for larger communities where communal hunting is expected (e.g., Szuter and Gillespie 1994:70-71). Indeed, in their data set the lagomorph index decreases from 0.53 to 0.12 through time. Smaller sites have higher

indices, an average of 0.36 for farmsteads compared to 0.19 for village-hamlets (Szuter and Bayham 1989:93). As for artiodactyls, lowland sites have very low indices, between 0 and 0.16 while the range for upland sites is from 0.19 to 0.75. Most upland sites were small farmsteads, hamlets, fieldhouses, or seasonal occupations while residents of the lowlands practiced more farming and had larger populations. The authors believe the difference depends largely on the greater availability of artiodactyls and lesser commitment to horticulture in the uplands along with the scheduling constraints imposed by intensive horticulture in the lowlands (Szutzer and Bayham 1989:90–92).

Results from the Colorado Plateau differ somewhat from the Arizona study due in part to environmental conditions that favor denser vegetation and presumably cottontails. At both Dolores Project sites (ignoring the first period with a very small sample size and much uncertainty as to its nature) and Chaco Canyon (Table 20.44, Fig. 20.6), initially high lagomorph indices decrease with time and population growth, increasing again as the population declined. In both areas only the lowest of the lagomorph indices overlap the highest Arizona index, stressing the importance of environmental parameters.

A high lagomorph index paired with a low artiodactyl index is found in the Colorado Plateau and the Peña Blanca samples (Table 20.44) during the initial period of agricultural commitment, regardless of environmental setting. The fact that the Peña Blanca lagomorph index is always heavily weighted towards cottontail rabbits may also suggest that the population, at least as represented in these sites, was never great enough to increase the use of jackrabbits to the extent indicated by the samples from Arizona, Dolores, and Chaco Canyon where the amount of jackrabbit is greatest in and around the periods of maximum human populations.

Considering that the Dolores area is optimum for artiodactyl procurement, Chaco Canyon much less so, and Peña Blanca falls somewhere in between, the curves for the artiodactyl indices are remarkably similar (Fig. 20.6). All indicate an initial increase in the proportion of artiodactyl with respect to rabbit bone, and if

Table 20.44.	Comparis	sons of Lé	agomorph,	Artiodactyl, an	d Turke)	/ Indices	for Peña	Table 20.44. Comparisons of Lagomorph, Artiodactyl, and Turkey Indices for Peña Blanca, Dolores, and Chaco Canyon	haco Can	yon	
Peñ	Peña Blanca				Dolores	res		Chac	Chaco Canyon		
Time	Lag.	Artio.	Turkey	Time (AD) Lag.	Lag.	Artio.	Turkey	Time	Lag.	Artio.	Turkey
Early Developmental (700-950)	0.77	0.28	0.09	600-700	0.64	0.58	0.03	0.03 Early BM (500-600)	0.86	0.16	0
Mainly Early Develop.	0.71	0.35	0.02	720-800	0.73	0.20	0.03	Late BM (600-820)	0.55	0.1	0.01
Late Developmental (1080-1225)	0.67	0.48	0.04	800-840	0.64	0.36	0.02	Pueblo I (850-950)	0.44	0.15	0.05
Mainly Late Develop.	0.66	0.61	0.04	840-880	0.58	0.48	0.08	E.P. II (920-1050)	0.53	0.31	0.03
Coalition (1225-1325)	0.76	0.27	0.55	880-920	0.41	0.43	0.13	L.P. II (1050-1080)	0.51	0.37	0.03
Mainly Coalition	0.79	0.26	0.11	920-980	0.73	0.42	0.05	E.P. III (1100-1200)	0.42	0.42	0.25
Mainly Classic (1325+)	0.75	0.79	0	980-1250	0.73	0.26	0.05	L.P. III (1220-1250)	0.69	0.03	0.41

Sources of raw data: Dolores, Neusius 1986:212-253; Chaco Canyon, Akins 1985, Appendix 2

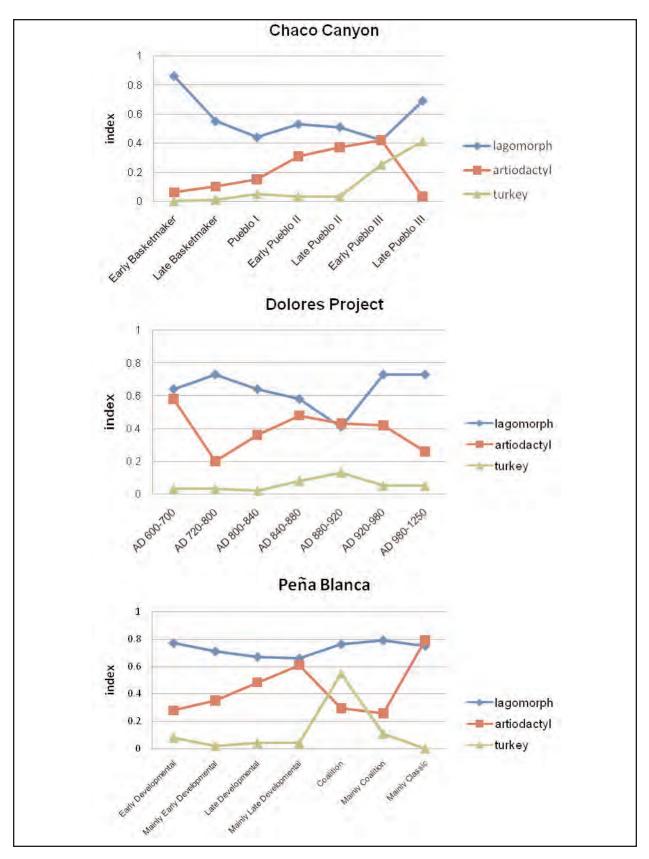


Figure 20.6. Comparison of Chaco Canyon, Dolores, and Peña Blanca indices.

we ignore the very small Peña Blanca Classic sample, all fall toward the end of the sequences reported. Yet the dynamics are quite different. At Chaco Canyon, the increase, as well as a change in the mix of artiodactyls from greater amounts of pronghorn in late Basketmaker assemblages to a more even mix of deer, pronghorn, and bighorn in early Pueblo II, overwhelming amounts of deer in late Pueblo II, and a more even mix of deer, pronghorn, and bighorn slightly favoring bighorn in early Pueblo III may indicate a change in hunting strategy from communal or group hunting to specialized deer hunting as the population increased and then to an unspecialized form of logistic hunting paired with a substantial use of turkeys. The index increases with population growth and the lowest lagomorph index occurs in conjunction with the highest artiodactyl index. At Dolores, the maximum population and peak artiodactyl use occurs with the least amount of fauna overall (Blinman 1986:596-598) and, like Chaco Canyon, the lowest lagomorph index. Deer are always the most common artiodactyl but the proportion of deer bone is lowest in the first two periods, increases in the next three, then begins to decline in the final two (Neusius 1986:224-249), suggesting the response to human population growth was to use more deer and perhaps more fully utilize what was available.

Peña Blanca is unique in several respects (Fig. 20.6), some of which could be related to different analysis methods and sampling strategies. The lagomorph index is always high, never falling as in the other areas. At the same time, the artiodactyl index is surprisingly high early in the sequence and unlike either Chaco Canyon or Dolores, it falls during the Coalition when population is supposedly increasing. Also at Chaco Canyon and Dolores, when the turkey index rises, the lagomorph index falls. At Peña Blanca the lagomorph index rises and the artiodactyl index falls when that for turkey increases. Also intriguing is the similarity in resource mix in the Chaco Canyon late Pueblo III or Mesa Verde occupation and that of the Peña Blanca Coalition. Regardless of the apparent similarity, this should not be interpreted as the direct result of immigrants from the San Juan Basin settling along the Rio Grande and assuming the same resource mix as they had before. Both samples are small and therefore not particularly reliable. In addition, the role of the turkeys was quite different. During this period most evidence suggests turkeys were eaten and provided a substantial amount of the animal protein at Chaco Canyon. There is no such evidence for Peña Blanca where the birds appear to have been kept in small numbers but not eaten. Instead, this particular patterns could reflect use of similar strategies, such as seasonal farmstead occupations.

SUMMARY OF SUBSISTENCE IN LATER TIME PERIODS

Much of the data from the later time periods are presented in previous sections of this report. This section summarizes the differences and similarities in the economic fauna resource mix as well as in the absolute amounts as gauged by an independent commodity such as ceramic utility wares. Table 20.45 summarizes the index and ratio data for all time periods and Figures 20.5 and 20.7 depict these relationships. Table 20.46 and Figures 20.8 and 20.9 compare the density of rabbit/small mammal and artiodactyl/large mammal bones with those of gray and brown utility ware ceramic counts and weights. Since the ceramics and fauna were not sampled exactly the same, especially for the large Early Developmental period sites, these figures include only those components that have similar sampling (although the curves are remarkably similar when the entire samples are used). This resulted in eliminating all of the LA 265 sample, the overburden and some extramural study units from LA 6170, and the upper fill of Structure 47, Structure 76 collapse and trash, SU 6, 7, 8, and 12 from LA 6169 in both databases. In Table 20.46, the ratio divides the counts for the two primary faunal groups by the ceramic count or weight, thus, the more bones relative to sherds, the higher the ratio. The Early Developmental (with and without LA 6169, Feature 29) and mainly Early Developmental samples have among the highest ratios regardless of the faunal group or whether the ceramic counts or weights are used. In the later periods, the results differ considerably depending

	N =	Lag index		Artio index	Artio ratio	Turkey index	Turkey ratio
						•	
Early Developmental	4807	0.77	3.31	0.28	0.39	0.09	0.1
Structure fill	1231	0.73	2.73	0.38	0.61	0.01	0.01
Structure roof fall	725	0.78	3.3	0.42	0.72	0.28	0.39
Structure floor assoc.	1624	0.75	2.95	0.18	0.21	0.14	0.16
Extramural	1228	0.83	4.78	0.24	0.32	0	0
Extramural w/o F. 29	661	0.7	2.34	0.42	0.73	0	0
Total without F. 29	4259	0.74	2.82	0.32	0.46	0.08	0.1
Mainly E. Developmental	257	0.71	2.51	0.35	0.54	0.02	0.02
Structure fill	68	0.74	2.9	0.41	0.69	0.02	0.05
Structure roof fall	71	0.74	2.93	0.21	0.27	0.02	0.02
Structure floor assoc.	103	0.68	2.1	0.4	0.66	-	-
Extramural	15	0.67	2	0.4	0.67	-	-
Late Developmental	95	0.67	2	0.48	0.94	0.04	0.04
Structure fill	11	0.67	2	0.18	0.22	-	-
Structure floor assoc.	84	0.67	2	0.52	1.1	0.05	0.05
Mainly L. Developmental	323	0.66	1.95	0.61	1.56	0.04	0.1
Structure fill	119	0.67	2	0.56	1.27	0.05	0.06
Structure roof fall	175	0.6	1.52	0.68	2.17	0.12	0.13
Extramural	26	0.93	14	0.35	0.53	0.17	0.2
Coalition	384	0.76	3.26	0.3	0.42	0.55	1.23
Structure fill	275	0.78	3.57	0.17	0.2	0.41	1.42
Structure floor assoc.	81	0.76	3.22	0.27	0.37	0.43	0.76
Extramural	28	1	-	0.93	13	-	-
Mainly Coalition	586	0.79	3.78	0.26	0.35	0.11	0.13
Structure fill	515	0.79	3.69	0.16	0.2	0.11	0.13
Extramural	71	-	-	0.89	7.75	0.11	0.13
Mainly Classic	58	0.75	3	0.79	3.83	-	-
Structure fill	10	0.71	2.5	0.85	5.86	-	-
Extramural	10	0.8	4	0.5	1	-	

Table 20.45. Summary of Lagomorph, Artiodactyl, and Turkey Indices and Ratios by Period and Provenience Type (n=sample size for these taxa only)

on whether the count or weight is used. With counts, the Late Developmental deposits contain relatively more bone than the Coalition. The reverse is true when weights are used, indicating sherds were smaller later in time.

Late Developmental Period

Evidence (summarized in Ware 1997:10–12) suggests a population increase during the Late Developmental period, although our experience at Peña Blanca may alter earlier perceptions concerning Early Developmental period population levels. Assuming an increase, some believe migration from the San Juan Basin explains the growth and development during this period. However, as Ware (1997:11) points out, sites attributed to this period could be those of small family groups who inhabited the area on a seasonal basis for several generations

before becoming year-round residents towards the end of this period. If the population was indeed immigrants from the northwest and they were initially seasonal residents, sites and subsistence remains could differ at least somewhat from those of the Early Developmental period.

Few proveniences in the Peña Blanca sample date from the Late Developmental period and most of those are mixed deposits also containing either Early Developmental or Coalition period material. Deposits dating to this period include the lower fill and floor of Structure 6 at LA 249, the lower fill and floor of Structure 76 at LA 6169, and the fill of Structure 5A and an extramural activity area (Feature 5) at LA 6170. The unmixed sample is small (n = 134) and is dominated by structure floor deposits from LA 6169. The mixed or mainly Late Developmental sample is larger (n = 593) but is mostly from structure fill and roof fall.

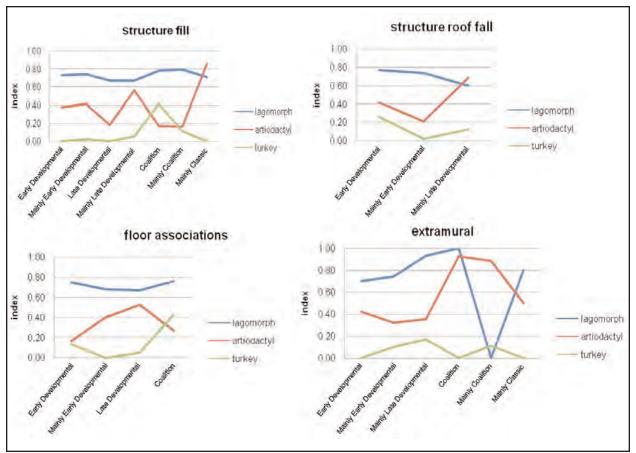


Figure 20.7. Peña Blanca faunal indices by provenience type.

The complete sample and all of the provenience divisions except the small extramural sample show a slight decrease in the lagomorph index for the Late Developmental period deposits (Table 20.45). At the same time the artiodactyl index increases significantly in all divisions with any sample size, again the extramural sample is very small, and the turkey index increases slightly in the mixed deposits, probably reflecting greater amounts in both the Early Developmental and Coalition aspects of the mixture. As for the mix of artiodactyls (Table 20.43), numbers are small but deer is the most common species in both the unmixed and mixed deposits. Again, the relatively large amount of pronghorn in the mixed deposits could result from larger amounts in the preceding and succeeding period deposits.

All this suggests little change in the garden hunting strategy employed at this time. The slight decrease in cottontail use is not sufficient

to postulate great changes in rabbit procurement, yet the fairly drastic reduction in the amount of rabbit and small mammal bone relative to ceramic utility ware counts and weights suggests a reduction in the overall importance of rabbits as a food item (Table 20.46, and Figs. 20.8 and 20.9). At the same time, the dramatic and consistent increase in the artiodactyl index in all but one of the provenience types strongly suggests that artiodactyls contributed a greater portion of the resource mix. Relative to ceramics, there is proportionally less bone (see Fig. 20.9) than in the Early Developmental samples and either more or less than in the Coalition samples depending on whether counts or weights are used. This combination of a relatively high artiodactyl index and low bone counts is open to a number of interpretations. A high index could reflect a greater amount of processing due to competition for increasingly scarce artiodactyl

Early Developmental Ceramic count 3323 Ceramic weight (grams) 11291		Late	Mainly Late			
	itai Developmentai	Developmental	Developmental	Coalition	Mainly Coalition	Mixed Classic
		272	945	1387	3477	507
		1773	6654	5035	5308	2177
Rabbit/small mammal count 2601 (1964)		63	168	232	539	15
Artiodactyl/large count 712 (696)	85	45	176	61	136	46
		0.23	0.18	0.17	0.15	0.03
Rabbit/ceramic weight .23(.17)		0.03	0.02	0.05	0.1	0.01
Artiodactyl/ceramic count .21(.21)	0.12	0.16	0.19	0.04	0.04	0.09
Artiodactyl/ceramic weight .06(.06)	0.03	0.02	0.03	0.01	0.02	0.02

e 20.46. Ratios of Rabbit/Small and Artiodacty//Large Counts to Gray and Brown Ware Ceramic Counts and Weights for Similarly	Sampled Components
ā	

() without Feature 29

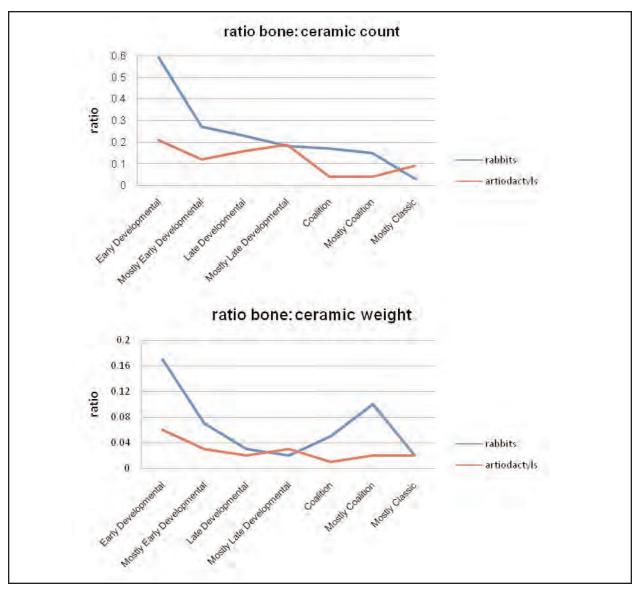


Figure 20.8. Peña Blanca ceramic and bone ratios for rabbit/small mammals and artiodactyl/large mammals.

resources or it could mean that there were few restrictions on hunting territories and more effort was made to procure artiodactyls during this time period. The low bone to ceramic ratio suggests a decrease in the overall importance of hunting from the Early Developmental.

A single fetal or neonate artiodactyl specimen is attributed to this time period. Juvenile animals are relatively common, occurring in six of the ten late and mainly Late Developmental components containing artiodactyl bone. The proportions of juvenile artiodactyls in these two samples are the highest in the Peña Blanca sequence (8.9 and 4.8 percent), a distribution that suggests more of the artiodactyl hunting took place in summer and fall than in any other time period. If true, this, too, may indicate a change to a more logistic form of hunting and reduction in overall mobility.

No dog burials were recovered and the few dog parts found in deposits from this period were either in mixed deposits or from an imprecisely defined pit room in the fill of an Early Developmental structure (Structure 5 at LA 6170) containing several dog burials. This lack of dog burials is inconsistent with a greater emphasis on artiodactyl hunting, which should have increased their value. Yet,

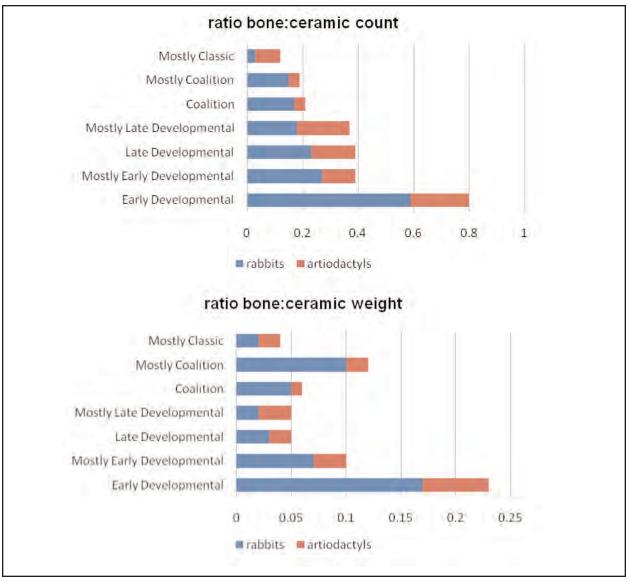


Figure 20.9. Bar graph of Peña Blanca ceramic and bone ratios.

the proportions of carnivore-gnawed or punctured bone in the Peña Blanca samples are greatest in unmixed deposits from this period and third greatest in the mixed deposits (see Table 20.36). If not a function of relatively small sample sizes and few proveniences, this suggests that dogs were present but played a diminished role regardless of the increased use of artiodactyls. Such a change in role could indicate a more logistic form of hunting by an increasingly sedentary population. Potential evidence of rituals associated with artiodactyls and their hunting continue into this period. A partial deer mandible was found in the fill of Structure 6 at LA 249 and a partial deer cranium in the roof and floor fill deposits of Structure 76 at LA 6169.

Roasting was less common as a cooking method (see Fig. 20.4), especially for rabbits. Indeed, decreases in the ratio of bones to ceramics could be another indication of the importance of boiling and stewing as the primary cooking method, regardless of the size of the animal. Much of the Late Developmental period waste was placed in structure fill. The apparent absence of trash-filled extramural features may or may not suggest a significant difference in disposal practices. Our excavations may have failed to locate extramural features from this period, such features may have been rare, or they were not filled with trash. This would be a departure from the previous period, but not necessarily a significant one, as structure depressions may have provided more accessible disposal locations.

Although fairly scant, the faunal data from this period suggest some changes from the earlier period. Rabbits seem to have been less important than in the earlier period while artiodactyls contributed more to the animal resource mix, the role of dogs may have changed, roasting as a cooking method decreased, and the amount of bone relative to ceramics is less. None of these are indicative of an immigrant population seasonally or even permanently occupying these sites. Instead, they may be more consistent with decreased mobility including a change in longdistance hunting practices as males employed a more logistic strategy, especially during the growing and harvest seasons, and as reliance on garden hunting decreased when women spent more of their time processing agricultural products, which had become more important in the overall subsistence mix.

Coalition

The population expanded dramatically during the Coalition along with an increased diversity in site size and location. Again, researchers disagree on whether this was the result of largescale migration into the area or of the growth, expansion, and diversification of a local population (Ware 1997:14). Regardless of the source of the population, more people should result in additional pressure on the animal resource base and, at least in theory, an increase in the use of jackrabbits as land was cleared for farming and by wood collecting. At the same time, competition for artiodactyl hunting territories could result in more use of the closest artiodactyls (deer), in increased evidence for logistic hunts scheduled around agricultural activities, more use of aquatic resources, and more reliance on domestic animals (i.e., turkeys).

Unmixed Coalition deposits are relatively rare (n = 570) in the Peña Blanca sample and are almost all from structure fill and floor associa-

tions in three rooms and a pit structure at one site (LA 6169). Mixed Coalition specimens are more common (n = 967), but these are mainly from that same site and all are either structure fill or extramural deposits. While not the best samples, these may provide a reasonably reliable view of faunal subsistence at these sites for this time period.

Contrary to expectations that higher human population densities should result in increased jackrabbit use, the lagomorph index (Table 20.45, Fig. 20.5) actually increases and is even higher than that for the Early Developmental period deposits. Such an increase suggests that either the population was not so dense that the environment was modified to an extent that favors jackrabbits, that agricultural intensification favored cottontails enough to provide for much of their needs, that the premise that population increases favor jackrabbits does not work particularly well for this area, or that deposits at this site represent a farmstead rather than a year-round residence. The relatively flat curve for the ratio of rabbit/small mammal bones to ceramic utility ware counts or an increase relative to weights, are another indication that rabbits maintained or even increased as a contributor to the diet (Fig. 20.8).

At the same, the artiodactyl index is the lowest in the time sequence (Fig. 20.5). This is especially true of structure fill and floor contexts, while the indices are quite high in the small extramural samples (see Table 20.45). Relative to ceramics, fewer artiodactyl/large mammal bones were found in both samples whether based on counts or weights. Neither ratio indicates that artiodactyls underwent increasing amounts of processing to extract more nutrition from what appears to be a decreasing supply.

It is only in the unmixed Coalition deposits that the turkey index is higher than the artiodactyl index but this is true for only the structure fill and floor proveniences. Also troubling is the paucity of evidence that turkeys were used for food. Of the unmixed Coalition turkey and likely turkey, only one has a roasting-like burn (floor fill of Structure 16 at LA 6169) and nine have discard burns (one from the upper fill of Structure 16, seven from the upper fill of Structure 70, and one from the floor and floor fill of Structure 70 at LA 6169). Instead, these bones represent a small number of birds that come from a very few proveniences, mainly from the fill of Structure 70 for the Coalition deposits and the Structure 4 fill in the mixed Coalition deposits. Many have evidence of carnivore breakage, large and fragile parts are often complete, and numerous muscle splints indicate these were buried with flesh attached. All this suggests that the spike in the index should not be interpreted as turkeys becoming an important part of the diet at these sites.

Overall, faunal remains from this period suggest a very high reliance on cottontail rabbits, and presumably garden hunting. When artiodactyls were hunted, it may have been a combination of local hunting for deer and logistic hunts for pronghorn, perhaps deer, and occasionally bighorn or elk. The sample of identifiable artiodactyl bone is small (see Table 20.43), but suggests that deer and pronghorn were the most commonly used species. No fetal, neonate, or immature animals came from this assemblage except for the bos/bison from LA 6171, and only one juvenile (1.6 percent). In such a small sample it is difficult to deduce when procurement took place. Antler occurs in greater than expected amounts (Coalition: n =3, expected = 1; mainly Coalition n = 12, expected = 2.3 and based on large mammal and artiodactyl counts), but it comes from few features (upper fill of two structures n = 4, and a vent shaft n = 11). If the antlers were unshed, this would represent summer to fall and if shed, early spring.

The proportion of roasting-like burns continues to decline for both the rabbit/small mammals and artiodactyl/large mammals (see Fig. 20.4) while discard burns are especially high in the unmixed Coalition sample. Many of these are from structure fill and floor associations, especially the upper fill of Structure 70 at LA 6169 (n = 270, 22.6 percent discard burns) and floor fill and floor in Structure 16 of that same site (n = 55, 23.6 percent discard burns). The virtual absence of roasting-like burns in the unmixed sample may or may not be significant. Bone from upper fill is often more eroded so the subtle changes reflecting roasting may not have been observed.

Dog elements remain scarce but the crunched and punctured turkey bones attest to their presence, even if in a diminished role. Potential evidence of hunting ritual continues but instances are rare: a partial quail wing in the upper fill of Structure 4 and an eagle talon in the fill of Structure 9 at LA 6171.

Coalition assemblages suggest that the importance of garden hunting as a subsistence strategy may have increased from the Late Developmental period, particularly the taking of cottontail rabbits. However, it is not at all clear whether these deposits represent a yearround residence or a farmstead where we would expect a heavy reliance on garden hunting. Regardless, there is little evidence that this strategy was insufficient to meet their needs as the ratio of artiodactyl/large mammal bone to ceramics remains low with no indication of increasing amounts of processing to extract more nutrition from those resources represented. Virtually no aquatic resources are attributed to this period, although the only fish bones from the project are from mixed Coalition deposits. While turkey bones are relatively abundant, no egg shell or juvenile birds were found that would indicate a concerted effort to raise turkeys in order to provide an alternative protein source. Rather, the residents of this time period appear to have been concentrating on agricultural pursuits and were able to provide for most of their needs in the immediate vicinity, through occasional logistic hunts, and by increasing their dependence on agricultural products. Increases in regional populations may have constrained access to artiodactyl hunting territories and contributed to the low artiodactyl indices for this period.

Classic

Classic period sites in the Cochiti area include large villages with large-scale agricultural and water-control features as well as open camps and small architectural sites. The area population may have declined somewhat but it was demonstrably aggregated into the larger sites (Ware 1997:14–15). Some (e.g., Crown et al. 1996:198, 200) maintain that populations leaving the Pajarito Plateau settled in the Santa Fe District, which includes the Cochiti area.

The Classic period faunal assemblage from Peña Blanca is from mixed deposits comprised almost totally of slope wash from the large site of Tashkatze Pueblo (LA 249) on the terrace above. This later material was deposited in the upper fill of an earlier structure and in extramural contexts. Samples are very small (n = 64and n = 17) and not likely to be representative of this period as a whole. The only noteworthy aspects are the relatively large counts for egg shell (n = 5), for artiodactyls and large mammals (n = 46), and for discard burns on smaller forms (Fig. 20.4). All of this points to relatively poor preservation where egg shell, small burned forms, and large mammal bones were better preserved. No attempt will be made to generalize from this sample.

UPPER AND MIDDLE RIO GRANDE SUBSISTENCE

Quantified faunal data for the Cochiti area is generally scarce, especially for the early end of the time sequence. The Cochiti Reservoir Project recovered little prehistoric fauna (Schutt 1977:105). Some of the sites excavated in conjunction with constructing Cochiti Dam have fair sized samples that are reported in a series of volumes (Harris 1968, 1971, 1976). For the purposes of this discussion the well-documented assemblage from Arroyo Hondo (Lang and Harris 1984), the Cochiti Dam sites, and assemblages analyzed in a manner similar to that from Peña Blanca are included to better define subsistence practices in the Upper Middle Rio Grande area.

Sites along the Rio Grande in the Albuquerque area have produced a fairly small amount of quantified data. Earlier sites (ca. AD 650–1250) contain mostly rabbit bones, along with a wide range of other taxa including prairie dogs, squirrels, woodrats, deer, and pronghorn. Turkey, quail, duck, beaver, and turtle are occasionally found. Where quantified

data is found, jackrabbits outnumber cottontails. In contrast, later sites often have proportionately more cottontails, turkeys can be a significant contributor, and fish, muskrat, and racoon suggest a greater reliance on riverine species (Akins 1987b:165–166). More recent excavations at Developmental period sites suggest a heavy dependence on wild plant foods and small mammals such as jackrabbits, cottontails, pocket gophers, and kangaroo rats as well as cranes, ducks, and turtles but only scant remains of antelope and deer (Schmader 1994:498–499).

Four Albuquerque area sites are considered, three on the West Mesa and one in the South Valley west of the Rio Grande. The sample from AL 12 or LA 35493 comes from midden deposits dating to the AD 1200s (Akins 1987c). That from NM I:10:4:8 includes fauna recovered from five pit structures and an extramural area with pits and probably represents a short term or seasonal early agricultural site (Akins 1986c). Further excavations at NM I:10:4:16 (Frisbie's Site II or LA 57025) included 12 structures, 29 pits, and 3 exterior areas and had a number of dog burials dating between AD 650 to 900 (Akins 1986b). The Coors Road site is located in the South Valley. Excavations uncovered three pit structures, a surface structure, posthole alignments, and assorted extramural pits dating between AD 1125 and 1250 (Sullivan and Akins 1994:11-35).

LA 3333 is a relatively recently excavated, but as yet unreported (Ware n.d.), Late Developmental/Early Coalition site located on the eastern slope of the Galisteo Basin. One of the earliest communities in the basin, structures were expedient and impermanent. Houses were built, maintained with minimum effort, abandoned, and filled with trash, suggesting an intermittent, possibly seasonal occupation over a time span of at least 20 years. While corn was present in most of the macrobotanical samples examined, there are few ground stone tools and those found have little evidence of manufacture or use. The faunal assemblage was dominated by pronghorn with more cottontail than jackrabbit and significant amounts of deer and turkey (Ware and Akins 1992).

Arroyo Hondo, a large aggregated site located about 53 km (33 miles) east of the Peña Blanca project location, has a large and well documented faunal assemblage broken down into eight chronological samples (Lang and Harris 1984). First occupied around AD 1300, the site underwent rapid construction, population growth, population decline into a small remnant population, continued decline, a second period of growth, decline, and final abandonment at about AD 1425 (Lang and Harris 1984:16-17). Later studies (e.g., Creamer 1993; Lang 1993) have refined the dating but interpretations of the sequence of events are similar. Since these later studies do not offer amended date ranges for the chronological samples used in the faunal report, the original dates are retained with the understanding that they do not represent the most current thoughts on dating.

Four of the Cochiti Dam sites have sample sizes large enough to consider. No screening was done at these sites and the data is presented in MNIs with no counts other than to indicate the overall amount of bone identified. While this undoubtedly influences any comparative analysis, these sites are too important to an interpretation of this area to ignore. North Bank (LA 6462) consists of eight architectural concentrations that include surface room blocks, pit rooms, and pit structures or kivas located on a terrace west of the Rio Grande (Bussey 1968a:13). Dendrochronology and ceramics suggest a date between AD 1100 and 1280 (Honea 1968:114). LA 9154 (the Ojito del Cañoncito site) is located on the north bank of the Santa Fe River and is comprised of three house blocks that form a U. Pit rooms and two pit structures or kivas are located underneath or adjacent to the rooms. In 1964, 11 rooms and 2 pit rooms dating between AD 1350 and 1450 were excavated (Snow 1971a, 1971b:32-33). LA 70 or Pueblo del Encierro is a large village comprised of 198 ground-floor rooms, 9 kivas, 7 pit rooms, and 2 pit structures. The site was continuously occupied from about AD 1275 to 1550 and is situated on a long ridge just east of the Rio Grande (Snow 1976:i, ix). Alfred Herrera (LA 6465) is located on a flat bench west of the Rio Grande and consists of two distinct room blocks, three kivas, and at least three

pit rooms (Lange 1968:73–75) dating between AD 1350 and 1525 (Honea 1968:159–169).

Table 20.47 summarizes the index and ratio information for the above-mentioned sites and Figures 20.10 to 20.12 plot the relationships between the three indices for each area and time period. The Albuquerque area sites serve mostly to demonstrate that even at an early date, some sites have more jackrabbits largely because the local environment favors that species. This area may also favor a lesser commitment to agriculture until late in the time sequence when large aggregated communities practiced intensive agriculture and, apparently because none of the data is published or analyzed in a manner that can be evaluated, that is when cottontail use increases. Few artiodactyl or large mammal bones were recovered from sites on the West Mesa. The 1/4-inch screened site of Coors Road produced few identifiable artiodactyl (n = 10) or turkey (n = 5) bones, but had large numbers of large mammal/artiodactyl (n = 65), artiodactyl (n = 23), and large bird (n = 17), and relatively few rabbit bones (59 cottontail and 135 jackrabbit) (Sullivan and Akins 1994:130). This paucity of rabbit bones results in the larger indices for both artiodactyls and turkeys. Looking back at Figure 20.6, assemblages with the similar overall sequences (relatively low lagomorph and relatively high artiodactyl and turkey indices) occur at or near the height of population at Chaco Canyon and Dolores, and (Fig. 20.10) in three samples from Arroyo Hondo: the 1300 to 1315 period of rapid growth, and 1355 to 1365 and 1365 to 1370 when population was low and declining due to drought conditions (e.g., Lang and Harris 1984:16-17). This range of conditions under which this animal resource mix occurs suggests inattention to or the need to go beyond garden hunting caused by a variety of factors such as degradation of the local environment by either higher population densities or deteriorating climatic conditions, or that attention was diverted to other pursuits such as construction activities.

LA 3333 is distinctive in many respects as it seems to represent a seasonally occupied nonfarming site. The combination of high cottontail and high artiodactyl indices is unique as the only other similar combination is in the very small mixed Classic sample from Peña Blanca. The turkey index is on the low end for the Coalition and probably reflects both the seasonal or short-term use of the site and that it falls just before or at the early end of the Coalition. Most unusual is the very high artiodactyl index, which in this case illustrates the range of subsistence options employed during the Late Developmental/Early Coalition as populations moved into and began to utilize previously unoccupied or sparsely occupied portions of the Galisteo Basin.

When the three indices are graphed, Arroyo Hondo (Fig. 20.13) displays a more complex and dynamic sequence of animal resource mixes than seen at Peña Blanca, Chaco Canyon, or Dolores. Sample sizes should be adequate (see Table 20.47) and these generally come from a range of proveniences (Lang and Harris 1984, Appendix A). Interpretations based on this presentation of the data (Table 20.47 and Fig. 20.13) often suggest different relationships between resource groups than those presented by Lang and Harris. Much of their analyses is based on percentages of MNIs (e.g., Lang and Harris 1984:48, 55, 60). To evaluate the relative use of taxa they multiply the edible meat weight for rabbits, squirrels, artiodactyls, and turkey by the MNI for each period (Lang and Harris 1984:108). MNIs were calculated for each stratigraphic layer in a room, kiva, pit, plaza grid, or larger plaza excavation. Each feature, such as a hearth within a larger provenience was also treated as a stratigraphic layer (Lang and Harris 1984:20). As has been demonstrated many times (see Grayson 1984:27-49; Reitz and Wing 1999:194–199), MNIs, especially when calculated by fairly small units that undoubtedly violate the assumption that the units are independent, are largely determined by the number of provenience divisions and often result in over estimations of the rare taxa and under representation

Site	Date	N =	Lag Index	Lag Ratio	Artio Index	Artio Ratio	Turkey Index	Turkey Ratio
LA 3333	1300	2083	0.75	3.02	0.86	6.13	.40*	.68*
Arroyo Hondo	1300-1315	625	0.44	0.77	0.59	1.46	0.51	1.04
	1315-1330	2010	0.47	0.88	0.32	0.46	0.57	1.31
	1330-1340	4339	0.6	1.49	0.39	0.63	0.4	0.67
	1340-1355	2355	0.59	1.43	0.31	0.46	0.44	0.8
	1355-1365	1881	0.43	0.75	0.57	1.32	0.33	0.5
	1365-1370	1592	0.43	0.75	0.49	0.96	0.4	0.66
	1380-1410	1809	0.65	1.83	0.26	0.35	0.19	0.23
	1410-1425	5319	0.65	1.85	0.31	0.44	0.18	0.21
Albuquerque Area								
4:16	650-900	1024	0.26	0.35	0.09	0.1	-	-
4:08	650-900	875	0.39	0.64	0.09	0.1	0.01	0.01
Coors Road	1125-1250	618	0.3	0.44	0.34	0.5	0.1	0.11
AL12-LA 35493	1200s	485	0.39	0.64	0.02	0.02	0.03	0.03
Cochiti Dam sites (based on	MNIS)							
North Bank (LA 6462)	1100-1280	863	0.6	1.5	0.28	0.39	0.29	0.41
LA 9154	1350-1450	800	0.51	1.03	0.01	0.01	0.46	0.86
LA 70	1275-1540	5835	0.51	1.03	0.12	0.14	0.43	0.75
Alfred Herrera (LA 6455)	1410-1525	1232	0.52	1.1	0.2	0.24	0.51	1.05

Table 20.47.	Comparative	Indices and	d Ratios	for Regional Sites

Sources: LA 3333- Akins n.d.a; Arroyo Hondo-Lang and Harris 1984:Tab.16-23; AL12 -Akins 1987c; 4:16-Akins 1987b; 4:8-Akins 1986c; Coors Road-Sullivan and Akins 1994:130; North Bank- Harris 1968:214; LA 9154-Harris 1971:76-77; LA 70-Harris1976:H-26-H-28; Alfred Herrera-Harris 1968:230

Notes:

* adjusted for probably hawk contribution to large bird count

** surface bos/bison not included in artiodactyl count

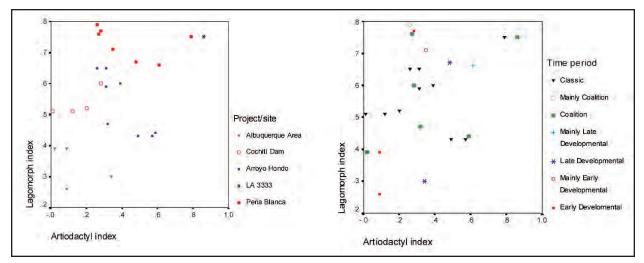


Figure 20.10. Scatterplots of lagomorph and artiodactyl indices for regional sites.

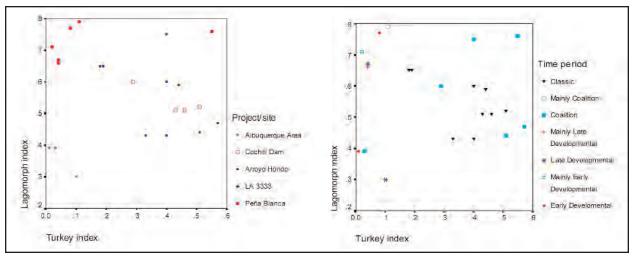


Figure 20.11. Scatterplots of lagomorph and turkey indices for regional sites.

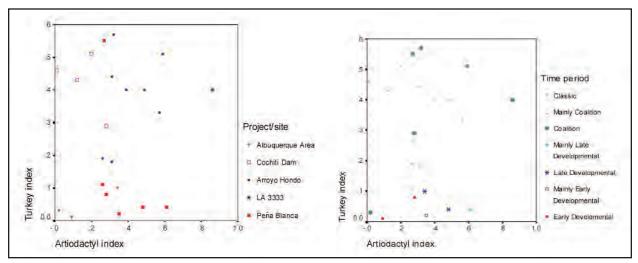


Figure 20.12. Scatterplots of artiodactyl and turkey indices for regional sites.

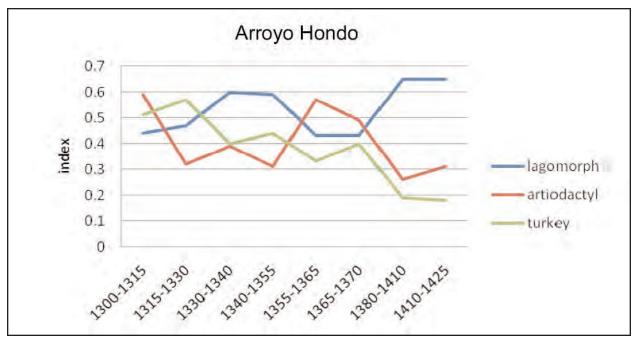


Figure 20.13. Indices for Arroyo Hondo.

of the more common taxa. Indeed, if the MNIs used to calculate the artiodactyl edible meat weight are compared to the actual bone counts, a low of 2.6 bones represents each MNI in Sample 2 (AD 1315-11330) and a high of 10.7 bones represent each MNI in Sample 5 (AD 1355–1365) with the second highest figure for Sample 1 (AD 1300-1315) at 5.6. Rabbits and turkeys are no better represented. Each rabbit MNI is represented by between 2.9 and 5.5 bones and turkeys by 2.6 to 7.3 bones. The overall effect of the Lang and Harris methodology is to dampen the variability so that the impression is one of little change (Fig. 20.14, top). The contribution of the smallest forms, rabbits and squirrels, appears to vary very little, turkey increases then decreases (Fig. 20.14 middle), and artiodactyl proportions decrease, gradually increase, then fall at the end (Fig. 20.14, bottom).

Ignoring the different measurement scales as well as what is being measured, the edible meat and index graph lines (Figs. 20.13 and 20.14) for turkeys and artiodactyls are vaguely similar in some respects but quite different in others. The edible meat graph suggests much less use of turkeys in the initial period but in this sample each turkey is represented by 7.3 bones, each artiodactyl by 5.6 bones, and each rabbit by only 2.9 bones. Because this sample is comprised of sheet trash and borrow pit fill (Lang and Harris 1984:135-136) preservation may have disproportionately affected the rabbit counts and MNIs. In the final period where the edible meat curve indicates more use of turkeys than the indices, each turkey is represented by 2.6 bones compared to 4.7 for rabbits and 5.3 for artiodactyls. This sample includes material associated with turkey pens that could further inflate the importance of this species, depending on how many subdivisions were used. The second peak in artiodactyl edible meat proportions in Sample 7 is not at all reflected in the index data. Here, each artiodactyl is represented by 4.4 bones, each rabbit by 5.5 bones, and each turkey by 5.3 bones and the sample is comprised of trash and midden material. Either scenario is plausible for the initial occupation where building activities could have resulted in less garden hunting and proportionately fewer rabbits with either domesticated turkeys or artiodactyl hunting providing the majority of the animal protein. Relatively high use of turkeys (edible meat graph) makes less sense in times of drought and low population as turkeys need to be fed and watered. Increased garden or artiodactyl hunting, as

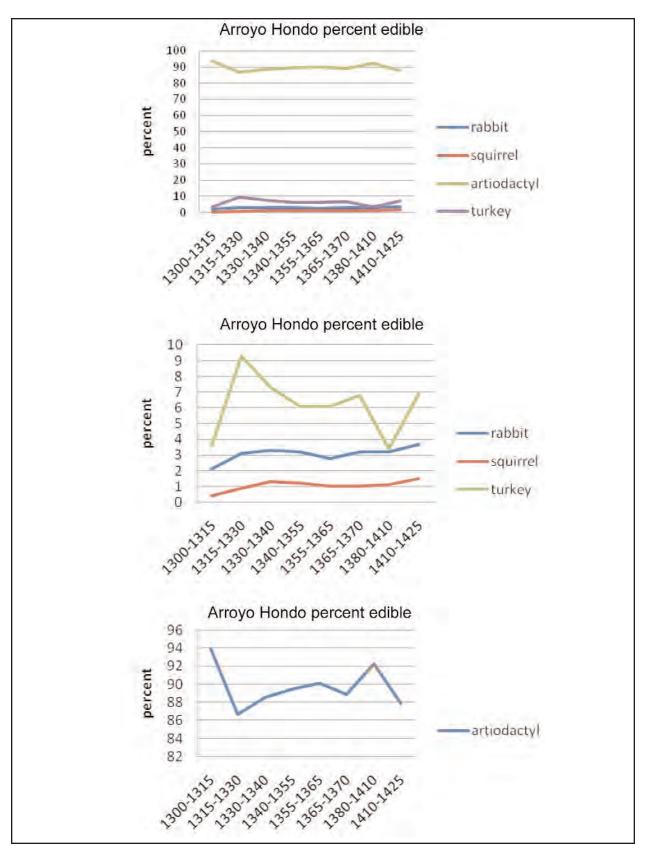


Figure 20.14. Arroyo Hondo percent of edible meat weight (after Lang and Harris 1984:108).

indicated by the high lagomorph indices in Periods 3 and 4 and high artiodactyl indices in Periods 5 and 6 are more likely responses. Because most of the Sample 7 material predates the major population growth and building (Lang and Harris 1984:142), the peak in artiodactyls (Fig. 20.4) may be a function of the origin of the sample, that is, midden and trash deposits, and a relatively large number of provenience divisions.

Fauna from the Cochiti Dam sites was also analyzed by Harris. Data are presented in MNIs calculated by archaeological unit. The lack of screening, use of MNIs, and method for grouping proveniences for MNI calculations should produce results that are somewhat different from the other sites, and they do, but not radically so (see Figs. 20.10–20.12). Proportions of cottontails with respect to jackrabbits are lower than for Peña Blanca but well within the range found at Arroyo Hondo. Using MNIs and the lack of screening undoubtedly favors jackrabbits so that the actual amount should be closer to Peña Blanca. Because the artiodactyl index calculations for these sites uses only those specimens identified to the species level (which is almost always a small minority of the sample), artiodactyls are undoubtedly underestimated. The turkey index for North Bank is less than for other Coalition sites but the lagomorph and artiodactyl indices are well within the range for other sites during this time. Regardless of the methodology, the results do not suggest a radically different mode of animal procurement at these later sites.

Compared with these regional site samples, Peña Blanca is probably most distinctive in the invariably high lagomorph indices. This is due in part to more thorough collection practices, primarily the use of fine screening and inclusion of flotation bone in the sample, to the site locations, and perhaps to a relatively sparse population during much of the occupation. The turkey index for the Coalition sample is among the highest for the regional sites but is based on a fairly small sample with a limited number of components contributing to the sample. The artiodactyl index varies considerably in all regions. In the Peña Blanca samples there is a weak inverse relationship between this index and the lagomorph index or contribution of cottontails (Pearsons correlation = -.450, sig [2tailed] = .311), which is altered somewhat when the turkey index increases in the Coalition samples (see Fig. 20.5).

From a regional perspective, the assemblages considered in this report suggest that the lagomorph index reflects the location, commitment to agriculture, who does the hunting, and population density. More use of jackrabbits occurs when the commitment to agriculture is low due to environmental constraints or when the population density is high enough to have degraded the local resources. Cottontails are favored when the commitment to agriculture is moderate or better, the environment favors cottontails, women and children do much of the hunting, and the population is not so great as to have degraded the local resources. An interesting exception is the as yet unquantified, high use of cottontails in the Rio Grande Valley around Albuquerque in the late prehistoric period (Akins 1987b:166) where none of these conditions are met. Here, it may be that a change in farming technology allowed intensive agriculture for the first time and the expansion of field areas permitted cottontails to thrive in what had been jackrabbit habitat. Additional factors may be reflected in the Peña Blanca Coalition samples where the increase in cottontails paired with a low artiodactyl index and more turkey suggests an increased concentration on garden hunting either as a response to competition for artiodactyl hunting territories or decreases in the overall number of animals available or when agricultural intensification resulted in the increased use of seasonally occupied farmsteads.

Measures of artiodactyl use are always more complex. Hunting involves a greater range of strategies (e.g., communal, small group, individual, logistic, local), more disparity in the locations where the artiodactyl species can be exploited, seasonal patterns of animal group size and condition, and the possibility that groups from different areas utilize the same hunting areas. In Figures 20.10 and 20.12, a high artiodactyl index, which gages the amount of artiodactyl bone with respect to that for rabbits, (e.g., 0.5 or greater) is rarely combined with a low lagomorph index indicating more use of jackrabbits (e.g. less than 0.5) or a high turkey index indicating turkey counts are the same or greater than those of rabbits (0.5 or greater). This suggests that while there was a range of options for resource mixes, some are more improbable than others. Settled groups in the Rio Grande area rarely relied on a combination of artiodactyls and turkeys at the expense of rabbits. When it did occur, circumstances were fairly unique, as in the initial settlement of Arroyo Hondo. Similarly, few groups ignored the rapidly breeding and perpetual supply of cottontail that thrived in their presence.

Regardless of the proximity of the Rio Grande, populations seemed to have largely ignored river and river-edge animal resources until the Classic period. Neither the Peña Blanca Coalition deposits nor the Cochiti Dam site of North Bank show appreciable use of fish, water fowl, or riverine mammals. At North Bank, fish comprise only 0.9 percent and ducks 1.7 percent of the MNIs calculated by archaeological feature compared to 37.1 percent rabbit, 14.4 percent artiodactyl, and 15.3 percent turkey (Harris 1968:214). Fish increase to 2.4 and 2.5 percent at the Classic period sites of LA 70 and Alfred Herrera while ducks remain essentially the same at LA 70 (1.8 percent) but increase to 5.2 percent at Alfred Herrera. The rabbits comprise 27.4 percent at LA 70 and 23.4 percent at Alfred Herrera, the artiodactyls 4.1 and 5.8 percent, and turkeys 20.5 and 24.8 (Harris 1968:230, 1976 H 26-H 28). While these numbers suggest a slight increase in use of riverine resources, they also demonstrate a steady shift towards use of domestic turkeys at the expense of artiodactyls and, to a lesser extent, of rabbits.

CONCLUSIONS

This study finds little if any support for a huntergatherer refugium model (as described by Ware 1997:47). From the beginning, those occupying the Peña Blanca sites concentrated on garden hunting with little evidence that they relied on a more diverse array of animal resources than other early agricultural groups. Instead, the Early Developmental period faunal assemblage contains ample evidence that cottontail rabbits were the most consistently used animal resource and, if the relationship between ceramic counts and weights is an indication of the overall amount of animal use (Figs. 20.8 and 20.9), more rabbits were used than in any other period. Relative to both rabbits and ceramics, artiodactyl use was lower than in the Late Developmental but more than in the Coalition. This is not to say that artiodactyls were not important, but fewer parts, relative to rabbits and sherds, were deposited at these sites. Furthermore, site deposits indicate different areas of artiodactyl procurement. LA 265 has more evidence for the use of highland species (elk and bighorn) while LA 6169 and LA 6170 have more from the southeastern grasslands (pronghorn). The presence of dog burials, an indication of the importance of hunting relative to a commitment to agriculture (e.g., Frisbie 1967:127-129; Haag 1947:253-254) and evidence of hunting ritual (e.g., artiodactyl crania, carnivore parts, and bird wings) indicate that artiodactyl hunting played an important role.

One interpretation that is consistent with the importance of rabbits and relatively few but a good proportion of distant artiodactyls, is that only a portion of the population, mainly women and children, lived at these sites yearround and practiced agriculture and garden hunting. Other group members may have remained highly mobile, subsisting mainly on hunting and gathering but returning to the agricultural sites when their labor was needed and bringing parts of artiodactyl taken in distant areas. Periodic influxes of people are also suggested by cooking practices (Fig. 20.4). Roasting, a cooking method attributed to men (Crown 2000:223; Speth 2000:102) or made necessary by sudden increases in group size, is a more frequent cooking method for both rabbits and artiodactyls in the Early Developmental period. Rather than relying less on farming and more on hunting and gathering as in the refugium model, those who were best able to maintain a mobile lifestyle did so. At the same time, those who where less mobile became sedentary farmers who hunted in and around

the gardens and at short distances. Stored resources helped to provide for the mobile group during winter and when they aided in the harvest and preparing fields for planting. Unconstrained by older and less mobile individuals, such a dual system would allow greater mobility for part of the group. At the same time, the sparsely inhabited residential sites would not have taxed the local animal populations and their needs could be met mainly through garden hunting. With the aid provided by the more mobile group, they could plant and harvest sufficient resources to feed the entire group for part of the year.

Population increases in the Late Developmental period seem to have resulted in some fundamental changes. In the Peña Blanca sample, cottontail rabbit proportions fall to the lowest level of the time sequence (Fig. 20.5) and rabbit counts relative to ceramic counts and weight decline significantly (Fig. 20.8). At the same time, the artiodactyl index increases considerably and the amount of artiodactyl bone relative to sherd counts and weight declines only slightly. While these two factors should suggest that artiodactyl hunting became more important or was at least as important as in the Early Developmental period, dogs were no longer buried suggesting their role changed or was diminished. In addition and based on a very small sample (Table 20.43), deer go from comprising 48.2 percent of the identifiable artiodactyl bones in the Early Developmental period sample to 61.5 percent in the Late Developmental period sample, perhaps suggesting an emphasis on more local resources or a greater concentration on this species. While these changes could indicate a decreased reliance on cultivars and garden hunting, these patterns could also reflect a shift in who did the hunting. Unable to remain as mobile as before, the entire group may have become sedentary. As women spent more time processing agricultural products, men assumed more of a role in protecting

fields and garden hunting while still participating in logistic hunts, resulting in a more even resource mix.

Cottontail rabbits increase to their greatest proportions relative to jackrabbits in the Coalition deposits (Fig. 20.5). Overall, rabbit use either decreased slightly, as suggested by comparisons with ceramic counts, or increased significantly as compared to ceramic weights (Fig. 20.8). Both the artiodactyl index and ratio of artiodactyl bone to ceramics fall to an all time low as increases in the regional population may have reduced their ability to undertake long-distance hunts. Turkey counts increase significantly but with little evidence they were raised at these sites or used for food. If these sites were year-round residences, all this suggests that garden and local hunting was the primary strategy for providing animal protein during the Coalition. If the sites are farmsteads occupied during the growing season, then this pattern is entirely what is expected as it represents only those times when the population concentrated on farming and protecting fields and had less time for long-distance hunting.

Changes in animal procurement patterns at Peña Blanca can be attributed in large part to shifts in who did the hunting and the overall strategy employed as an increasingly large regional population increased the pressure on resources. As dependence on cultivars grew, as it often does when access to areas used for collecting wild resources is reduced, women spent more time processing plant products and less time tending the gardens and garden hunting. Men, who become more constrained in areas where they could hunt, spent more time tending the gardens and assumed the role of garden hunter. With this additional responsibility, hunts required planning to avoid scheduling conflicts and became increasingly logistic.

CHAPTER 21 WORKED BONE ASSEMBLAGES FROM SIX SITES

Susan M. Moga

Worked bone was recovered from six of the Peña Blanca sites (Table 21.1), with sample sizes ranging in frequency from 2 to 45. The majority of the worked bone is from Early Developmental period deposits (65 percent) with few from any one of the later periods. This study identifies the taxon, classifies the artifact type, determines the function of 116 bone artifacts, and discusses the regional and chronological distributions of worked bone. Sixteen artifact types were recognized and the taxa used are 96.5 percent mammal and 3.4 percent bird.

Methods

Bones that display signs of modification were analyzed as manufacturing debris, tools, or ornaments. Virtually all of the worked bone was analyzed. Bags of fauna that were not selected for the general fauna analysis were examined and the worked bone pulled. While a few small fragments of tools and manufacturing debris were undoubedtly missed, most were recovered and reported here. Broken pieces that fit together are treated as a single object. All were observed under a microscope for modifications and use wear. Artifacts are recorded using an OAS computer format that includes the field specimen (FS), individual lot numbers, taxon, element (body part), condition, completeness of the object, thermal alteration, artifact type, kind and degree of modification, shape, cross-section, use wear, and a variety of measurements.

The condition of the artifact refers to the physical condition of the bone and visibility of the surface treatment. The range of surface treatment includes excellent, good, fair, and poor. Excellent indicates good preservation, where surface treatment can be determined on most of the surface of the object; good when only some of the surface is visible; fair when most surface treatment is obscured by weathering; and poor when little or no surface treatment remains. Fragmentary is used when an item is too fragmentary to determine the extent of the surface treatment.

Completeness is used to describe the portion of the object represented. Essentially complete was used for items that are complete or nearly so. Partial awls and awl-like objects are described as proximal, distal, or midsection/shaft fragments, and beads and tubes usually as fragmentary or incomplete. End is used when the proximal or distal portion is indistinguishable.

Thermal conditions or burning found in the Peña Blanca assemblage include light (tan to brown), lightly graded (tan to blackened), heavy (black), and calcined (white) burns. The color of the bone varies depending upon the length of time it is exposed to heat and the temperature of the fire.

Descriptions of the worked bone assemblages from Pecos Pueblo (Kidder 1932:195-271) and Arroyo Hondo Pueblo (Beach and Causey 1984:187-225) provided a substantial basis for defining artifact types, the terminology used, the overall descriptions, and functions used in the Peña Blanca analysis. Other Southwestern sources were also consulted.

Modification was recorded for the proximal or butt end, the shaft, and the distal or point end. Proximal ends can be unmodified natural ends, unmodified partial natural ends, or unmodified breaks. When modified, various degrees of polishing and grinding are recorded. Proximal ends can also have natural ends with minimal shaping. Shafts are generally unmodified, split, or display various degrees of polishing and grinding. Distal ends of the Peña Blanca artifacts generally have various

Site and Component	Feature	Artifact Type Completeness Taxon	Completeness	Taxon	Element	FS	Count
LA 249							
Structure 6 Fill		Bead or tube fragment	Midsection	Small mammal	Long bone	282	-
Structure 6 Fill		Fine-point awl	Distal	Medium artiodactyl	Ulna	316	-
Structure 6 Fill		Awl - no tip	Fragment	Medium artiodactyl	Metatarsal	321	-
		Bead or tube fragment	Fragment	Small mammal	Long bone	323	-
LA 265							
NONE ASSIGNED!		Awl - no tip	Essentially complete	Medium artiodactyl	Metapodial	1301	-
Structure 1- Upper Fill		Manufacturing debris	Midsection/shaft	Deer	Metatarsal	1011	-
		Awl - no tip	Incomplete	Large mammal	Long bone	1011	-
			Midsection/shaft	Medium artiodactyl	Long bone	1011	-
Structure 4 Floor Contact		Fine-point awl	Essentially complete	Medium artiodactyl	Metapodial	1054	-
Structure 13- Upper Fill		Fine-point awl	Essentially complete	Medium artiodactyl	Long bone	1213	-
Structure 13- Roof Fall		Utilized split metapodial	Essentially complete	Deer	Metacarpal	1477	-
Structure 13- Structure Floor Contact		Fine-point awl	Essentially complete	Medium artiodactyl	Metapodial	1306	~
Structure 13 - floor pit	141	Fine-point awl	Essentially complete	Deer	Metacarpal	1344	~
					Metatarsal	1344	-
Structure 13- Human Burial-subfloor	131	Fine-point awl	Essentially complete	Deer	Metatarsal	1547	-
		Matting-weaving tool	Essentially complete	Medium artiodactyl	Long bone	1547	-
Keyhole Structure	27	Fragmentary	Fragment	Medium to large mammal	Long bone	1139	~
		Unknown function	Incomplete	EK	Rib	1138	~
SU 2- Large Bell-shaped Pit with infant burial	23	Bead or tube fragment	Midsection	Cottontail rabbit	Tibia	1077	
SU 2- Large Bell-shaped Pit with adult burial	24	Split metatarsal(preform)	Essentially complete	Deer	Metatarsal	1489	~
		Four-sided object	Essentially complete	Medium artiodactyl	Metatarsal	1493	
		Awl - no tip	Essentially complete	Deer	Metatarsal	1490	-
		Fine-point awl	Essentially complete	Medium artiodactyl	Metatarsal	1495	-
				Deer	Metatarsal	1492	-
						1494	
SU 2- Large Bell-shaped Pit with dog burials	26	Awl preform	Essentially complete	Deer	Metatarsal	1115	~
SU 2- Large Bell-shaped Pit with dog burial	155	Fine-point awl	Midsection/shaft	Medium to large artiodactyl	Rib	1395	-
SU 3- Feature 14-NW Large Pit	14	Matt-weaving tool	Shaft fragment	Medium to large artiodactyl	Long bone	1162	~

Table 21.1. Bone Artifacts by Site, Component, Completeness, Taxon, and Element

Site and Component Feature SU 14- Possible Structure with 56 Features LA 6169 Structure 4 upper fill Structure 4 human burial in upper fill 75 Structure 4 floor fill and floor		Artifact Type	Completeness	Taxon	Element	FS	Count
ossible Structure with : 4 upper fill : 4 vent shaft : 4 human burial in upper fill							
ossible Structure with 4 upper fill 4 vent shaft 4 human burial in upper fill 4 floor fill and floor				Medium to large artiodactyl	Long bone	1167	-
: 4 upper fill 4 vent shaft : 4 human burial in upper fill	Fragmentary	~	End	Medium artiodactyl	Metapodial	1433	~
er fill							
er fill	Matt-weaving tool	ng tool	Essentially complete	Medium to large artiodactyl	Long bone	497	-
er fill	Fragmentary	y.	Fragment	Deer	Metatarsal	301	~
er fill	Fine-point awl	Iwe	Fragment	Small mammal	Long bone	1404	-
Structure 4 floor fill and floor	Fragmentary	Ŀ.	Fragment	Large mammal	Long bone	1158	~
	Fine-point awl	lwe	Incomplete	Small mammal	Long bone	662	~
Structure 4 roof fall and floor fill	Fine-point awl	lwe	Fragment	Small mammal	Long bone	500	-
			Essentially complete	Deer	Metatarsal	365	-
	Matt-weaving tool	ng tool	Essentially complete	Large mammal	Long bone	428	-
	Tube		Essentially complete	Medium to large bird	Long bone	411	~
Structure 47 upper fill	Coarse-point awl	nt awl	Incomplete	Large mammal	Long bone	1842	-
	Matt-weaving tool	ng tool	Essentially complete	Medium to large artiodactyl	Long bone	1930	-
Structure 47 roof fall and floor fill	Fine-point awl	lwe	Essentially complete	Large mammal	Long bone	1152	-
	Matt-weaving tool	ng tool	Essentially complete	Medium to large artiodactyl	Long bone	1152	~
			Shaft fragment	Medium to large artiodactyl	Long bone	1658	~
Structure 47 floor fill and fill	Fragmentary	y.	Fragment	Large mammal	Long bone	1836	-
Structure 47 storage bin	Awl - no tip		Essentially complete	Deer	Metacarpal	1926	-
Structure 76 upper fill	Fine-point awl	lwe	Incomplete	Large mammal	Long bone	1257	-
						1425	-
				Medium artiodactyl	Long bone	1290	-
			Essentially complete	Medium artiodactyl	Long bone	1290	-
	Coarse-point awl	nt awl	Incomplete	Large mammal	Long bone	1349	-
			Essentially complete	Bighorn sheep	Ulna	1290	-
	Bead/short tube	tube	Incomplete	Large bird	Long bone	1379	-
	Fragmentary	ک ک	Fragment	Cottontail rabbit	Radius	1293	-
				Deer	Ulna	1293	-
Structure 76 human burials 81/82	Fragmentary	У	Incomplete	Medium artiodactyl	Long bone	1173	-

Table 21.1 Continued

		Table	Table 21.1. Continued.				
Site and Component	Feature	Artifact Type	Completeness	Taxon	Element	FS	Count
Structure 76 floor fill and floor		Coarse-point awl	Essentially complete	Deer	Metatarsal	1650	1
		Bead/short tube	Essentially complete	Large bird	Long bone	1648	-
		Four-sided object	Incomplete	Deer or elk	Antler	1579	-
Structure 76 adobe wall support	83	Fragmentary	Fragment	Medium to large	Long bone	1206	-
		Fine-point awl	Incomplete	Medium to large	Long bone	1975	-
Structure 15 floor fill and floor		Fine-point awl	Essentially complete	Jack rabbit	Radius	936	.
Structure 70 upper fill		Fine-point awl	Essentially complete	Golden eagle	Ulna	1319	.
Study Unit 1 extramural, trash-filled pit	29	Fine-point awl	Essentially complete	Jack rabbit	Fibula	1085	-
LA 6170							
Area 1		Awl - no tip	Proximal	Bighorn sheep	Metatarsal	1459	-
Structure 2 roof fall or redeposit		Use-defined object	Fragment	Medium artiodactyl	Long bone	1052	-
Structure 5 overburden		Fine-point awl	Essentially complete	Medium artiodactyl	Long bone	1363	-
Structure 5 wind and water deposits		Tube	Essentially complete	Medium carnivore	Long bone	1403	-
Structure 5 roof fall and closing material		Awl - no tip	Incomplete	Medium artiodactyl	Metatarsal	1651	-
		Matt-weaving tool	Proximal	Medium to large artiodactvl	Long bone	1602	~
		Awl preform	Midsection/shaft	Medium artiodactyl	Metatarsal	1510	-
		Manufacturing debris	Midsection/shaft	Medium artiodactyl	Metatarsal	1520	.
Structure 5 floor fill & contact		Fragmentary	Fragment	Medium artiodactyl	Long bone	1823	~
		Matt-weaving tool	Shaft fragment	Medium artiodactyl	Long bone	1823	-
Structure 5 vent tunnel	24	Awl - no tip	Incomplete	Deer	Metatarsal	1937	-
Area 2		Bead or tube fragment	Fragment	Small to medium mammal	Long bone	2385	
Structure 50 wind and water deposits		Fine-point awl	Essentially complete	Deer	Metatarsal	2068	-
		Coarse-point awl	Distal	Large mammal	Long bone	1967	٢

Table 21.1. Continued.

Site and Component Fe			I able 21.1. Collillueu.				
	Feature	Artifact Type	Completeness	Taxon	Element	FS	Count
Structure 50 wind and water deposits		Four-sided object Fragmentary	Essentially complete Fragment	Pronghorn or bighorn Medium to large mammal	Horn Long bone	2068 2068	
				Large mammal	Long bone	1982	4
				Medium artiodactyl	Long bone	2068	0
					Metapodial	2068	-
			Proximal		Metapodial	2068	-
				Deer	Metacarpal	2068	-
Structure 50 roof fall & closing material		Awl - no tip	Incomplete	Large mammal	Long bone	2017	.
			Fragment	Large mammal	Long bone	2017	
		Fine-point awl	Essentially complete	Deer	Metacarpal	2021	-
		Bead or tube fragment	Fragment	Jack rabbit	Tibia	1971	.
			Incomplete	Jack rabbit	Tibia	1971	-
		Manufacturing debris	Fragment	Medium artiodactyl	Metapodial	2076	-
		Fragmentary	Fragment	Medium artiodactyl	Long bone	1968	-
					Metapodial	2033	-
			Midsection/shaft	Medium artiodactyl	Long bone	1969	-
Structure 50 floor fill and contact		Fine-point awl	Essentially complete	Medium artiodactyl	Metapodial	2082	-
		Tube	Incomplete	Jack rabbit	Femur	2156	-
		Manufacturing debris	Proximal	Medium to large mammal	Long bone	2082	
				Pronghorn	Metatarsal	2082	-
			Midsection/shaft	Medium artiodactyl	Metapodial	2101	-
		Fragmentary	Midsection/shaft	Medium artiodactyl	Metapodial	2101	-
					Long bone	2082	
			Fragment	Medium artiodactyl	Metapodial	2118	-
Structure 50 ash pit	153	Fragmentary	Distal	Small to medium	Long bone	2272	-
			Fragment	Large mammal	Long bone	2272	-

Site and Component	Feature	Artifact Type	Completeness	Taxon	Element	FS	Count
Structure 50 vent tunnel	169	Fragmentary	Fragment Midsection/shaft	Medium artiodactyl Jack rabbit	Metapodial Tibia	2396 2336	
Structure 50 sealed storage pit	171	Small spatulate	Essentially complete	Medium to large mammal	Long bone	2319	~
			Distal	Jack rabbit	Tibia	2319	.
LA 6171 Structure 26 fill		Fragmentary	Fragment	Large mammal	Long bone	877	.
Structure 60 fill		Awl - no tip	Proximal	Deer	Metatarsal	653	-
		Fine-point awl	Distal	Medium to large mammal	Long bone	601	~
Structure 60 floor		Awl - no tip	Distal	Large mammal	Long bone	695	.
		Coarse-point awl	Distal	Large mammal	Long bone	666	-
LA 115862 Structure Fill		Fine-point awl	Essentially complete	Deer	Metacarpal	140	-
Structure Floor		Fine-point awl	Essentially complete	Deer	Metacarpal	145	-

degrees of polishing and grinding. Special modification such as drilled holes, grooving for snapping or for stringing, or surface polish are recorded as a separate variable. The shape or plan view and cross section were recorded for the proximal end, midsection, and distal end when that portion is complete enough for the shape to be determined.

Up to two types of use wear can be recorded on functional ends (e.g., the distal ends of awls, spatulas, flakers, and so forth, and both ends of tubes and beads). This usually consists of polish, longitudinal striations, transverse or rotary striations, pitting, flaking, spalling, or step fractures.

All measurements are recorded in millimeters and only when the object is complete. Functional length is the taper length for awls and needles. Shaft widths are measured at midpoint and distal width just above the taper width on awls.

TYPOLOGY, DESCRIPTION, AND FUNCTION

This section describes each artifact type, the attributes, and the frequencies for the Peña Blanca assemblage. Table 21.2 gives the distribution of worked bone by site and Table 21.3 the distribution by ceramic dating period. Complete measurements for worked bone artifacts can be found in Table 21.4.

Manufacturing Debris

The seven pieces of manufacturing debris are artiodactyl bones that came from two sites (LA 265, LA 6170). The majority of these pieces are in good condition and exhibit polishing and grinding (n = 4), with minimal shaping, and a few display signs of intentional splitting. Four fragments are burned, one lightly scorched, and three pieces are blackened.

Fragments

Fragments, which comprise the second largest type in the assemblage (n = 27), are pieces of modified bone that are too small to determine the artifact type. The faunal sources include

long bone fragments from small- to mediumsized mammals (n = 1), medium to large mammals (n=4), large mammals (n = 5), and medium artiodactyls (n = 6). Identified elements include a cottontail radius, a jackrabbit tibia, medium artiodactyl metapodials (n = 7), and a mule deer ulna and metatarsal. A few pieces are in poor (n = 2) or fair (n = 2) condition, and the remaining pieces (n = 22) are well preserved. Most are shaft fragments (n = 16) and a few are end fragments (n = 5). Modification is generally polished or ground (n = 18). All but 10 fragments are burned, ranging from lightly scorched to calcined. The majority of the burned pieces came from the burned roof fall stratum within Structure 50 (LA 6170), which dates to the Early Developmental period.

Use-Defined Objects

These are objects of bone that were utilized, often as expedient tools, that cannot be placed into a specific classification. The example here is a long bone splinter from a medium artiodactyl that has step fractures along one edge. This expedient tool is not burned, is in good condition, and came from LA 6170.

Preforms

Preforms represent the early stages of tool, usually awl, production. The three examples from Peña Blanca include a split deer metatarsal with no further modification, and split metatarsals from a deer and a medium artiodactyl that have modification directed toward awl manufacture (Fig. 21.1a, b).

Piercing Tools

Approximately half of the assemblage (n = 50) is comprised of a variety of piercing tools. Awls are produced from bones that were either deliberately split to manufacture the awl, or from pieces of broken or splintered bones. Piercing tools from Peña Blanca include awls with missing tips (n = 13), fine-point awls (n = 31), and coarse-point awls (n = 6). Fine and coarse-point awls were distinguished largely

	labl	e 21.2.	Frequei	e 21.2. Frequencies of Bone Artitact 1ype by Site at Pena Blanca	one Art	itact I ype	e by Sitt	e at Pen	a Blanc	ğ				
Tool Type						Site								
	LA 249	19	LA 265	65	LA 6169	69	LA 6170	70	LA 6171	71	LA 115862	32	Total	tal
	Ē	%	= L	%	= u	%	= L	%	= L	%	= u	%	ш	%
Manufacturing debris	ı	•	-	3.8	•	ı	9	13.3	•	ı	ı	•	7	9
Fragmentary	I	ı	7	7.7	7	20.6	17	37.8	~	20	ı	ı	27	23.3
Use-defined object	ı	ı	ı	I		ı	~	2.2	ı	ı			~	0.0
Split metapodial/preform	'	'	~	3.8		·			ı	ı	ı	'	~	0.0
Awl preform			~	3.8		·	~	2.2		ı	·	'	0	1.7
Awl-no tip	~	25	4	15.4	~	2.9	Ŋ	11.1	0	40	ı	ı	13	11.2
Fine-point awl	~	25	10	38.5	13	38.2	4	8.9	~	20	2	100	31	26.7
Coarse-point awl	'	·	·	ı	4	11.8	~	2.2	~	20		ı	9	5.2
Four-sided object	·	ı	~	3.8	~	2.9	~	2.2	ı	ı	ı	ı	ო	2.6
Small spatulate	I	ı	ı	I	ı	ı	0	4.4	ı	I	ı	ı	2	1.7
Matt-weaving tool	ı	ı	с	11.5	Ŋ	14.7	2	4.4	ı	I	ı	ı	9	8.6
Bead/short tube	'	'	ı	ı	2	5.9	ı		ı	ı	·	ı	0	1.7
Tube	I	ı	ı	I	~	2.9	0	4.4	ı	I	ı	ı	ო	2.6
Bead/tube fragment	7	50	-	3.8	ı	ı	ო	6.7	ı	I	ı	ı	9	5.2
Edge-wear (flaked)	·	ı	~	3.8	ı	ı	ı	ı	ı	ı	ı	ı	~	0.0
Unknown function	I	ı	~	3.8	ı	ı	ı	ı	ı	I	ı	ı	~	0.0
Total	4	100	26	100	34	100	45	100	5	100	2	100	116	100

Table 21.2. Frequencies of Bone Artifact Type by Site at Peña Blanca

	Early	٨	Mainly Early	arly	Late		Mainly Late	Late	Coalition	uo	Mainly		Mainly Classic	lassic	Unknown	чл	Total	
	Developmental	nental	Developmental	iental	Developmental	iental	Developmental	nental			Coalition							
	Count	%	Count	%	Count	%	Count	%	Count	%	Count	%	Count	%	Count	%	Count	%
Manufacturing debris	9	ø	-	10		·		1	•	'	ı	1	ı	'	•	'	7	9
Fragmentary	20	26.7		•	-	16.7	ю	23.1	'	'	e	50	ı	'		'	27	23.3
Use-defined object	-	1.3		•		'			•	'	•	'	'	'		'	-	0.9
Split metapodial/preform	-	1.3	•	•	•	'	•	•	•	'	•	'	•	'	•	'	-	0.9
Awl preform	-	1.3	-	10	•	'	•	•	•	'	•	'	•	'	•	•	0	1.7
Awl - no tip	80	10.7	4	40	•	'	-	7.7	•	'	•	'	•	'	•	•	13	11.2
Fine-point awl	18	24	-	10	2	33.3	5	38.5	0	100	0	33.3	•	'	-	33.3	31	26.7
Coarse-point awl	2	2.7	-	10	-	16.7	2	15.4	•	'	•	'	•	'	•	'	9	5.2
Four-sided object	2	2.7	•	•	-	16.7	•	•	•	'	•	'	•	'	•	•	e	2.6
Small spatulate	2	2.7	•	•	•	'	•	•	•	'	•	'	•	'	•	•	0	1.7
Matt-weaving tool	9	Ø	-	10	•	'	•	•	•	'	-	16.7	•	'	0	66.7	10	8.6
Bead/short tube		'		•	-	16.7	-	7.7	•	'	•	'	•	'	•	•	0	1.7
Tube	2	2.7	-	10		'		•	•	'	•	'	•	'	•	•	ო	2.6
Bead or tube fragment	4	5.3		•		'	-	7.7	•	'	•	'	-	100	•	•	9	5.2
Edge-wear (flaked)	-	1.3		•		'		•	•	'	•	'	•	'	•	•	-	0.9
Unknown function	-	1.3	•	•	•	'	•	•	•	'	•	•	•	'	•	'	-	0.9
Total	75	100	10	100	9	100	13	100	0	100	9	100	-	100	¢.	100	116	100

J Period
Dating
ceramic
ype by C
Ť
Artifact
Bone
Blanca
of Peña B
Ъ
requencies
ш ю

Artifact type	Statistic	Total Length	Functional Length	Proximal Width	Width at Midshaft	Distal Width	Tip Width	Proximal thickness	Shaft thickness	Distal thickness
Use defined	n=	-	-	-	1	-	-	-	1	-
	mean	-	-	-	7.8	-	-	-	4.2	-
Awl preform	n=	-	-	1	2	-	-	1	2	-
	mean	-	-	18	9.7	-	-	7.6	6.8	-
	st. deviation	-	-	-	0.78	-	-	-	0.42	-
	minimum	-	-	-	9.2	-	-	-	6.5	-
	maximum	-	-	-	10.3	-	-	-	7.1	-
Awl - no tip	n=	-	-	7	12	3	-	8	12	2
	mean	-	-	17.8	10.7	8.9	-	11.1	6.8	5.5
	st. deviation	-	-	4.2	3.1	2.9	-	4.1	2	0.42
	minimum	-	-	11.7	5.5	6.8	-	4.8	3	5.2
	maximum	-	-	21.9	16	12.2	-	15.7	10.3	5.8
Fine point awl	n=	14	26	17	29	27	26	18	29	26
	mean	86.2	17.9	14.5	9.1	5.7	1.3	9.7	5.1	2.7
	st. deviation	34.8	9.2	6.9	3.8	3.7	0.3	5.7	2.3	1.5
	minimum	16.2	5.4	4.2	3	1.5	0.8	2	1.5	0.7
	maximum	149	49	25.1	15.5	14.2	1.9	21.2	10.4	6.8
Coarse point	n=	2	6	2	4	6	5	2	3	6
awl	mean	107.8	15.1	24.4	11	6.7	2.4	12.8	6.1	4.5
	st. deviation	21.4	4.9	3.8	2.6	4	0.6	3.8	3.6	1.3
	minimum	92.7	8.7	21.7	8.3	1.6	1.7	10.1	3.1	3.1
	maximum	123	19.8	27	14.6	11.8	3.1	15.5	10.1	6.4
Four-sided	n=	1	2	2	3	2	1	2	2	2
object	mean	80.4	8.8	6.9	9.3	8.4	6.8	5	6.4	5.7
	st. deviation	-	0.8	2.3	3	0.4	-	0.8	1.2	1.4
	minimum	-	8.3	5.4	7.3	8.1	-	4.4	5.6	4.7
	maximum	-	9.4	8.5	12.8	8.7	-	5.6	7.3	6.7
Small spatulate	n=	1	1	1	2	1	1	-	2	1
tool	mean	46.8	7	4.1	5.3	3.9	2.3	-	1.9	2.1
	st. deviation	-	-	-	1	-	-	-	0	-
	minimum	-	-	-	4.6	-	-	-	1.9	-
	maximum	-	-	-	6	-	-	-	1.9	-
Matt waving	n=	4	-	5	9	5	3	5	9	5
tool	mean	150.9	-	9.8	9.2	7.6	4.5	2.4	2.2	1.4
	st. deviation	52.9	-	2.1	1.9	1.2	2.2	0.5	0.8	0.7
	minimum	83.5	-	7.4	7	5.6	1.9	1.6	1	0.5
	maximum	205	-	13	12.9	8.2	5.9	2.9	3	2.3
Bead or short	n=	1	2	2	2	2	-	1	2	2
tube	mean	27.3	25.9	10.9	10	10.9	-	8.9	8.9	8.2
	st. deviation	-	2	0	1.3	0	-	-	2	1
	minimum	-	24.2	10.9	9.1	10.9	-	-	7.5	7.5
	maximum	-	27.4	10.9	10.9	11	-	-	10.4	8.9
Tube	n=	2	-	2	3	3	-	2	2	2
	mean	35.8	-	9.8	8.5	8.9	-	7.8	7.4	7.2
	st. deviation	4	-	3.6	3.6	3.9	-	3.5	3.7	3.5
	minimum	33	-	7.3	6.4	6.6	-	5.3	4.8	4.7
	maximum	38.7	-	12.4	12.6	13.4	-	10.3	10	9.7
Bead or tube	n=	-	-	2	4	1	-	2	3	1
fragment	mean	-	-	5.9	6.2	5.2	-	5.5	3.6	5.2
-	st. deviation	-	-	1	1	-	-	0.5	1.4	-
	minimum	-	-	5.2	5.2	-	-	5.2	2.5	-
	maximum	-	-	6.6	7.5	-	-	5.9	5.2	-
Edge wear -	n=	1	-	1	1	1	-	1	1	1
flaked	mean	221	_	20.9	18.4	12.8	-	11.3	8.2	8.3
Unknown	n=		1	-	1	1	1	-	1	1
function	mean	-	2.1	-	21.3	21.4	20.9	-	10	9.1

Table 21.4. Bone Artifact Dimensions (mm) for Peña Blanca (complete measurements only)
--

on the basis of tip size. Table 21.5 summarizes the attributes for the Peña Blanca awls.

Kidder (1932:203) defines awls as tools with sharp points used to perforate hides or for the manufacture of basketry. According to Beach and Causey (1984:193), hide-working tools from Arroyo Hondo exhibit one or more of the following characteristics: brown staining, high polish, and a short robust shape. The brown staining probably results from materials (animal brains and fat) used to dress the hide. Basketry awls from Arroyo Hondo are long and thin, with tapered shafts and display signs of bleaching. Bleaching and polish on awls may have been caused by friction against vegetal materials utilized in basketry. The distinction between basketry and hide-working awls is not always obvious and cannot be based solely on size and staining or bleaching. Several awls at Arroyo Hondo display both staining and bleaching and have similar tips, probably indicating that tools had dual functions and were used to make baskets as well as to work hide (Beach and Causey 1984:193–194). Some forms may be more advantageous for a particular task. Sharp, short, and sturdy tools are required to penetrate hides. Through experimental studies, Olsen (1979:355) discovered that larger sized awls with blunt tips could not penetrate leather. Instead, they were used to increase the size of perforations made by smaller, sharp-tipped awls.

Awl-no tip. The majority of tools in this type (n = 13) are ground, polished, and well-shaped shaft fragments (Table 21.5) with missing tips, preventing their identification as either coarse or fine-point awls. Thermal alteration affected six of these awls, ranging from lightly burned to heavy and calcined. Faunal sources include large mammals (n = 4), medium artiodactyls (n = 4), mule deer (n = 4), and a bighorn sheep (n = 1).

Fine-point awls. All six sites at Peña Blanca produced fine-point awls (n = 31), with the largest numbers coming from LA 6169 (n = 13) and LA 265 (n = 10). Only two fine-point awls are burned, one light to heavy (LA 6170) and the other heavily burned (LA 6169). The major-

ity of the tools are in good to excellent condition (Table 21.5). Several shaft portions of awls are unmodified, others are ground and polished.

One fine-point awl has a transverse groove for a string located near the mid-section of the tool (Fig. 21.1c). Microscopic viewing revealed longitudinal striations, transverse striations, flaking or spalling, and a step fracture on the fine-point awls. The faunal sources are mostly artiodactyls (n = 10) and mule deer (n = 10), with several from medium to large (n = 2) and large mammals (n = 3), a few from small mammals (n = 3), a jackrabbit (n = 2), and an ulna from a golden eagle (Fig. 21.1d).

The average tip width is 1.3 mm, slightly larger than those awls used in Olsen's (1979:355) hide-piercing experiments, which found awl tips less than 1.0 mm the optimum diameter for piercing leather hides. The total length of fine-pointed awls from Peña Blanca range between 16.2 to 149.0 mm (Table 21.4), suggesting a variety of functions.

Coarse-point awls. Coarse-point awls are also produced from broken and splintered long bones, or from bones deliberately split to make awls. Tips are wider and the handle stouter than for fine-tipped awls. Coarse-tipped awls may have been used to increase the size of a perforation initially made with a fine-tipped awl (e.g., Olsen 1979:355).

Coarse-point awls from Peña Blanca were made from large mammal long bone fragments (n = 4), a mule deer metatarsal, and a bighorn sheep ulna. Only one awl is blackened from burning (LA 6170). The condition of the tools varies from poor to good (Table 21.5). Use-wear observed on the awls includes polish and longitudinal striations. The proximal end on the bighorn sheep ulna awl is a natural, unmodified end. The individual is a juvenile and the proximal epiphysis is unfused (Fig. 21.2a).

Four-sided objects. This category was used for a small group of objects that resemble Kidder's four-sided implements, which taper gradually to points, but are not as sharp as awl tips or as blunt as punches. Some ends on Kidder's tools

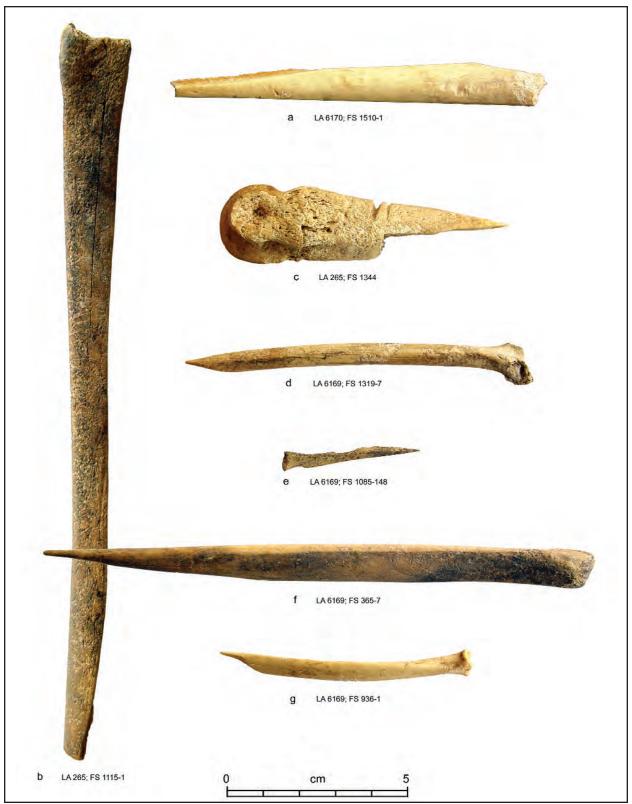


Figure 21.1 Bone tools; (a) Medium artiodactyl metatarsal awl preform from LA 6170; (b) deer metatarsal awl preform from LA 265; (c) deer metacarpal fine point awl with a transverse groove from LA 265; (d) golden eagle ulna fine point awl from LA 6169; (e) jack rabbit fibula fine point awl from LA 6169; (f) deer metatarsal fine point awl from LA 6169; (g) jack rabbit radius fine point awl from LA 6169.

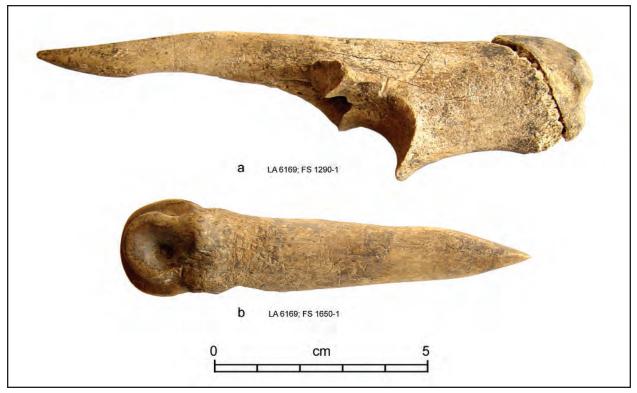


Figure 21.2. Coarse-point awls; (a) Bighorn sheep ulna awl from LA 6169; (b) deer metatarsal awl from LA6169.

are polished (1932:225). While we adapted Kidder's (1932:282–284) terminology for these objects, similar tools are referred to as "flakers" by other researchers (e.g., Stubbs and Stallings 1953:134–135). Kidder describes "flakers(?)" from Pecos as implements that have both round and wedge-shaped tips, but he was uncertain of their function. At Arroyo Hondo (Beach and Causey 1984:212), the "flakers" were interpreted as stone-knapping tools to pressure flake flint stone tools. These implements display varying degrees of polish on the shaft and tips and several had beveled tips.

Three of these objects (Figs. 21.3a, b) were recovered from Peña Blanca. Faunal sources include a medium artiodactyl metatarsal, a pronghorn or bighorn horn, and a deer or elk antler. Two are complete and one is an end fragment. The condition is good to excellent. Ends are moderately ground and polished or completely modified. Shafts are minimally to moderately ground and polished. On the complete artifacts, one end is rounded or convex and the other forms a broad point. Ends are round to oval in cross section, and midsections are either round or rectilinear. Polish is the only discernable wear (n = 1).

Small Spatulate Tools

Two small spatulate tool fragments (from the same provenience at LA 6170) were made from portions of a medium to large mammal long bone and the tibia of a jackrabbit. Both fragments are unburned and in good condition. The spatulates are rectilinear in shape with a crescent-shaped shaft cross section. All portions on one are well shaped through polishing and grinding. The proximal end on the other tool is unmodified and irregular, the distal end was minimally shaped with visible polish. Kidder (1932:242) suggests these tools were utilized for delicate skinning. The small rounded edges could have been used to remove flesh from small animals and birds (Fig. 21.3c).

Matt-Weaving Tools

The matting tools (n = 10) are some of the finest and most interesting tools recovered from Peña

Figure 21.3. Bone tools; (a) Deer or elk antler four-sided object from LA 6170; (b) pronghorn or bighorn four-sided object from LA 6170; (c) small spatulate tools from LA 6170; (d) medium to large artiodactyl long bone matt-weaving tool from LA 6169; (e) Large mammal long bone matte-weaving tool from LA 6169; (f) deer metacarpal multi-functional tool from LA 265.

Blanca. At least seven of these tools are associated with Early Developmental components. Five tools are complete, one from LA 265 and four from LA 6169. Another tool is less than half present but included the proximal end. The others are shaft fragments. All tools have a very high polish and most are bleached suggesting they were used in the manufacture of some form of basketry. These are made from dense compact bone, usually the outer table of artiodactyl ribs. Several have areas where the cancellous rib tissue is not completely obliterated. Complete tools range in length from 83.5 to 205.0 mm with a width of 7.0 mm to 12.9 mm and a midshaft thickness of 1.0 to 3.0 mm. The tools are ground to a thin lenticular cross section. Proximal ends are either rounded or squared in shape, while distal ends are rounded or have broad points. All of the complete tools have drill holes at the proximal end as does the proximal fragment. These could be either threading holes utilized during the weaving process or suspension holes to hang and protect the lengthy tools, which are fairly delicate, when not in use (Fig. 21.3d, e).

All of the weaving tools exhibit a high degree of polishing and shaping. Although it is not possible to determine whether the high polish on these artifacts resulted from manufacture or use. Condition ranges from fair to excellent, with most being excellent. Two pieces are badly deteriorated from environmental conditions. Only one (LA 6169) is lightly scorched. One of the complete tools from LA 6169 has diagonal abrasions at the distal end.

Few similar tools have been recovered from the Rio Grande area. Snow recovered an object described as made from a rib and having a threading hole at one end from the floor of a Late Developmental structure at the Cochiti Dam site of LA 272 (Snow 1971a:20). A single example was found with an elderly female burial in the Early Coalition site of LA 3333 in the Galisteo Basin (Akins n.d.). Two fragments from Arroyo Hondo described as altered mammal ribs, one with a drill hole, are probably the same kind of tool (Beach and Causey 1984:215). None were found in excavations of Pindi Pueblo (Stubbs and Stallings 1953). However, McNutt (1969:49, Plate 9) recovered a complete example from the intermediate area at the Tesuque By-Pass site, which probably dates to the Late Developmental period.

Kidder recovered 27 specimens that he thought could have been employed in the manufacture of rush or twilled yucca-leaf basketry. He described the tools as splinters of bone with flat, tapered points, which were probably useful in manipulating flat strands of fiber. Neither of the examples illustrated resemble the Peña Blanca tools (Kidder 1932:226–227). Snow (1976:D 33) reports a single weaving tool described as made from an ulna, having an intact proximal end, a broken tip, a highly polished edge on the shaft, and transverse grooves. These appear to be quite different when compared with the Peña Blanca weaving tools.

While clearly present in Upper Middle Rio Grande sites, these forms are not reported in publications from Anasazi sites in Chaco and Mesa Verde areas. However, they do occur to the south. Martin recovered several fine examples from the SU Site, a Mogollon village site in western New Mexico (1968:71, 225). Similar objects have also been reported from Casa Grandes, Mexico. DiPeso considers these to be specialized bone plating tools used in the reed matt-weaving industry (1974:543-544). The broad points and bleaching on these tools suggest the Peña Blanca tools performed a similar matt-weaving function. Two of these tools, one from the Peña Blanca site of LA 265 and one from LA 3333, were buried with older females and other bone tools, suggesting females were the matt-weavers.

Tubular Bone Objects

Three categories of tubular bone objects were recovered from Peña Blanca, beads or short tubes (n = 2), tubes (n = 3), and beads or tube fragments (n = 6). Tubes are three times greater in length than their width, and beads are less than three times smaller. The hollow shaft portions of long bones were utilized for beads and

	Awl, No Tip	Fine Point	Coarse Point
Completeness			
Proximal	5	-	-
Distal	3	10	4
Mid-section/shaft	3	-	-
Complete	2	21	2
Proximal Modification			
Unmodified natural	1	5	-
Unmodified partial natural	3	4	1
Unmodified break	-	1	-
Split or cut	-	1	-
Polished/ground, minimal	1	3	-
Polished/ground, moderate	-	1	-
Completely modified	1	-	-
Natural end, minimally shaped	1	5	1
Shaft Modification			
Unmodified	-	4	1
Split only	-	5	2
Polished/ground, minimal	-	5	_
Polished/ground, moderate	4	6	-
Polished/ground, well-shaped	8	9	1
Distal Modification	-	-	
Unmodified	-	-	1
Polished/ground, minimal	-	3	3
Polished/ground, moderate	-	1	-
Polished/ground, well-shaped	2	19	2
Polished/ground, completely modified	-	3	-
Other Modification		Ũ	
Surface polish	-	1	1
Transverse groove for string	_	1	-
Proximal Shape	-	I	-
Unmodifield/irregular	_	7	1
Flattened or squared	-	1	-
Rounded or convex	5	8	- 1
Converging sides	-	0 1	-
Articular surface	- 1	3	-
Shape at Midshaft	1	5	-
Unmodified/irregular		2	1
Flattened or squared	- 1	2	I
Rounded or squared	I	1	-
	-		-
Concave Sides parallel	1	1 7	-
Sides parallel	1	-	1
Converging sides	9	18	1

Table 21.5. Summary of the Attributes for Peña Blanca Awls

	Awl, No Tip	Fine Point	Coarse Point
Distal Shape	·		
Unmodified/irregular	-	-	1
Flattened or squared	-	1	-
Rounded or convex	-	1	-
Converging sides	1	2	2
Broad point	-	-	3
Fine point	-	21	-
Proximal Cross Section			
Rounded or convex	1	-	-
Ovoid	-	1	-
Square or rectilinear	4	9	1
Flattened/rectilinear	-	2	-
U or crescent shaped	1	1	1
Domed or D-Shaped	-	2	1
Irregular	1	4	-
Cross Section at Mid-Shaft			
Ovoid	5	2	1
Square or rectilinear	2	1	1
Flattened/rectilinear	-	7	-
U or crescent shaped	5	10	-
Triangular or pyramid	-	7	-
Domed or D-Shaped	-	2	1
Distal Cross Section			
Round	-	7	-
Ovoid	2	19	5
U or crescent shaped	1	2	0
Triangular or pyramid	-	-	1
Use Wear			
Unknown (broken)	10	2	-
Polish	1	22	4
Longitudinal striations	-	1	1
Transverse striations	1	1	-
Flaking or spalling	-	1	-
Step fractures	-	1	-
Present, but indeterminate use	1	2	1

Table 21.5. Continued.

tubes. The proximal and distal joints were removed by incising grooves at each end with a stone tool. When the grooves were made deep enough, the ends were snapped off and a tube was created. Continuous incisions and snaps along a shaft would create a series of beads. Grooved edges of the tubular objects were often ground to create a finished edge (Beach and Causey 1984:206; Kidder 1932:256; Olsen 1979:359–360). The number of tubular objects recovered from Peña Blanca is small and most are incomplete and could not be called a bead or a tube. Tubular implements are thought to have been utilized as ornaments, drinking tubes, medicinal sucking instruments, gaming pieces, or strung together to make breast plates or wrist guards for archery (Beach and Causey 1984:206; Kidder 1932:256; Olsen 1979:359–360).

Bead or Tube Fragments. Pieces (n = 6) that are too fragmentary to distinguish whether they are tubes or beads are considered bead or tube fragments. These items were recovered

from four sites. Faunal sources include small mammal (n = 2), small to medium mammal (n = 1), cottontail (n = 1), and jackrabbit (n = 2).

Half of the bead or tube fragments are in fair condition, one is too fragmentary to determine, and two are in good condition. Polish and grinding ranges from minimal (n = 1) to well shaped (n = 1), and three exhibit evidence of the bone being grooved and snapped. Thermal alteration is present on three pieces ranging from heavy (n = 2) to calcined (n = 1).

Bead or Short Tube. Two beads or short tubes are made from large bird bones. One is burned light to heavy and both are in good condition. The ends are well shaped by polishing and grinding and the shafts are minimally polished. Both display evidence of grooving and snapping. Portions of one tube interior appear to be smooth and/or polished. This sheen could occur when beads are strung on leather thongs or sinew and the movement of the beads against the leather will eventually polish the edges and interior of the bead.

Tube. Three tubes (two complete) were made from a large bird long bone shaft fragments, a medium-sized carnivore long bone fragment shaft, and a jackrabbit tibia. They range in size from 33.0 mm to 38.7 mm in length and 6.4 to 12.6 mm in diameter at midshaft. The edges of the carnivore bone tube fragment are beveled, and one edge of the bird bone tube displays an additional groove that was probably intended for snapping rather than decoration. All tubes are in good condition and one tube is partially burned. Ends are either moderately or well polished from either manufacture or use-wear.

Multifunctional Tools

At LA 265, a unique tool with an unknown function was manufactured from a mule deer metacarpal. It is in fair condition and unburned. Split longitudinally, the tool has the initial appearance of a metapodial split for the eventual manufacture of some form of tool. With closer inspection, the edges of the split shaft are polished. This tool may have been pulled lengthwise across leather or yucca fiber with both hands, thereby, acquiring polish from use-wear. One edge exhibits signs of battering. The exterior shaft has three longitudinal grooves that do not connect. Perhaps this is a beginning toolmaker's attempt to groove and split the bone a second time, became discouraged, and tossed it away. Another individual could have picked up the piece and used it.

Both natural ends of the metacarpal are unmodified, with the exception of polish and battering on the distal or condyle end. There is also a short, transverse groove on the distal shaft, possibly created by a string. This "roughdraft-of-a-tool" may have been involved in processing materials for matt or basketry weaving. Whatever the function of this tool might have been, it was categorized as multifunctional, because of the shaft polish, battering, and the groove possibly made by string (Fig. 21.3f).

Objects of Unknown Function

A proximal shaft fragment of an elk rib from LA 265 is minimally shaped and has abrasions on the end. The opposite end is missing, but the utilized end shows polish from use. The object is in good condition and unburned (Fig. 21.4).

DISTRIBUTION

The majority of tools recovered from the six sites at Peña Blanca are from Early Developmental deposits (Table 21.5), with another ten from mainly Early Developmental deposits. Lesser numbers of tools were found during the Late and mainly Late Developmental periods, and these consist of a variety of awl types. Awls continue to be present through Coalition and mainly Coalition periods, but none was recovered from the mainly Classic period where only a bead or tube fragment was present. There were no tool kits associated with structures. However, an adult female burial at LA 265 (Feature 24, a large bell-shaped pit) had a tool kit comprised of a split metatarsal preform, a four-sided object, four fine-point awls, and an awl with no tip (Fig. 21.3a). Another adult female burial from LA 265 (SU 13, Feature

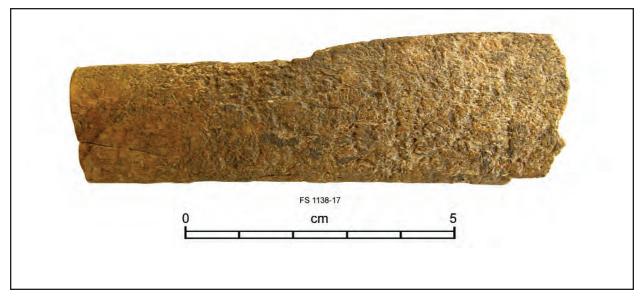


Figure 21.4. Elk rib object of unknown function from LA 265.

131) was interred with a fine-point awl and a matt-weaving tool.

The most unique of the Peña Blanca bone artifacts, the matt-weaving tools, were recovered mainly from Early Developmental deposits (Fig. 21.3d, e). These, as well as the variety of tools found, suggest that a range of activities took place. All sites had fine-point awls and most had beads or tubes.

REGIONAL COMPARISONS

Comparing bone artifacts frequencies from regional sites is difficult because of the diverse excavation and collection strategies and the typological systems utilized by researchers. In addition, frequencies in some are presented as spatial or temporal components and others by the site as a whole. With this uneven treatment in mind, only the most consistently identified bone artifact types are used for comparison (Table 21.6). The comparative sites and occupational periods include: Pecos (late Coalition to Historic), Arroyo Hondo (late Coalition to Classic), Pindi (Late Developmental to Coalition), LA 3333 (Early Coalition), and the Cochiti Dam site of LA 70 (Classic).

Awls

Awls are the largest category of tools recovered from sites in the regional sample, ranging from 43.4 to 62.0 percent of the bone artifacts.

While the proportions of awls are not that different, the faunal sources differ considerably. Later sites, with a good deal of turkey in the faunal assemblage, have more bird bone awls. At LA 70, the most commonly utilized bones were bird tibiotarsi followed by tarsometatarsi. Turkey bones comprised 45.5 percent (n = 131) of the awls collected at LA 70 (Snow 1976:D33). At Pindi, awls made from bird bones comprise 51 percent of the assemblage, while 32 percent of those from Arroyo Hondo are made from bird bones. The high percent of bird bones from Pindi reflects the importance of turkey husbandry at the pueblo and demonstrates how turkey by-products were utilized. The largest class of bird bone awls retained the head or condyle of the bone (80 percent) and were made from tibiotarsi and radii (Stubbs and Stallings 1953:131, 135). Conversely, turkey was not as abundant in the earlier dating deposits at Peña Blanca and at LA 3333 and few awls were made from bird bones. At Pecos, 2,479 awls were collected and only 253 were made from bird bones. Splinter awls (n = 184) made from "leg and wing bones of turkey and other large birds" were more common than awls with joint ends (n = 69). Kidder found awls "on all levels," but they were not temporally categorized and this impressive number of awls represents a 500-year occupation (Kidder 1932: 202, 217-219).

	i			,	i							i	:	
	Pena Blanca Early Developmental	anca / iental	LA 3333 Early Coalition	3 alition	Pindi Coaltion	E	Arroyo Hondo Coalition-Classic	londo Classic	Arroyo Hondo Classic	londo	Cochiti(LA 70) Classic	(0 <u>/</u>	Pecos all periods	oeriods
	Count	%	Count	%	Count	%	Count	%	Count	%	Count	%	Count	%
Awls (all types)	58	59.6	37	46.2	184	64.8	317	60.5	67	54.5	264	62	2748	43.4
Matt-weaving tool	Q	12.8	-	1.2			1?	0.2	1?	0.6	·		6	0.1
Four-sided tools	N	4.2			1?	Ð. O	,	ı	,	,			37	0.0
Spatulates/small spatulates	N	4.2	Ŋ	6.2	ო	۲. ۲	4	0.8	С	1.1	13	ю	246	0.0 0
Flakers and antler-time tools	,	·	1	,	·	,	17	3.2	7	<u>ດ.</u> ຕ	17	4	913	14.4
Bead or tubes	Q	12.8	4	17.5	52	18.3 .3	6	19.1	38	15.7	102	23.9	2044	32.3
<i>Bitsits</i> i whistles		·	1?	1.2	ω	2.8	8	9.2	26	14.6	~	0.2	ı	
Whistles or flutes		·	ы	2.5	З	8. 1	33	4 7	Ø	<u>З.</u> 4	6	4.U	86	1.3
Other bone artifact types	ო	6.4	20	22 73	1 3	4.6	14	2.7	11	6.2	0	2.3	247	Ю. Ю
Totals	47	100	80	100	284	100	524	100	178	100	426	001	6330	100

Beads or Tubes

Bone bead or tubes are the second most common bone artifact recovered in the regional sites, except for Peña Blanca where beads, tubes, and matt-weaving tools were recovered in equal numbers. Excavations at Pindi Pueblo produced 52 bead or tubes, with only four of them considered tubes, and an infant burial contained a strand of six bone beads near the neck area (Stubbs and Stallings 1953:137). Kidder recovered an astonishing number of bone beads or tubes (n = 2,044) from Pecos. He divided his beads and tubes into subgroups based on tube diameter measurements. Most researchers employ his length typology to distinguish beads from tubes (Kidder 1932:203, 256–257, 263).

Bone tube flutes and whistles and Bitsitsi whistles are commonly found in the Rio Grande sites. Flutes have more than one hole while bone tube whistles have a single hole at either the center or near the end of the tube. Bitsitsi whistles consist of two small bone tablets bound together by vegetal matter (Stubbs and Stallings 1953:137). Kidder recovered a number of bird bone flutes or "flageolets" and whistles from Pecos. The later were identified by Zuni workmen as probable "whistles or bird-calls." Nothing resembling a Bitsitsi whistle was recovered from Pecos (Kidder 1932:249–252).

At Pindi Pueblo, several bone tube whistles with a pierced hole near the center were found along with eight small Bitsitsi bone tablets. Stubbs and Stallings were informed by the Zuni that Bitsitsi is a personage associated with the Shalako ceremony and the Bitsitsi whistles are still utilized during Zuni rituals today (Stubbs and Stallings 1953:135–137).

A possible Bitsitsi whistle tablet was recovered from LA 3333 (Akins n.d.) and half a Bitsitsi whistle made from a bird bone was found at LA 70 (Snow 1976:D34). Large numbers of Bitsitsi whistles were recovered from Arroyo Hondo, most made from bird bones. Beach and Causey (1984:209–219, 225) interpret the presence and absence of Bitsitsi whistles at sites as temporal differences and cultural divergence. Neither Bitsitsi nor bone tube whistles were found at Peña Blanca. It also has the lowest number of bone beads or tubes in the regional sample (Table 21.6). This suggests these forms either developed later in time or simply were not or were rarely used by these earlier groups.

Matt-Weaving Tools

Matt-weaving tools are a rare find among the six Rio Grande sites. Other objects called mattweaving tools are generally described as "haphazard . . . splinters of bone" with a "general inferiority of finish" (Kidder 1932:227). In comparison, the ten matt-weaving tools from Peña Blanca are magnificently manufactured. The entire shaft and rounded tips are so ground and polished that they have an ivory-like appearance. The extreme polish reveals untold hours of either tool manufacture or matt-weaving.

Miscellaneous Tools

Other tools, such as spatulates, flakers, and antler artifacts were also present at the Rio Grande sites. Gaming pieces are conspicuously absent at Peña Blanca. These do appear at later dated sites in the area. At LA70, Snow classified two shaped turtle carapace pieces as game "counters" along with three pieces of split bird bones that are completely polished. Two of the bird bones had black paint on the ends (Snow 1976:D30-31). Gaming pieces and bone tinklers, both of which are commonly found in northern Anasazi sites, are absent from the worked bone assemblages from Pindi Pueblo, Arroyo Hondo, LA 3333, and Pecos, suggesting a different tradition in bone object manufacture and use.

Conclusions

Residents of Peña Blanca and the surrounding sites fashioned mammal and bird bones into the implements necessary to fulfill daily tasks. Awls, which were essential tools for basketry, sewing, and hide preparation, are found in virtually all the Middle and Northern Rio Grande worked bone assemblages reviewed. Tubular objects, some manufactured into musical instruments, are widely distributed Similarities the regional sites indicate a shared tool tradi-in the bone artifacts found at Peña Blanca and tion for the Rio Grande region.

CHAPTER 22 Human Skeletal Remains

Nancy J. Akins

Excavations undertaken as part of the Peña Blanca Project discovered a small number of human burials and scattered remains. When the first human burial was found, the Cochiti Tribal Council was consulted and they concurred with removing the human remains and conducting descriptive analyses at the Office of Archaeological Studies before reburial. Human burials and burial goods recovered during excavations related to the construction of Cochiti Dam were already scheduled for reburial, and the Council requested that the Peña Blanca burials be interred at the same time. On October 29, 1998, human remains and associated burial goods from a number of institutions were reburied on Cochiti Tribal land. The few scattered pieces of bone found in the general artifact assemblage were buried in the same location.

THE POPULATION

Burials were recovered from five sites (Table 22.1, Appendix 5.1). Another site contained a single tooth while no human burials were found at the final site. The two largest sites, LA 265 and LA 6169, have the largest number of burials and unassociated bones (Table 22.2). Not all are formal burials. In two instances, individuals were not recognized in the field because they were badly eroded. Fragmentary burials are treated as burials. In others, single or few bones indicate the presence of a distinct individual and these are treated as a burial. Thus, in this report, the term burial refers to a distinct individual rather than a formally buried and intact person, even if that individual is represented by only one or a few bones. Contexts of isolated bones were examined and when there was any possibility that these could be from an already identified individual, the isolated bone was not considered a distinct individual. When no other individual of that

age and missing that particular part was found in the area, other factors were considered. These include whether the parts are small enough to have been transported a moderate distance by burrowing rodents or have evidence of carnivore damage, and whether that particular part conveys any information about an individual - such as burial context and age or sex. Individuals not included in Table 22.1 but in the demographic counts are those represented by an isolated male femur (FS 1479) and the radius from a 14- to16-year-old (FS 1010) from LA 265 and a foot phalanx (FS 1249) from a child around or over 6 years of age from LA 6169. The other individuals near that age, Burial 1 (found at 118N 134E) and Burials 10 and 11 (recovered at 85N 91E), were found at a sufficient distance to suggest that at least one additional child is represented by the phalanx (103N 136E). A burned radius from LA 6169 (FS 1667) is not counted as it could be from either of the males represented by single bones.

Although the number of individuals represented by burials and unassociated bones is relatively small (n = 30), the majority (n = 20) date to the Early Developmental period and can address a range of research questions. Since much of the previous work in the area was at later dating sites, these individuals provide base line data on a previously unreported segment of the prehistoric population in the Cochiti area. Because the sample is small, most conclusions must remain tentative with an emphasis on comparisons with better represented groups.

GENERAL METHODS

Field methods differed slightly depending on the site director, the context, and the method of discovery. Individual methods and feature descriptions are found in the site section of this report.

c	-	c		Study	L		End	C L	
LA	Burial	Sex	Age	Unit	reature	Grid or Center Point	Elevation	FS NO.	Comments
249	-	female	45 ± 5	-	4	106N 113E	99.53	293	Late Developmental/Early
									Coalition; carnivore damaged
265	-	unknown	3 years	7	23	465.20N 492.80E	99.64	1483	Early Developmental; rodent
									disturbed
	2	unknown	9 ± 3 months	-	238	454.60N 498.79E	99.29	1679	Early Developmental
	ო	female	30 ± 5	0	244	459.55N 500.10E	99.8	1700	Early Developmental
	4	female	45 ± 5	7	24	467N 490E	99.37	1485	Early Developmental
	2	female	50+	13	131	463N 537.25E	98.18	1537	Early Developmental
	9	female	50+	4	22	441.70N 493.28E	99.27	1482	Early Developmental; carnivore
									disturbed
	7	female	35-45	-	18	453.35N 496.35E	99.53	1015	Early Developmental; carnivore
									disturbed
6169	-	unknown	6 ± 2 years	ω	82 (76)	118N 134E	98.66	1172	Late Developmental
	0	female	45+	1	2	94.88N 102.05E	@99.65	399	Early Developmental; disturbed
									by backhoe
	ო	unknown	0 ± 2 months	-	1(4)	85N 87E		177	Early Developmental
	4	unknown	0 ± 2 months	8	120(47)	121.64N 136.21E	98.98	1714	Early Developmental
	5	male	20-40	-	8 (4)	86.85N 86.75E	98.21	212	Early Developmental; partial
									cranium only
	9	female	20-25	1	ო	90.07N 96.62E	99.23	222	Coalition; carnivore disturbed
	7	unknown	2.5 y ± 10 m	8	49(47)	121.95N, 133.20E	98.92	1033	Late Developmental
	ω	male	45+	10	95 (70)	94.08N 90.45E	98.29	1713	Coalition; carnivore disturbed
	6	male	18-19	ω	81(76)	118.50N, 132.00E	98.4	1212	Late Developmental; rodent
									disturbed
	10	unknown	7 ± 2 years	.	68(66,4)	85.10N 91.14E	@98.90	1207	Early Developmental?
	11	unknown	5 ± 1.5 years	-	75(66,4)	85.12N 91.28E	98.88	1209	Early Developmental?
	12	unknown	4 ± 1 year	-	46	88.78N 94.35E	99.72	876	Coalition?
	13	unknown	0 ± 2 m	-	4	86N 89E	98.5	363	Early Developmental; not
									recovered as a burial
6171	-	male	45 ± 5	9	85	185.50N 178.30E	98.98	843	Coalition with Developmental
	2	unknown	30-40	ო		230.25N 174.50E	97.81	540	Coalition with Developmental
115862	-	female	35 ± 5	0	9	99.10N 107.50E	98.85	172	Early Developmental
	2	unknown	fetus	2	9	99.10N 107.50E	98.85	172	Early Developmental
	ო	female	18-19	2	7	100.40N 111.10E	98.98	157	Early Developmental
	4	unknown	6-9 months	0	8	101.28N 108.39E	90.06	185	Early Developmental, not

LA	FS	SU	Feature	Grid	End Elevation	Elements	Age/Sex	Comments	Date
249	280	1	6	106N 115E	99.32	L hand phalanx 1	mature♀	part of Burial 1	LD/EC
	286	1	6	105N 115E	99.39	L metacarpal 5	mature♀	part of Burial 1	LD/EC
	308	1	6	106N 115E	99.38	L? hand phalanx 3	mature♀	part of Burial 1	LD/EC
	374	1	2	106N 112E		hand phalanx 2, tarsal frag	mature♀	part of Burial 1?	LD/EC
265	1010	1	1	455N 495E		R radius, proximal and midshaft	14-18y		ED
	1076	2	23	north half	99.63	hand phalanx 1, carpal	3 years	part of Burial 1?	ED
	1286	9	51	vent	99.27	L mandibular central incisor, root partially disolved	mature	older adult; possible natural loss	ED
	1361	3	15	484N 495E	98.89	cranial case fragment	mature		ED
	1363	4	72	444N 493.05E	99.03	2 cranial case fragments	mature		ED
	1479	13		461N 539E	98.75	R femur shaft	mature∂*	ends chewed off	ED
	1139	2	27	462.95N 494.25E	100.13	L vert arch frag	@ 2y		ED
6169	160	1	4	85N 87E	98.79	L radius, L prx ulna	0 ± 2m	part of Burial 3	ED?
	500	1	4	87N 86E	98.36	hand phalanx 2	7	part of Burial 10	ED
	764	1	4	86.78N 89.90E	98.51	R scapula, coracoid process	7	part of Burial 10	ED
	819	1	15	84N 90E	98.62	L? rib frag	7	part of Burial 10?	C/ED
	1238	1	87	85N 91E	98.88	3 hand phalanx 1, hand phalanx 2, L prox humerus frag; rib frags	7	part of Burial 10	ED
	1352	1	66	85N 91E		hand phalanx 1	7	part of Burial 10	C/ED
	1393	1	66	85N 91E	98.57	L radius, distal and shaft frag	7	part of Burial 10?	С
	1405	1	15	85N 90E	98.77	hand phalanx 1, phalanx 2, L prox humerus frag, R proximal fibula shaft	7	part of Burial 10?	С
	1406	1	66	85N 91E	98.63	tooth	7	part of Burial 10	C/ED
	1407	1	68	85.49N 90.90E	98.94	L rib 1	7	part of Burial 10	C/ED
	419	1	4	85.94N 86.51E	98.91	hand phalanx 1, 2 hand phalanx 3	5	part of Burial 11	C/ED
	709	1	4	85N 89E	98.4	hand phalanx 2	5	part of Burial 11	ED
	906	1	15	85N 90E	98.54	L distal rib, L prox rib; R scapula - coracoid epiphysis, hand phalanx 3	5?	probably Burial 11?	С
	997	1	15	84.81N 90.46E	98.47	tooth	7	part of Burial 11?	С
	1401	1	66	84N 91E	98.74	R rib distal, sternal element, unknown frag	2+	could be Burial 10 or 11; remodeled periostitis	C/ED
	1249	6	79	103.50N 136.30E	98.58	Foot phalanx 2, digit 1, distal & shaft	>6		MCD
	781	8	76	120N 131E	99.45	R occipital fragment	< 3	Burial 7?; active periostitis	ED
	1129	8	47	119N 133E		2 partial cerv vert arches; Rm1	3-6	probably Burial 7; backhoe trench	LD
	1142	8	76	NW quad	98.64	L distal rib; 2 cranial case frags	2-6	probably Burial 7	LD
	1172	8	82	118N 134E	98.66	L prx rib	<6	with Burial 1, probably Burial 7	LD
	1203	8	76	NE quad		vert body frag; epiphysis or tarsal frag; sphenoid frags, case frag	2-6	probably Burial 7; active periostitis on sphenoid and case frag	LD
	1316	8	76	SW quad	98.26	nasals	2-6	probably Burial 7	LD
	1667	9	76	floor fill	98.14	L radius, midshaft	mature	burned black; not Burial 9	LD
	1754	8		120N 132E	98.3	R scapula, acromion	> 2	probably Burial 7	LD/C

Table 22.2. Scattered Human Elements by Site and SU and Individual

LA	FS	SU	Feature	Grid	Elevation	Elements	Age/Sex	Comments	Date
6169	1788	8	47	120N 134E	98.2	R rib shaft frag, hand phalanx 1, cranial frags	2-6	Burial 7	ED
	915	8	76	122N 133E	99.1	R ulna shaft	mature	part of Burial 9	LD
	933	8	76	120N 132E	98.8	vert arch frag	mature	part of Burial 9	LD
	1013	8	76	118N 133E	99.1	L radius shaft	mature	part of Burial 9	LD
	1152	8	47	118N 134E	98.5	cranial case fragment	mature	part of Burial 9	LD
	1202	8	76	117N 133E		L hamate	mature	part of Burial 9	LD
	1315	8	81	118.95N 131.85E	98.3	rib shaft frag and prox epiphysis; distal humerus frag; 2 teeth	mature	part of Burial 9; in a rodent burrow	LD
	1425	8	76	120N 132E	98.3	cerv vert arch and body frag, cranial case frag	mature	part of Burial 9	LD
	1426	8	81	119N 132E	98.3	rib shaft fragments; long bone end fragment; 3 teeth	mature	part of Burial 9; in rodent disturbance	LD
	1427	8	76	119N 131.85E	98.3	R humerus, distal end & shaft	mature	part of Burial 9; carnivore gnaws prx end	LD
	1445	8	81	118.80N 131.80E	98.2	rib shaft fragment; 1 tooth	mature	part of Burial 9; carnivore puncture	LD
	346	10		95N 90E	99.4	Long bone shaft frags	mature	possibly Burial 8	С
	1183	10	70	93N 89E	98.9	hand phalanx 1	@ 6 y		С
	1279	10	70	92N 90E	98.3	thoracic vert frags	@ 6 y		С
	1616	10	95	93N 90-91E	98.3	foot phalanx 1, L5 vert transverse process; L vert superior articular facet	mature	probably Burial 8	С
	216	11		90N 96E	99.3	Vert frag, probable tarsal frag, 3 frags	mature	probably Burial 6	MCE
	222	11	3	90N 96E	99.2	Rm2 crown	@ 9 m	with Burial 6	MCE
	280	11		91N 95E	99.7	R fibula shaft frag	mature	probably Burial 6, matches FS 588	MCE
	588	11		91N 97E	99.5	R fibula, prx shaft frag	mature	probably Burial 6, matches FS 280	MCE
6170	2396	10	50	vent shaft	99.2	L maxillary first molar	mature	roots mostly dissolved; wear score 7.7	ED
6171	657	6	60	186N 183E	97.2	R talus, inferior frag	mature	not Burial 1	ED/0
	681	8		237N 172E		R mandibular canine	mature	probably same individual as Burial 2	С

Table 22.2. Continued.

ED= Early Developmental

LD= Late Developmental

C = Coalition

MDC = mixed Coalition and Developmental

Laboratory analysis followed the procedures set out in *Standards for Data Collection from Human Skeletal Remains* (Buikstra and Ubelaker 1994). This comprehensive system focuses on collecting the maximum amount of comparable information by recording the same attributes using the same standards. A series of 29 attachments and documentation records the following information.

1. Each part that makes up a human skeleton is inventoried along with an assessment of

completeness and the portions found. Observations are documented using a series of drawings of skeletons and anatomical parts. A separate form records commingled or isolated bones.

2. Adult sex is determined by examining aspects of the pelvis and cranium. Size and comparative measurements were used when no other methods were possible on the Peña Blanca burials and isolated parts. Age changes are documented on the pubic symphysis using two sets of standards, on the auricular surface of the ilium, and through cranial suture closure.

- 3. For immature remains, the age-at-death is determined by scoring dental development, epiphyseal union, union of primary ossification centers, and through measurements of elements. Comparison with aged individuals allowed for approximate aging of the isolated parts from Peña Blanca.
- 4. Dental recording includes a number of diagrams as well as inventory, pathology, and cultural modification forms. Each tooth is coded and visually indicated for presence and whether it is in place, unobservable, or damaged, congenitally absent, or lost premortem or postmortem. Tooth development is assessed, occlusal surface wear is scored, caries are located and described, abscesses are located, and dental hypoplasias and opacities are described and located with respect to the cemento-enamel junction. Any premortem modifications are described and located.
- 5. Permanent teeth are measured and dental morphology scored for a number of traits.
- Measurements are recorded for the cranium (n = 35), and a number of postcranial elements: the clavicle, scapula, humerus, radius, ulna, sacrum, innominate, femur, tibia, fibula, and calcaneus (n = 46). (Appendix 5.2)
- 7. Nonmetric traits are scored for the cranium (n = 21), atlas vertebra (n = 2), seventh cervical vertebra (n = 1), and humerus (n = 1).
- 8. Postmortem changes or taphonomy are recorded when appropriate. These include color, surface changes, rodent and carnivore damage, and cultural modification.
- 9. The paleopathology section groups observations into nine categories: abnormalities of shape, abnormalities of size, bone loss, abnormal bone formation, fractures and dislocations, porotic hyperostosis/cribra orbitalia, vertebral pathology, arthritis, and other conditions. The element, location, and other pertinent information are recorded under each category. Exact locations can be mapped on the diagrams, drawn, or photographed.

10. Cultural modifications such as trepanation and artificial cranial deformation are recorded on another set of forms.

Most of the analyses were completed soon after and during the later phases of excavation (August and September of 1998). Debra L. Martin (Hampshire College, Amherst, Massachusetts) reviewed and confirmed some trauma and pathological conditions, and Joseph Powell (University of New Mexico, Albuquerque, New Mexico) was consulted on some of the taphonomic observations. Maria Ostendorf Smith of Northern Illinois University shared her measurement data for the Cochiti Dam burials.

Almost two years after the burial analysis, funding for other artifact analyses resulted in the identification of additional human bones, either isolated remains or fragmentary burials that were not recognized as human in the field. The information on the burials and the isolated human bones provide the basis for this report. Forms and photo documentation are on file at the Office of Archaeological Studies and with the New Mexico State Historic Preservation Division, Archeological Records Management Section.

RESEARCH ISSUES

The research design for this project proposes no specific issues to be addressed by the human remains. However, the general objectives of documenting the culture history and change in the poorly understood Developmental period in this area and assessment of chronology, interaction, and settlement and subsistence systems (Ware 1997:44–50), provide a framework for discussion.

Most researchers view the Early Developmental period as part of the continuum between mobile hunters and gatherers and more sedentary groups with varying emphasis on agriculture (e.g., Cordell 1989:307). Residential sites were often positioned near land suitable for growing crops with floodwater irrigation or high water tables as well as access to hunting and gathering resources (Anschuetz et al. 1997:95). Yet, sparse site densities and a lack of investment in storage facilities suggest group mobility remained high with a mixed subsistence strategy (Cordell 1989:307).

The population, or at least site densities, increased in the Late Developmental period. Some interpret this as colonization of the area from the San Juan Basin while others still see a continuation of low settlement density with local instances of residential mobility (Cordell 1989:311; Ware 1997:11–12). Site settings are more diverse and include higher elevation farming locations (Anschuetz et al. 1997:95).

Site densities and site size increased further in the Coalition period. Some attribute this to a massive migration from the Colorado Plateau (Anschuetz et al. 1997:99) while others view it as crossing a demographic threshold with some migration contributing to the population increase. Agriculture may not have played a major part in subsistence but there is some evidence of an increase in sedentary occupation (Cordell 1989:317–319).

Large aggregated communities characterize the Classic period. Excavated sites in the Cochiti area have complex occupational histories with accretional growth, abandonment, reoccupation, and remodeling, suggesting to some that population mobility and settlement instability continued into this period (Ware 1997:15–16).

This brief assessment suggests a variety of research issues that can be addressed through the information provided by the human burials. Foremost is whether the populations were indeed mobile, if so, how mobile, how dependent on agriculture, and did this change over time? The demographic structure as well as the physical indications of mobile and agricultural pursuits can be examined along with assessing the overall health status of these individuals. Mortuary practices and hereditary traits may also inform on these issues. A second issue concerns cultural affinity and social behavior and asks whether there is evidence that the area was occupied by different populations and whether there is evidence of the interpersonal violence that can accompany the movement of one group into an already inhabited region. These questions are addressed by looking for changes in mortuary treatment and physical attributes and for evidence of trauma and interpersonal violence.

This report is structured to individually address these broader questions. It first examines those attributes that inform on mobility and agricultural dependence. Next, it looks at cultural affinity and social behavior, and may examine some of the same attributes. A final section takes a closer look at taphonomy and cultural modification that are not adequately addressed through either of the basic questions. Appendix 5.1 provides a summary of the information collected for each individual, Appendix 5.2 the measurements for adults, and Appendix 5.3 the measurements for children.

Mobility and Agricultural Dependence

Mobility and agricultural dependence are independent, yet, there is some correspondence. Foragers are generally mobile while agriculturalists tend to be more sedentary. However, foragers can be seasonally sedentary agriculturalists seasonally mobile. and Furthermore, early farmers may well have "fallen out" of their agricultural ways when faced with crop failures, environmental disasters (Finneman et al. 2000:457), or when conditions were optimal for foraging (e.g., Barlow 2002:70). Foragers could have gradually adopted and increased their farming when their territories could no longer support a strictly hunting and gathering existence (Finneman et al. 2000:457). We should expect a range of mobility among agriculturalists given the differences in the immediate environment, available technology, and population densities found in the Southwest.

From the perspective of health, several negative responses followed when corn became a key component of the diet. Caloric requirements could be met, however, corn is deficient in several essential amino acids and is a poor source of protein and vitamin C. Iron absorption is very low in corn-based diets, only some of which can be countered by food preparation techniques. In many areas, the adoption of a predominantly corn diet resulted in a reduction in stature and a deterioration in health caused by declining nutrition and increased infectious disease (Larsen 1997:16-17). Vitamin C deficiencies can result in scurvy (Ortner et al. 2001:350). The situation is further acerbated by the sedentism characteristic of intensive agricultural systems. Increases in population size and density, aggregation into communities, overuse of local resources, and the presence of domesticated animals all contribute to increasing the disease load (Martin 1994:95).

Demography

The human burial population from Peña Blanca is small (Table 22.3). As many as 20 individuals represent the Early Developmental period, and only 10 date from the Late Developmental and Coalition. LA 6169 and LA 6171 are multicomponent sites and dating some of the burials is problematic. Their placement reflects our best estimates given the stratigraphic contexts in which these individuals were found.

Small samples, such as this, can be imprecise reflections of a population due to stochastic effects. They are also highly influenced by burial practices that prescribe burial based on factors such as kinship, circumstance of death, and social status (Buikstra and Mielke 1985:364–365) and are more of a cultural sample than a biological one (Waldron 1994:12).

Several aspects of the Peña Blanca demographic profiles are unusual, and could be the result of the small sample size or of cultural factors (Fig. 22.1). In general, the Early Developmental age distribution curve follows the typical pattern for preindustrial human populations where infant mortality is high, with between 30 and 70 percent dying before the age of 15, followed by a healthy young adolescence, then increasing numbers of older individuals (Buikstra and Mielke 1985:399). In the Early Developmental sample, nine are children (under 10 years of age), one is an adolescent of unknown sex (14-18 years), eight are females, and two are males. An unusually high number of the children (six of nine) are fetuses or newborns. There is also an unusually high proportion of females who were over 40 years old when they died (62.5 percent). Two of the three exceptions are females who may not have been able to travel. One (30-40 years old) may have died in childbirth and the other (18 to 19 years old) was slender with an atrophied left hand. Neither of the Early Developmental males is a burial. Both are represented by single isolated bones, a femur that is quite large,

	Early [Develo	pmen	tal	Late Deve	lopme	ental &	Coalition
Age								
(Years)	Unknown	4	3	Total	Unknown	Ŷ	3	Total
0 - 1	6	-	-	6	-	-	-	-
1.5 - 5	2	-	-	2	2	-	-	2
5.5 - 10	1	-	-	1	2	-	-	2
15 - 19	1	1	-	2	-	-	1	1
20 - 24	-	-	-	-	-	1	-	1
30 - 34	-	1	1	2	-	-	-	-
35 - 39	-	1	-	1	1	-	-	1
40 - 44	-	1	-	1	-	-	-	-
45+	-	4	-	4	-	1	2	3
Mature	-	-	1	1	-	-	-	-
TOTAL	10	8	2	20	5	2	3	10

Table 22.3. Age and Sex Distribution for the Peña Blanca Humans*

*Includes individuals listed as burials, the isolated male femur from LA 265, the radius of a 14 to 18 year old from LA 265, and a child over 6 years of age from LA 6169

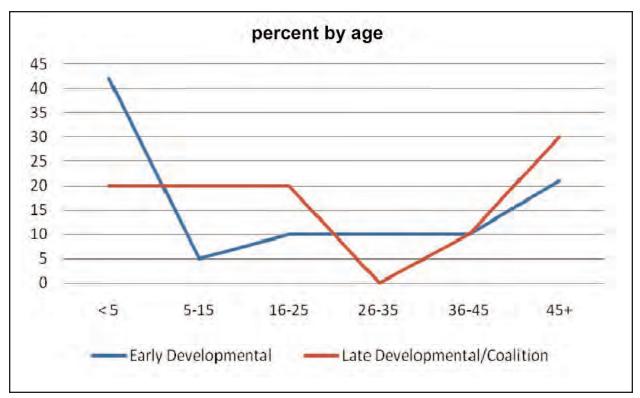


Figure 22.1. Age distribution for Peña Blanca.

and a partial cranium.

The smaller sample from the later dating deposits does not fit the expectations of a normal demographic curve. This sample has no newborns, four are children under 10, two are females, and three are males. All but one of the adults were over 45 years of age at death.

The proportion of infants and children (45.0 percent of the Early Developmental and 40.0 percent of the Late Developmental/Coalition samples are under 10 years of age) are within the range reported for other sites in the Southwest (Table 22.4). Compared with Cochiti Dam and Arroyo Hondo Coalition (early) and Classic (late) samples (Fig. 22.2), both the Peña Blanca Early Developmental (early) and the Late Developmental/Coalition (late) samples have relatively low proportions of children overall while the Early Developmental sample has the largest proportion of infants. In general, the cumulative percentages for Peña Blanca and nearby sites (Fig. 22.3) show similar patterns with steep increases up to 5 years of age, less of an increase up to 10 years of age, then all level off. The most divergent curves are for the

two smallest samples, the Late Developmental/Coalition Peña Blanca and the Cochiti Dam Coalition samples, and are probably due to the small sample sizes.

Among the regional samples, the Arroyo Hondo populations also have high proportions of infants less than one year old. This site also has evidence of pathologies that occur with malnutrition and infectious disease, that, when combined, could have contributed to the high proportion of infant deaths (Palkovich 1980:47). A similar argument cannot be made for the Peña Blanca population, especially given the small sample size. Of the six Early Developmental burials in this age group, four are complete enough and preserved well enough for observation. One has periostitis, which in this case could be either a systemic infection or scurvy (25 percent) and none have porotic hyperostosis. Porotic hyperostosis was present for 7 of 24 (29 percent) and widespread periostitis for 3 of 18 (17 percent) infants in the Arroyo Hondo Coalition sample (Palkovich 1980:39). Pecos Pueblo also has large proportions of infants and this appears to have increased over time

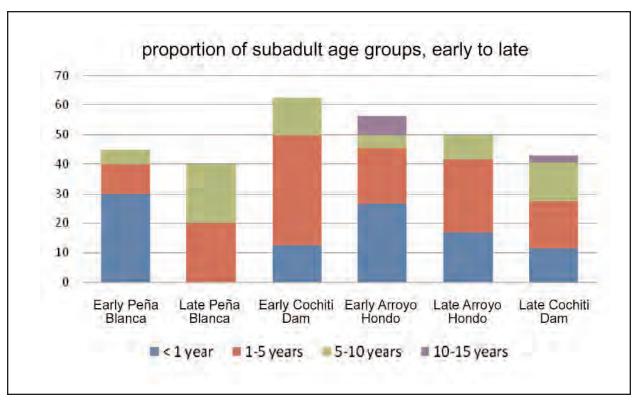


Figure 22.2. Proportions of subadult age groups for regional sites.

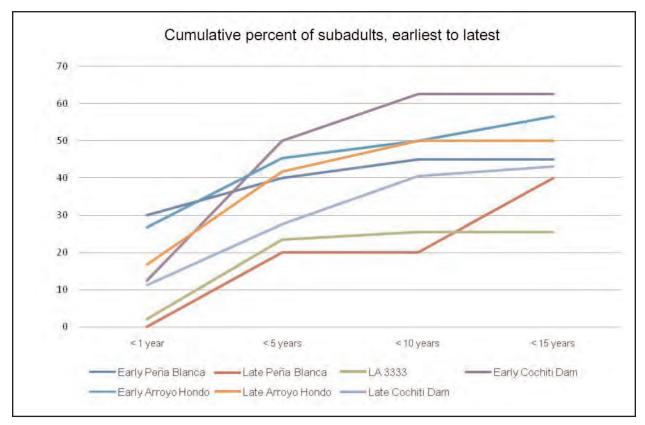


Figure 22.3. Cumulative percent of subadults for regional sites.

Sample	Dates	N =	<1	<3	<5	<10	<15	>35
Peña Blanca	Early Dev.	20	30.0	-	40.0	45.0	45.0	31.6
Peña Blanca	Late Dev/Coal	10	-	-	20.0	40.0	40.0	40.0
Cochiti Dam	Coalition	8	12.5	-	50.0	62.5	62.5	25.0
Cochiti Dam	Classic	116	11.2	-	27.6	40.5	43.1	37.9
Galisteo LA 3333	Coalition	47	2.1	-	23.4	25.5	25.5	38.3
Arroyo Hondo	Coalition	108	26.8	-	45.4	50.0	56.5	16.7
Arroyo Hondo	Classic	12	16.7	-	41.7	50.0	50.0	25.0
Forked Lightening	Coalition	145	-	-	(<4) 29.6	40.7	-	37.9
Pecos	E Classic	61	26.2	39.3	-	47.5	-	(>30) 36.1
Pecos	M Classic	157	28.0	35.0	-	40.0	-	(>30) 47.8
Pecos	L Classic	84	30.9	38.1	-	42.9	-	(>30) 48.8
Black Mesa	PI-EPII	34	14.7	-	38.2	44.1	58.8	11.8
Black Mesa	PII-PIII	100	12.0	-	32.0	40.0	49.0	37.0
Mesa Verde	BMIII-EPII	150	-	10.7	(<8) 24.7	(<12) 28.7	35.3	(>36) 18.7
Mesa Verde	LPII-PIII	178	-	16.8	(<8) 29.2	(<12) 35.4	42.7	(>36) 15.7
Chaco Canyon	PII-PIII	135	8.9	-	25.4	-	37.0	(>40) 11.1
Pueblo Bonito	PII-PIII	95	1.0	-	9.5	21.0	28.4	28.4
La Plata	PII-PIII	67	6.0	-	25.4	29.8	40.3	22.4
Gran Quivira		80	-	18.7	(<7) 27.5	(<13) 32.5	(<17) 34.1	35.0

Table 22.4. Age Distribution Compared with Other Southwest Sites

* apportioned

Sources: Cochiti: Smith 1998: Table II-1; LA 3333: Akins n.d.b: Table 1; Arroyo Hondo: Palkovich 1980:23; Forked Lightening and Pecos: Mobley 1980:523-524; Black Mesa: Martin et al. 1991:51; Mesa Verde: Stodder 1984:28,29; Chaco: Akins 1986a:20; Pueblo Bonito: Palkovich 1984:106; La Plata: Martin et al. 2001; Gran Quivira: Turner 1981:212 Some Cochiti infants were left in at the site (Smith 1998) so that this proportion is undoubtedly too low

(Mobley 1980:523–524). The more northern groups seem to have lower frequencies (Table 22.4). In general, while the proportion of infants in the Early Developmental period sample from Peña Blanca intuitively seems high, it is not outside the range reported for other regional populations.

When the same sites (except for Forked Lightning and Pecos where the data are not provided in Mobley 1980) are compared for sex ratios and the proportion of females over 40 (Table 22.5), the results are the same, suggestive but may be heavily influenced by sample size. Most sites considered here show considerable bias towards females in the burial samples; Mesa Verde is the exception. Given this range, the very low and high ratios for Peña Blanca samples are suspect. As for the proportion of older females, sites with relatively large

sample sizes (more than 15 and not including Pueblo Bonito, which is arguably a culturally biased sample) range between 33.3 and 52.2 percent, again making the Peña Blanca Early Developmental period figure of 62.5 percent suspect. Whether this is a function of the small sample size or a lack of data from this transitional period remains unanswered.

While the Peña Blanca age and sex distribution could be strictly a function of the small sample size, it could also be influenced by mobility, residence patterns, or other cultural practices. This pattern is not unique. For example, a Middle Archaic period population in the lower Illinois River Valley has a similar pattern. The young, the old, and those who died prematurely with deforming pathology were buried in the village while the young and middle-aged individuals were buried in cemeteries

Sample	Dates	# Males	# Females	Ratio M/F x 100	# Aged Females/ Females > 40	% Females > 40
Peña Blanca	Early Dev.	2	8	25	8/5	62.5
Peña Blanca	Late Dev/Coal	3	2	150	2/1	50
Cochiti Dam	Coalition	2	4	50	4/3	75
Cochiti Dam	Classic	39	53	73.6	40/20	50
LA 3333	Coalition	10	21	47.6	21/8	38.1
Arroyo Hondo	Coalition	16	24	66.7	18/6	33.3
Arroyo Hondo	Classic	2	3	66.7	3/3	100
Black Mesa*	PI-PIII	34	44	77.3	44/23	52.2
Mesa Verde	BMIII-EPII	46	45	102.2	45/4	8.9
Mesa Verde	LPII-PIII	49	48	102.1	47/17	34.7
Chaco	PII-PIII	23	29	79.3	29/5	17.2
Pueblo Bonito	PII-PIII	23	42	54.8	42/15	35.7
La Plata	PII-PIII	16	18	88.9	18/2	11.1
Gran Quivira	Early-Middle	18	23	78.3	23/12	52.2

Table 22.5. Comparison of Sex Ratios and Percent of Females Over 40 Years of Age

* apportioned

Sources: Cochiti Dam: Smith 1998: Table 1-1, 1-2, 1-3; LA 3333: Akins n.d.b: Table 1; Arroyo Hondo: Palkovich 1980:23; Black Mesa: Martin et al. 1991:55; Mesa Verde: Stodder 1984:28,29; Chaco: Akins 1986a:20; Pueblo Bonito: Palkovich 1984:106; La Plata: Martin et al. 2001; Gran Quivira: Turner 1981:212

on the bluff crest (Buisktra and Mielke 1985:365). Without a larger sample of burials and more complete excavations of Early Developmental sites, we cannot be sure of the ultimate causes.

Mortuary Practices

Southwest archaeologists rarely consider the effect of mobility on burial populations beyond noting that camp sites contain few or no burials whereas permanent residential sites often contain human burials. Hunter-gatherers who depend on widely dispersed, seasonal, or mobile resources rarely spend enough time in one place to form rigid territories or discrete accumulations of burials. Groups with more restricted mobility who spend sufficient time at or return to the same location often enough, establish a sense of territoriality and may develop areas and conventions for burial. Sedentary agriculturalists, especially those competing for land, often symbolize their rights to that land by reference to ancestors buried there. (Hewett [1909:450] attributes just

such a motive to the Cochitis concerning their claims to sites on the Pajarito Plateau.) At the very least, these groups bury their dead within the boundaries of their habitual domain (e.g., Charles 1995:79). This suggests there should be somewhat of a continuum in burial practices and their manifestations. Highly mobile groups should rarely bury more than a few individuals in any one place. Less mobile foragers or semisedentary farmers could experience enough deaths in a location to reflect at least some of the characteristics of those who inhabited the sites. Virtually all of the dead from long-term sedentary agriculturalists should be found in the vicinity of their residences.

For the Peña Blanca and Cochiti Dam burials, the mortuary practices should reflect a change from somewhat mobile to sedentary agriculturalists. Table 22.6 gives detailed information on the location, burial positions, and grave goods for Peña Blanca burials. These are then summarized by site and time (Table 22.7) and by time and age and sex (Tables 22.8) and compared with similar information for three

LA-Burial	Sex/Age	Feature Type	Feature	Head & Spine Position	Feature Head & Spine Position Arm Position Leg Position	Leg Position	Burial Goods	Comments
249-1	Female/45±5	Shallow pit in midden	In pit	Head SE, face up; on back	Straight along sides	To left; flexed 115° at hips; tightly flexed knees 15°	None	LD/EC
265-1	Unknown/3 ± 1 year	Extramural bell-shaped pit	Lower fill	Head SE, left side; left side and slightly face down	Unknown	Extended; left side and slightly down	None	ED; rodent burrow through chest area
265-2	Unknown/ 9 ± 3 months	Pit above vent shaft		uwouku	Unknown	Unknown	Haliotis shell pendant	ED; scattered and incomplete
265-3	Female/30 ± 5	Extramural pit	Bottom	Head W, left side; on back	R along side with hand on pelvis: L down and out 140°, elbow tightly flexed and hand on left shoulder	Flexed 70° at hips to left; knees flexed 30°	MRG Plain beaker, MRG Plain pitcher	£
265-4	Female/45 ± 5	Extramural bell-shaped pit	Bottom	Head & neck twisted and against pit edge top of head up, face south, spine oriented NE; chest down and signity on right side	R down and under chest, elbow flexed and hand on left elbow, I, down and signty out, tightly bent at elbow lower arm under upper	Pelvis down and slightly to right. R leg flexed 45° at hip 35° at knee, L extended at hip, 85° at knee	Tahallogan Red seed jar, MRG Plain jar, 5 awls, 1 metapodial; 3 pieces of hematite	Ð
265-5	Female/50+	Pit structure, subfloor pit	Middle fill	Top of head slightly up and S, slightly to right; vertebrae aligned to SW; on back	R along side but out 40°, elbow bent 90° with hand on peMis; L over chest with elbow at vert. column, elbow bert 80°	Knees up flexed about 40° at knees	2 pieces of turquoise, 2 awls. 2 flicker and 1 meadowlark wing	ED
265-6	Female/50+	Pit structure	Lower fill along S wall	Head W; on back	R humerus across upper chest, lower missing; L tightly flexed against side with hand on left shoulder	Knees up; lower R leg missing	MRG Plain pitcher with strap handle	ED; carnivore disturbed
265-7	Female/35-45	Pit structure	Upper? fill	Head E; probably on left side and down somewhat	Unknown	Unknown	None	ED; backhoe disturbed
6169-1	unknown/6 ± 2 years	pit structure	middle fill	head N facing W; on back and slightly on right side	R under torso; L down to side bent about 70° at elbow, hand on pelvis	R & L tightly flexed to chest	partial Kwahe'e B/w bowl	9
6169-2	female/45+	extramural shallow pit	pit bottom	head probably SW; right side	L humerus across chest, elbow at knee	legs tightly flexed to chest at hip and knee	2 San Marcial B/w bowls, 1 MRG Plain jar, sherds from 2 MRG Plain gray and 1 MRG Plain with fugfitve red jars; jet pendant	ED; disturbed
6169-3	unknown/0±2 months	pit structure	middle fill?	head probably W; probably on the left side	uwouyun	on left side L knee flexed @70°, R @30°	none	ED; backhoe and rodent disturbance
6169-4	unknown/0±2 months	pit structure	upper fill against N wall	head SE on right side; chest down?	R down under body flexed about 90° at elbow - to east; L unknown	knees tightly flexed on right side; none; possible matting hips flexed $\textcircled{0.90}^\circ$	none; possible matting	ED; disturbed during discovery

				Table 22.6. (Continued.			
LA-Burial	Sex/Age	Feature Type	Location in Feature	Head & Spine Position	Arm Position	Leg Position	Burial Goods	Comments
6169-5	Male/20-40	Pit structure	Floor				none	ED; partial cranium only; carnivore gnawed
6169-6	Female?/20-25	Extramural pit	E	Head SE on left side; chest down	R arm along side and tightly flexed at elbow, under humerus; L under and across chest, head a R shoulder	R flexed to right about 90o at hip and 30o at knee	none?	C; carnivore damaged
6169-7	Unknown/2.5y ± 10 mo	Pit structure	Pit in upper fill against north wall	Head disarticulated from vertebral column; SW face down	Unknown	Unknown	Kwahe'e B/w canteen; MRG polished white jar sherds	LD; disarticulated and carnivore disturbed
6169-8	male/45+	Pit room	On floor	Head E on right side; right side	R straight down tightly flexed at elbow hand near chest; L unknown	On R side loosely flexed at hips about 1300, knees tightly bent against upper legs-about 200	none	U
6169-9	male/18-19	Pit structure	Pit in lower fill	Head NNE on left side but disturbed; L hand on chest	Arms disturbed; L hand on chest	Flexed up and knees bent about 60o	Partial Kwahe'e B/w jar	LD; rodent disturbed; obsidian point in ribs
6169-10	Unknown/7 ± 2 years	Vent shaft	Upper fill	Head W? vertebrae e-w on back or left side	Unknown	To left loosely flexed at hips, R about 900, L about 600; R knee straight, L bent about 900	<i>Anodonta</i> pendant	ED? B10 and 11 distrubed and intermixed
6169-11	Unknown/5±1.5 y	Vent shaft	Upper fill	Head N? on back or left side	Upper arms straight down; R elbow bend about 70o with hand on chest, L probably straight	To left loosely flexed at hips, R about 30o, L about 40o; R knee bent about 70o, L unknown	Anodonta pendant	
6169-12	Unknown/4 ± 1 year	Unknown extramural		Unknown			None	C? few elements
6169-13	Unknown/0 ± 2 mo	Pit structure	SE quad lower fill	Unknown	Unknown	Unknown	Unknown	ED? Few elements; recovered from general fill
6171-1	Male/ 45 ± 5?	Extramural pit	Floor	Head SE, face down and to left; on chest to the left side	R straight out at shoulder, flexed about 900 up, L disaticulated and above cranium, lower arm down at side	R flexed about 60o at hip and 40o at knee; L below R and slightly more flexed	None?	G
6171-2	Unknown/30-40	÷		Unknown	Unknown	Unknown	Unknown	CD; two elements
115862-1	Female/35 ± 5	Extramural pit	Floor	Head N on back toward left; left side	R extended along trunk; L extended out about 900 bent down at elbow about 900	Both extended with slight flex (about 40o at knees)	San Marcial B/w bowl, jar body, 2 bowl rims, seed jar, MRG Plain small jar, jar body, and body sherd	ED
115862-2	unknown/fetus	extramural pit	with B1 in utero					ED
115862-3	female/18-19	extramural pit	floor	head SW; on back	straight along sides	extended straight	2 MRG Plain jars; San Marcial B/w bowl and seed jar <i>Olivella</i> beads on chest and top of head (n=47)	Ð
115862	unknown/6-8 m	extramural pit	unknown	unknown	unknown	unknown	unknown	ED
ED = Early	ED = Early Developmental LD = Lat	LD = Late Developmental	C= Coalition CD= Coa	Coalition CD= Coalition with Developmental				

Table 22.6. Continued.

		b	y Site and Tin	ne Period				
		Early Dev	elopmental			Developm	ental/Coali	tion
	LA 265	LA 6169	LA 115862	Total	LA 249	LA 6169	LA 6171	Total
Structure								
Upper fill	1	2	-	3	-	2	-	2
Lower fill/floor	1	1	-	2	-	2	-	2
Subfloor	1	-	-	1	-	-	-	-
Vent area	1	2	-	3	-	-	-	-
Structure totals	4	5	-	9	-	4	-	4
Extramural	3	1	3	7	1	2	1	4
Totals	7	6	3	16	1	6	1	8
Flexed: back	-	-	-	-	-	1	-	1
Flexed: right	-	1	-	1	-	-	-	-
S-flexed: back	3	2	-	5	1	1	-	2
S-flexed: chest	1	1	-	2	-	1	1	2
S-flexed: left	-	1	-	1	-	-	-	-
S-flexed: right	-	-	-	-	-	1	-	1
Extended: back	-	-	1	1	-	-	-	-
Extended: left	1	-	1	2	-	-	-	-
Totals	5	5	2	12	1	4	1	6
Orientation								
Ν	-	1	1	2	-	1	-	1
NE	1	-	-	1	-	1	-	1
E	1	-	-	1	-	1	-	1
SE	1	1	-	2	1	1	1	3
SW	1	1	1	3	-	-	-	-
W	2	2	-	4	-	-	-	-
Total	6	5	2	13	1	4	1	6
No goods	2	2	1	5	1	3	1	5
Vessels	2	1	2	5	-	1	-	1
Vessel	1	-	-	1	-	2	-	2
Shell ornament(s)	1	2	1	4	-	-	-	-
Jet ornament	-	1	-	1	-	-	-	-
Turquoise	1	-	-	1	-	-	-	-
Hematite	1	-	-	1	-	-	-	-
Bone tools	2	-	-	2	-	-	-	-
Individuals	7	5	3	15	1	6	1	8

Table 22.7. Summary of Burial Location, Position, Orientation, and Burial Goods for Peña Blanca Burialsby Site and Time Period

Cochiti Dam sites, LA 3333 in the Galisteo Basin, Pindi, and Arroyo Hondo (Table 22.9).

There are differences among the Peña Blanca sites. At LA 265, the number of burials located in structures and in extramural areas are almost equal while all those from LA 115862 are extramural, and LA 6169 has mostly structure-related burials. When totaled by time, the numbers are much closer and obscure differences between the individual sites. Burial position is variable with a distinct preference for semiflexed positions: on the back or chest in both periods. West and southwest orientations are the most common in the early period while southeast is favored in the later, regardless of site. Fewer of the later burials (37.5 percent) have grave goods and when they do, it is always ceramic vessels. Early Developmental burials have grave goods more often (66.7 percent), have more offerings, and have a greater diversity of offerings. Vessels, ornaments, and minerals are often found.

				and II	me Perio	ba					
		Early	Developr	nental			Late De	velopmen	tal/Coal	ition	
	< 1	1.5-10	Female <40	Female >40	Total	1.5-10	Female <40	Female >40	Male <40	Male >40	Total
Structure											
Upper fill	2	-	-	1	3	2	-	-	-	-	2
Lower fill/floor	1	-	-	1	2	-	-	-	1	1	2
Subfloor	-	-	-	1	1	-	-	-	-	-	-
Vent area	1	2	-	-	3	-	-	-	-	-	-
Structure totals	4	2	-	3	9	2	-	-	1	1	4
Extramural	1	1	3	2	7	1	1	1	-	1	4
Totals	5	3	3	5	16	3	1	1	1	2	8
Flexed: back	-	-	-	-		1	-	-	-	-	1
Flexed: right	-	-	-	1	1	-	-	-	-	-	-
S-flexed: back	-	2	1	2	5	-	-	1	1	-	2
S-flexed: chest	1	-	-	1	2	-	1	-	-	1	2
S-flexed: left	1	-	-	-	1	-	-	-	-	-	-
S-flexed: right	-	-	-	-		-	-	-	-	1	1
Extended: back	-	-	1	-	1	-	-	-	-	-	-
Extended: left	-	1	1	-	2	-	-	-	-	-	-
Totals	2	3	3	4	12	1	1	1	1	2	6
Orientation											
Ν	-	1	1	-	2	1	-	-	-	-	1
NE	-	-	-	1	1	-	-	-	1	-	1
E	-	-	-	1	1	-	-	-	-	1	1
SE	1	1	-	-	2	-	1	1	-	1	3
SW	-	-	1	2	3	-	-	-	-	-	-
W	1	1	1	1	4	-	-	-	-	-	-
Total	2	3	3	5	13	1	1	1	1	2	6
No goods	3	1	-	1	5	1	1	1	-	2	5
Vessels	-	-	3	2	5	1	-	-	-	-	1
Vessel	-	-	-	1	1	1	-	-	1	-	2
Shell ornaments	1	2	1	-	4	-	-	-	-	-	-
Jet ornament	-	-	-	1	1	-	-	-	-	-	-
Turquoise	-	-	-	1	1	-	-	-	-	-	-
Hematite	-	-	-	1	1	-	-	-	-	-	-
Bone tools	-	-	-	2	2	-	-	-	-	-	-
Individuals	4	3	3	5	15	3	1	1	1	2	8

Table 22.8. Summary of Burial Location, Position, Orientation, and Burial Goods for Peña Blanca Burials by Age and Time Period

When examined by age and period (Table 22.8) subadults are almost twice as likely to be buried in structures as adults in the early period. Chances are also greater in the later period. In the early period, infants are less likely than adults to have burial goods. When children do have goods these are in the form of shell ornaments (an association also noted by Stubbs and Stallings 1953:138 for Pindi and Pecos Pueblo, and found at LA 3333). Females under 40 years of age always had vessels and one had numerous Olivella shells. All but one of those 40 or older had goods that include vessels, orna-

ments, minerals, and bone awls. The sample size for the later period allows for fewer suggestions of patterning. Children appear more likely to have goods than adults (66.7 and 20.0 percent).

Comparing sites on a regional basis from the Early Developmental to the Classic periods (Table 22.9) provides little consistency. Grave location varies by site with a distinct impression that this could be heavily biased by excavation strategy, that is, how much of the extramural area was excavated. The Cochiti Dam Classic period sites of Alfred Herrera and LA

	Early Develop- mental		elopmental/ alition	Coaliti	on	Clas	sic	Coalition	Classic
	Early Peña Blanca	Late Peña Blanca	LA 3333	North Bank	Pindi	Alfred Herrera	LA 70	Arroyo Hondo	Arroyo Hondo
Location (n=)	16	8	36	19	90	77	103	99	12
Structure (%)	56.2	50	66.7	47.4	54	85.7	44.7	28.3	8.3
Nonstructure (%)	43.7	50	33.3	52.6	38	14.3	55.3	71.7	91.7
Position (n=)	12	6	31	8	41	62	39	73	12
Back/dorsal (%)	50	50	32.2	37.5	34.1	30.6	10.2	12.3	33.3
Chest/ventral (%)	16.7	33.3	16.2	12.5	21.9	27.4	28.2	20.5	16.7
Right (%)	8.3	16.7	35.5	12.5	26.8	19.3	38.5	34.2	16.7
Left (%)	25	-	16.2	37.5	17.1	22.6	23.1	28.8	33.3
Orientation (n=)	13	6	32	12	66	38	37	79	12
North (%)	15.4	16.7	15.6	25	20	7.9	18.9	20.2	8.3
Northeast (%)	7.7	16.7	12.5	8.3	-	5.3	2.7	-	-
East (%)	7.7	16.7	40.6	33.3	30	15.8	24.3	43	58.3
Southeast (%)	15.4	50	6.2	16.7	3	7.9	-	-	-
South (%)	-	-	12.5	8.3	23	26.3	24.3	20.2	25
Southwest (%)	23.1	-	3.1	8.3	-	7.9	-	-	-
West (%)	30.8	-	6.2	-	21	18.4	29.7	16.4	8.3
Northwest (%)	-	-	3.1	10.5	3	-	-	-	-
Grave Goods (n=)	14	8	29	19	90	77	103	99	12
Vessel(s) (%)	42.9	50	6.9	-	2.2	10.4	yes	12.1	33.3
Ornament(s) (%)	35.7	-	10.3	-	4.4	-	no	3	8.3
Mineral(s) (%)	14.3	-	10.3	-	-	1.3	yes	3	8.3
Bone tool(s) (%)	14.3	-	6.9	-	-	-	yes	2	-
No burial goods (%)	33.3	62.5	65.5*	100.0*	83.3**	83.1*	48.5*	36.4***	71.4***

Table 22.9. Comparison of Burial Practices with Cochiti Dam Sites, LA 3333, Pindi, and Arroyo Hondo

* Does not include sherds and lithics thought to be pit fill rather than grave goods

** Does not include those with matting only; source: Stubbs and Stallings 1953:143, 145

*** Includes those without sherds and lithics that could be pit fill as well as a number of perishable items not preserved at the other sites (hide, matting, wood, feathers, and body paint)

Sources: Smith 1998, Heglar 1976, and Lange 1968a for Cochiti Dam, and Palkovich 1980 for Arroyo Hondo

70 are often different while Arroyo Hondo is more internally consistent between time periods. Preference for burial within structures may decrease with time: Alfred Herrera is the exception. Orientation preference is different for each site with no consistency by time period. The proportion of burials with no grave goods seems to increase with time. The Peña Blanca Early Developmental burials stand out in the high proportion of burials with grave goods.

Throughout the time sequence, these sites exhibit more internal than chronologic consistency. This lack of clear patterning in the burial practices that could signal a change in mobility patterns may be typical of loosely organized communities. While mortuary practices do change primarily in response to social and demographic conditions (e.g., Brown 1995:7), it is difficult to assess at what scale this occurs. Some of the changes in the Peña Blanca sample may be significant, but counts are too low for statistical manipulation. In the larger sample from Cochiti Dam, no statistically significant associations were found between age or sex in burial location, position, orientation, or the presence of grave goods at Alfred Herrera. The only significant result for LA 70 was between sex and the type of grave good when domestic goods (ceramics, bone tools, grinding stones) were compared with exotic materials (projectile points and minerals) (Smith 1998). Comparing Arroyo Hondo with other Northern Rio Grande sites (Forked Lightning, Pindi, Paa-ko, and Pecos), Palkovich found similar variation in burial location at all, a predominance of some sort of flexion as apposed to extended burial, no typical orientation, and a similar array of burial goods (Palkovich 1980:67-72).

Indicators of Activity/Occupation

Shape and robusticity of long bones, the presence of stress-induced injuries, and patterns of arthritis or degenerative joint disease can be used as measures of the type and level of activity in prehistoric populations. Here, these are used to address mobility in the Peña Blanca populations and their level of agricultural investment.

Long Bones. Bone tissue responds in the direction of functional demand (known as Wolff's Law). In order to counteract the effect of mechanical loading, the size and shape change as new bone is added to the region of bone where the strain is greatest. More remodeling occurs with low or moderate intensity and repeated use than sporadic high intensity use (Bridges 1989:387). Exterior expansion of bone continues in older adults. Decline in bone mass effects the interior rather than exterior dimensions (Bridges 1989:388; Larsen 1997:208).

This building process allows researchers to study the activities of prehistoric people. When applied to prehistoric populations ranging from foragers in the Great Basin to Pecos Pueblo and Georgia agriculturalists, cross-section areas of the femur midshaft demonstrate that strength closely reflects subsistence strategy in males. Hunter-gatherers were found to be high in midshaft strength and agriculturalists low. For females, there was no apparent relationship to subsistence strategy but there was a correspondence with the ruggedness of the terrain (Larsen 1997:204-205). Not all researchers have found decreased strength in agricultural populations. For some groups the workload associated with agriculture actually increased over that of hunters and gatherers from the same area (Bridges 1989:391). The physical demands of agriculture, differences in level commitment, the of technology employed, and methods of growing and processing crops contribute to the direction of change (Bridges 1995:119) and emphasizes the utility of examining changes through time.

While not as precise as methods, using cross-

sectional geometry, external measurements, and the robusticity and shape indices derived from them, correlate with long bone strength and can be used to examine activity patterns (e.g., Bridges 1995:112). Few studies have concentrated on the Southwest, however, two burial populations recovered by OAS were used to examine the differences between Pueblo II-III sedentary agriculturalists from the La Plata River Valley in northwestern New Mexico and a fairly mobile Late Developmental/Early Coalition period group from LA 3333 (Galisteo Basin) who may have practiced some horticulture. Contrasting these two populations indicates that both the males and females from the more mobile LA 3333 population were generally larger, more robust, and have more ovoid femoral cross sections than their counterparts from the La Plata sedentary population. Within each group, males were larger than females in all respects except one, the robusticity of the humerus, where the La Plata females were more robust than the La Plata males and LA 3333 females. Differences in these two populations suggest that a more mobile role with less emphasis on agriculture resulted in larger, more robust individuals with more ovoid femurs and that intensive corn grinding is reflected in upper arm dimensions (Akins 1995, n.d.b).

Femur measurements for the Peña Blanca burials, summarized in Table 22.10, are consistent with a change from a more mobile, less corndependent group in the Early Developmental to a more sedentary, corn-dependent population in later periods. Results based on humerus measurements are less clear. The six Early Developmental females who could be measured, are physically smaller than the single later female and males in arm measurements and in femur length and head diameter. In midshaft femur measurements, the Early Developmental females are larger than the later females but smaller than the males. However, when robusticity is considered, the Early Developmental females are more robust than the later males. Only one of the females has an index smaller than the smallest male index, all others are larger than the largest male index. In shape, the one later female has a high index, as do

	L ard			-	ate			
	Ean	y Develo			Coalition	La	te Dev/C	
		Female		⊢e	males		Male	-
	n=	mean	st. dev.	n=	mean	n=	mean	st. dev.
Humerus								
length	5	28.5	7.96	1	29.2	2	310	-
head diameter	5	37.9	1.16	2	39.3	2	42.2	-
maximum diameter	6	21.1	1.07	2	22.6	3	21.3	0.01
minimum diameter	6	14.6	0.98	2	14.9	3	15.8	1.22
Femur								
physiological length	4	391	9.59	-	-	3	433	13.75
head diameter	4	38.9	0.64	2	41.25	2	44.3	-
AP diameter midshaft	6	27.6	2.39	1	26.8	3	29.7	0.29
ML diameter midshaft	6	23.9	1.61	1	20.9	3	26.1	1.07
robusticity index	5	13.1	0.97	-	-	3	12.9	0.41
shape index	6	1.16	0.11	1	1.28	3	1.14	0.04

Table 22.10. Summary of Per	a Blanca Human	Measurements	(mm)
-----------------------------	----------------	--------------	------

Table 22.11. Peña Blanca Maximum Humerus Diameter (mm), Femur Robusticity, and Femur Shape Compared with a Late Developmental (Pojoaque/Nambe), a Fairly Mobile (LA 3333), and a Sedentary (La Plata) Population

	Pe	ña Blanca		Pojoaque/N	lambe	LA 3	333	La Pla	ata
		Lat	te			Late Deve	lop./Early		
	Early Devel.	Devel./C	oalition	Late De	evel.	Coal	ition	PII-F	9111
	Female	Female	Male	Female	Male	Female	Male	Female	Male
Max humerus dia n=	6	2	З	7	3	8	6	4	8
Minimum	20.3	22.6	20.7	18.7	19.3	18	19	20	18.6
Maximum	22.9	22.6	22.2	23.4	23.7	22	23	24.4	22.7
Mean	21.1	22.6	21.3	20.5	20.8	20	21.5	22.5	21.2
Standard deviation	1.07	-	0.81	1.8	2.51	1.6	1.38	1.82	1.6
Femur robusticity index n=	4	-	3	5	1	11	5	8	10
Minimum	11.4	-	12.4	11.3	12.1	10.6	12	11.02	11.3
Maximum	14	-	13.2	13.3	12.1	13.2	14.3	13	13.1
Mean	13.1	-	12.9	12.1	-	12	13	11.7	12.1
Standard deviation	-	-	0.42	0.78	-	0.67	0.91	0.71	0.55
Femur shape index n=	6	1	3	7	3	11	7	8	12
Minimum	1.03	-	1.11	0.99	1.09	1.02	0.95	0.86	0.8
Maximum	1.29	-	1.2	1.12	1.49	1.35	1.43	1.18	1.14
Mean	1.16	1.28	1.14	1.04	1.28	1.14	1.16	1.03	1
Standard deviation	0.11	-	0.04	0.04	0.2	0.09	0.17	0.1	0.09

Notes: robusticity index = anterioposterior + mediolateral diameter at midshaft X 100 + bicondylar length (Bass 1987:214) shape index = anteroposterior + mediolateral diameter at midshaft (Bridges 1995:118)

two of the Early Developmental females, who, as a group, range from 1.03 to 1.29. The later males vary at 1.11, 1.12, and 1.20 with a mean of 1.14. Overall, the Early Developmental females have a greater mean index than the later males, two have larger indexes than the largest male index and one other is larger than all but the largest male index. Only one of has a near round shape of 1.03 (round is 1.00).

When Peña Blanca is compared to the Cochiti Dam sites (Tables 22.11–22.12 and Figs.

22.4–22.6), the La Plata sedentary agriculturalists, the fairly mobile LA 3333 population, and a small Late Developmental population from the Pojoaque/Nambé area, the maximum humerus diameter (mm), a good indicator of upper arm strength and associated with corn grinding in females, the Pojoaque/Nambé males (20.8) and females (20.5), LA 3333 females (20.0), and LA 70 males (20.0) and females (20.1) have the smallest means followed by the Early Developmental Peña

Site and Sex	Date	n=	Minimum	Maximum	Mean
Maximum humerus dia	meter				
LA 6464 females	Coalition	1	-	-	22
LA 9154 males	Late Coalition/Classic	1	-	-	18
Alfred Herrera females	Coalition and Classic	15	19	28	21.3
Alfred Herrera males	Coalition and Classic	7	17	24	21.4
LA 70 females	Coalition and Classic	10	19	23	20.1
LA 70 males	Coalition and Classic	7	17	21	20
Femur robusticity inde	x				
LA 6462 females	Coalition	2	11.8	13.2	12.5
LA 6462 males	Coalition	1	-	-	11.8
LA 9154 female	Late Coalition/Classic	1	-	-	12
Alfred Herrera females	Glaze A/A.D. 1425	10	10.6	12.6	11.4
Alfred Herrera males	Glaze A/A.D. 1425	16	10.8	15.1	12.2
Alfred Herrera females	Glaze C-D	3	11.2	13	12.1
Alfred Herrera female	Glaze D-E	1	-	-	10.9
Alfred Herrera male	Glaze D-E	1	-	-	13.6
LA 70 females	Classic period	4	11.2	12.8	11.9
LA 70 males	Classic period	9	9.1	13.5	12
Femur shape index					
LA 6462 females	Coalition	1	-	-	1
LA 6462 males	Coalition	1	-	-	1
LA 5194 female	Late Coalition/Classic	1	-	-	1.27
Alfred Herrera females	Coalition and Classic	17	0.79	1.36	1.05
Alfred Herrera males	Coalition and Classic	6	0.89	1.2	1.05
LA 70 females	Classic	14	0.91	1.2	1.06
LA 70 males	Classic	9	0.89	1.38	1.13

Table 22.12. Femur Robusticity and Shape Indices and Maximum Humerus Diameter for Cochiti Dam Sites

Note: Length-Diameter index data from Heglar 1968:282, 1971:96, and 1976:17; maximum humerus diameter based on data provided by Maria Smith

Blanca females (21.1). The largest diameters are found in the single later Peña Blanca female (22.6), females from La Plata (22.5), and males (21.4) and females (21.3) from Alfred Herrera. Compared to the males, the later Peña Blanca females, the LA 70 females, and the La Plata females all have means that are greater than the males from those sites while the means for Pojoaque/Nambé and Alfred Herrera are very close.

The femur robusticity indices for females show a decrease in the mean size after the Early Developmental period (Fig. 22.5). As with humerus size, males are more variable, with the exception of the LA 3333 males, and also show a decrease in the mean after the Early Developmental period. The female shape indices follow the same pattern, with the exception of the very large index for the single late Peña Blanca female and one from LA 9154, the indices decrease over time (Fig. 22.6). The males are more variable. Late Developmental populations then decrease followed by a slight increase in the LA 70 sample. Males from the Cochiti area sites have greater means and much higher maximum indices than for the La Plata males, while the female La Plata mean is comparable to several of the later Cochiti area sites.

These results are consistent with an interpretation of mobile Early Developmental females who did less corn grinding than later females in the area. Both the femur robusticity and shape index indicate these females were more mobile than the males in the later periods. The isolated femur from LA 265, with fair-

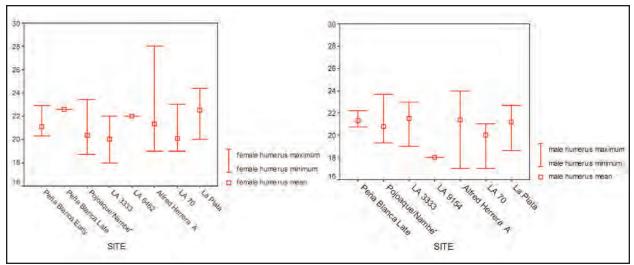


Figure 22.4. Range of humerus diameter.

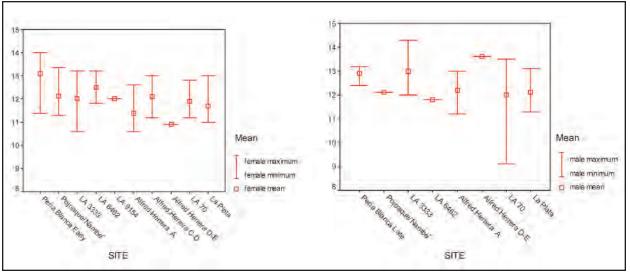


Figure 22.5. Ranges of femur robusticity.

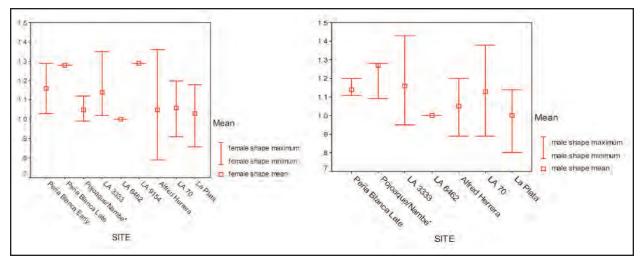


Figure 22.6. Range in femur shape index.

ly large dimensions, suggesting it is from a male, is too incomplete to calculate a robusticity index, but estimating the center produced a shape index of only 1.03. This small index is at the low end for mobile groups but within in the range of both the Early Developmental females and the Galisteo Basin males and females.

Stress Induced Changes. Enthesopathic lesions or irregularities, projections, or osteophytes that occur at the insertions of tendons and ligaments, often due to repeated trauma from muscular exertion (Rodgers and Waldron 1995:24–25), are another means by which habitual activities can be observed. The location and size give an indication of activities that utilize specific muscles. Spurs or projections on the plantar aspect of the calcaneus are linked with excessive walking and running (Larsen 1997:188–189). Raised attachments for the costoclavicular ligament on the clavicle may be related to strenuous activities involving the pectoral girdle (Mann and Murphy 1990:82).

Three Peña Blanca individuals have spurs on the plantar aspect of one or both calcanei, two Early Developmental period females from LA 265 and a Coalition period male from LA 6169. All are older individuals, consistent with the observation that there is no sex predilection but frequencies increase with age (Mann and Murphy 1990:130). Several other individuals are missing or have fragmentary calcanei so that the incidence of this condition could be greater. Both individuals with clavicular enthesophies are younger females. Other individuals with enthosophies are children or have these in locations that suggest reactions to injuries rather than development through habitual activities (summarized along with other conditions in Table 22.13). A very large enthesopathy on the palm side of the first phalanx of the second digit of Burial 1 from LA 6171 is idiosyncratic.

Other than the Schmorl's nodes (reported below), few of the trauma instances (Table 22.13) are likely indicators of particular activities. Fractures of the hand, wrist, foot, and rib

and dislocation of the mandible are more likely to result from accidents than habitual activities. The wedged thoracic vertebra in an elderly female is probably age related while the healed depression fracture in the cranium of an older male could be accidental or violence related.

Degenerative Joint Disease. While osteoarthritis or degenerative joint disease is influenced by factors such as metabolism, nutrition, bone density, vascular deficiency, infection, trauma, and heredity, the primary contributing factor is mechanical stress and physical activity. Osteoarthritis increases with age and shows patterns related to particular physical activities (Larsen 1997:162–163).

These patterns are particularly difficult to quantify, a task made even more difficult when the condition of many of the bones is poor. Following Buikstra and Ubelaker (1994:122–123), lipping (bone spurs or osteophytic development) and periarticular resorptive foci on the margins of joint surfaces, porosity or pitting, eburnation or polish, and osteophytes on joint surfaces, and Schmorl's nodes on the bodies of vertebrae were recorded and summarized (Table 22.14). After the age of about 40, all of the Peña Blanca individuals had some form of osteoarthritis in the major joints. Those under 30 had little and scattered incidences, mainly in the feet in the Early Developmental period burials, and more widespread in the later burials. Most interesting is the presence of Schmorl's nodes in a young female and young male in the later group. These indentations in the superior and inferior surfaces of the vertebral bodies are caused by herniation of the intervertebral disc. Common in the elderly and resulting from degenerative disc disease, Schmorl's nodes are uncommon in adolescents and when found are caused by trauma from a fall, heavy lifting, or during exercise or physical activities (Mann and Murphy 1990:52). In the Peña Blanca population, which is dominated by older individuals, there are none in the older group and the two who have herniated discs are quite young and probably acquired these as a result of trauma or physical exertion.

	Other	Large sternal foramen; parturition pit	Spina bifida S1 & S4	L 6 sacralized; L femur & R tibia have calluses posterior with no evidence of infection or remodeling	ib fracture Large parturition pits; lesion R prox end phalanx 1, digit 1; enthesopathy R calcaneus plantar & ilia posterior auricular surface	S1 lumbarized cation of S1 lumbarized; C2-3 fused; R andyles parturition pit; lesions R foot phalanx 1 & 2; enthesopathy on L calcaneus plantar	L5 sacralized or S1 lumbarized	Lesions or developmental defects lumbar verts; spina bifida S1-S4; L 5 misaligned; fused deciduous i2 and C - bilateral	Stafne's defect - developmental cyst L mandible, labial			inferior clavicles: pits in distal ulnae:
irved	Trauma				Healed right rib fracture near proximal end	T11 wedged Bilateral dislocation of mandibular condyles					Unknown Schmorl's nodes L4-L5	
Table 22.13. Summary of Conditions Observed	Degenerative Joint Disease	Moderate most joints, more extensive at elbows, C4-5,		Eburnation L talus calcaneus articulation; most joints too eroded to observe but none on intact surfaces	Slight to moderate all joints	Moderate most joints Moderate most joints	Moderate most joints that could be observed		Very poor condition and fragmentary; moderate vertebrae and proximal femur		Unknown C verts - some could be traumatic or a defect; slight	feet and hands
Table 22.13	Periostitis	None observed	None observed	None observed None observed	None	None None	None observed	None observed		None extensive on cranium, thorax, and limbs; active - possibly scurvy	Unknown None	
	Porotic Hyperostosis	Parietals - slight, remodeled	Orbits - slight, remodeled	None observed Occipital - very slight remodeled	Moderate orbits; slight parietals and occipital; remodeled	None Orbits - slight remodeled, parietals too fragmentary to observe	Orbits - slight remodeled; parietals fragmentarv	Orbits - slight remodeled; parietals - slight remodeled	Unknown	None None	None None	
	Sex/Age	-, 45±5	3±1 y	9∓3 m ≎†	-, 45±5	+0 50+	+ 35-45	6±2 y	+0 45+	0±2 m 0 ± 2 m	් 20-40 ද? 20-25	
	Burial	249-1	265-1	265-2 265-3	265-4	265-5 265-6	265-7	6169-1	6169-2	61 69-3 61 69-4	6169-5 6169-6	

Burial	Sex/Age	Porotic Hyperostosis	Periostitis	Degenerative Joint Disease	Trauma	Other
6169-7	2.5 y ± 10 m	Orbits unknown; parietal and occipital - coalesced with some thickening; remodeled	Active occipital and endocranial on scattered pieces that are probably B7; probably scurvy			Craniosynotosis or anagenisis of coronal suture
6169-8	√ 45+	Orbits unknown; none on parietals or occipital	None	Most joints slight to moderate	R distal ulna possible healed fracture; R MC 5 healed fracture	Enthesopathy: distal shaft R tibia and R calcaneus plantar
6169-9	Ø 18-19	Unknown	Femur and tibia shafts; remodeled	Slight at knees and feet	Projectile point tip in rib 12; Schmorl's nodes T 11 & 12	Fused foot phalanges 2 & 3, probably digit 5
6169-10	7±2 y	Пикломи	Unknown		Lesion/pit distal R femur at plantaris insertion probably traumatic	
6169-11	5±1.5 y	Orbits - moderate and healing; parietals and occipital healing	None on parts found			Enthesopathy: R radius medial shaft; fusion defects anterior vertebrae
6169-12 6169-13	4 ± 1 y 0 ± 2 m	Unknown None	Unknown Unknown			
6171-1	्र 45±5	None	None	Slight to moderate most joints; more in elbows; eburnation L rib 1 vertebral articulation	Healed depression fracture along coronal suture, healed fracture phalanx 2, digit 2 left foot	Large enthesopathy: L phalanx 1, digit 2 palmar; small bumps near distal ends of 3 L ribs
6171-2 115862-1	30-40 우 35 ±5	Unknown None	Unknown None/unknown	Unknown Most ends eroded; slight to moderate where observed	Unknown	Unknown Enthesopathy L proximal clavicle
115862-2 115862-3	fetus ♀ 18-19	Unknown None?	Unknown None?	Very slight L foot elements		Lesion L hand phalanx 1, digit 1; L
115862-4	6-9m	Unknown	Unknown	Unknown		hand elements atrophied - bones are slim but normal length Very fragmentary

	Age and			Lower			Wrist/			Ankle/
Burial	Sex	Neck	Thorax	Back	Shoulder	Elbow	Hand	Hip	Knee	Feet
Early Dev	elopmental									
265-5	50+ ♀	Р	Р	P+O	LPR	LOR	L++R	L	LOR	LR
265-6	50+ ♀	L+PO+R	P+O+R	L+P+O+	L+P+R	L+P+R	L+P+R	L+P+R	L+P	L+P+R
249-1	45±5 ♀	L++P+O+	L+P+O+	L+O+	L++R	L++	L+	L+	-	-
265-4	45±5 ♀	O+	L+P+O+R	L+P+O+	L+	L	L+R	LP	L+PO	L+R
265-7	35-45 ♀	-	L+	L+P+	L+PR	L+P	L	L+	-	L+P
115862-1	35±5 ♀	L	LO+	0	P+R	LP+	L	-	-	L
265-3	30±5 ♀	-	-	-	-	-	-	-	-	Е
115862-2	18-19 ♀	-	-	-	-	-	-	-	-	L
Late Deve	lopmental/	Classic								
6169-8	45+ ∂	L+P+O+	L+P+O+	L+P+O+	L+PR	L+P+R	L+P+	LR	L+R	L+PR
6171-1	45±5 ∂	O+	L+P+E	L+	L+PR	L+R	L+P+R	LR	L+R	L+
6169-6	20-25 ♀	L	-	S	-	-	L	Р	-	L
6169-9	18-19 👌	-	S	-	-	-	-	-	L	L

Table 22.14. Summary of Degenerative Joint Disease by Time and Age

(maximum severity; lipping L minimum, L+ moderate, L++ extensive; P porosity, P+ severe porosity; E eburnation; O osteophyte; O+ extensive osteophyte, R periarticular resorptive foci clearly present; S Schmorl's node)

General Indicators of Health

General health, often considered a measure of nutritional adequacy, is estimated by examining a number of factors including stress and deprivation during the growing years and exposure to infectious pathogens. More mobile groups with a diet supplemented by hunting and gathering should exhibit health patterns distinct from those heavily dependent on corn agriculture. Studies of populations in the Midwest and upper Midwest suggest that health was most severely compromised during the transition to a corn diet, rather than when dependence was greatest and that much of that associated with corn dependence was more a function of population density than of diet (Buikstra 1992:97-98). Similarly, Stodder reports increased stress and mortality in subadults and reproductive age females from the Mesa Verde Late Pueblo II-III period as compared to Basketmaker II-Pueblo II period females and attributes it to changes in subsistence, settlement, and regional climatic patterns (Stodder 1987). Again, with the small Peña Blanca sample, strong patterns are unlikely and those found could be due to sampling error.

Growth Related. Growth is a highly sensitive indicator of the health of a community. It is

affected by genetics, hormone deficiencies, and psychological stress, infectious diseases, and the environment, especially nutrition. Well fed children are taller and grow faster than poorly nourished ones. Young children are the most sensitive to environmental conditions while adolescent growth is genetically influenced. Numerous studies comparing children in maize dependant and foraging populations document declines in growth (long bone length and cortical thickness) and increases in other stress indicators (porotic hyperostosis and enamel defects) associated with a switch to a maize diet (Larsen 1997:8–12).

When the few Peña Blanca children are arranged by age (Appendix 5.3), steady rates of growth can be observed in all instances but one. The LA 6169 -11 child with a mean age of five years is considerably smaller than one from LA 265-1 age three. Since this child lacks evidence of the conditions that could influence growth (e.g., chronic infection), this probably means no more than the LA 265-1 child falls toward the end of the suggested age range (4 years) and that from LA 6169 at the beginning of the range (3.5 years). With only one child from the later time period, it is not possible to evaluate growth trajectories between the two samples.

Tooth size is also influenced by nutrition and has been shown to decrease when populations shift from foraging to farming (Larsen 1997:24–25). Again, the Peña Blanca burial population is small and includes too many very young and old individuals with missing and worn teeth to adequately address whether tooth size decreased with agricultural intensification.

Dentition. Teeth provide information on age at death, population affinity, and on health, diet, and nutrition, and are often the best and only parts preserved in many situations. Dental hypoplasias and pitting are useful in assessing health and nutrition while dental wear and dental disease (caries, abscesses, and tooth loss) can reflect the relative amount of sugar or carbohydrates in the diet and the amount of cooking (Buikstra and Ubelaker 1994:47).

Tooth enamel is especially sensitive to nutritional deficiencies and disease and provides a permanent record of juvenile developmental disturbances (Buikstra and Ubelaker 1994:56; Larsen 1997:44). Dental enamel begins forming in the fourth month in utero and continues to form until the twelfth year (Larsen 1997:48). Permanent incisors are the most sensitive to stressors producing hypoplasias between birth and three years and canines between three and six years (Rose et al. 1985:289). Even minor metabolic disturbances can result in visible changes in tooth enamel. Potential causes of dental hypoplasias include hereditary anomalies, localized trauma, and systemic metabolic stress. The first two are rare; the primary metabolic stress is due to dietary deficiency. Since metabolic insults affect only that portion of the tooth that is forming, the location provides a chronological indicator of stress history. There is also evidence that the size of a hypoplasia line reflects the duration or severity of the stress episode, or combination of the two (Larsen 1997:45-50). Adults often have fewer defects than juveniles and young children more than older children suggesting those undergoing stress during childhood tend to die younger (Larsen 1997:53).

Numerous studies have found that the frequency and/or severity of dental hypoplasias in both deciduous and permanent dentition are greater in farmers than in hunter-gatherers (Cohen and Armelagos 1984:589). Circumstances conducive to increased stress, and often associated with the transition to a farming economy, include poor nutrition, population aggregation, and increases in infectious disease (Larsen 1997:61).

None of the Peña Blanca Early Developmental period burials with deciduous teeth have hypoplasia lines, although some have small pits, indicating some maternal and infant stress. Peak line formation on permanent teeth occurred between 2 and 3 years and between 3.5 and 6 years of age (Table 22.15). The samples, especially the later one, which includes one child 4 years old and one individual with only two scorable teeth, are insufficient for chronological comparisons. For the group as a whole, the maxillary first incisors and mandibular canines (Figs. 22.7, 22.8) show an almost continuous high rate of teeth with hypoplasia lines from 2 until 5.5 years of age. Little tooth crown development takes place between about 7 and 10 years and third molars generally develop between about 10 and 14 years (Buikstra and Ubelaker 1994, fig. 24). High rates between 2 and 4 years of age could be due, at least in part, to weaning stress, while later lines are

Table 22.15. Number of Individuals with
Hypoplasia Lines (M2-I1) by Half Years of
٨٣٥

	Age	9	
		Late	
Age in	Early Dev.	Dev/Col	Total
Years	(n=9)	(n=3)	(n=14)
1.0-1.4	1	-	1
1.5-1.9	1	-	1
2.0-2.4	6	-	6
2.5-2.9	5	1	7
3.0-3.4	3	1	4
3.5-3.9	7	2	10
4.0-4.4	4	1	7
4.5-4.9	4	2	6
5.0-5.4	4	1	6
5.5-5.9	4	1	7
6.0-6.5	2	1	3
6.5-6.9	1	-	1

Note: incidences on third molars include 4 developed between 13 and 14 years and one between 11 and 12 years of age

(calculated following Martin et al. 2001)

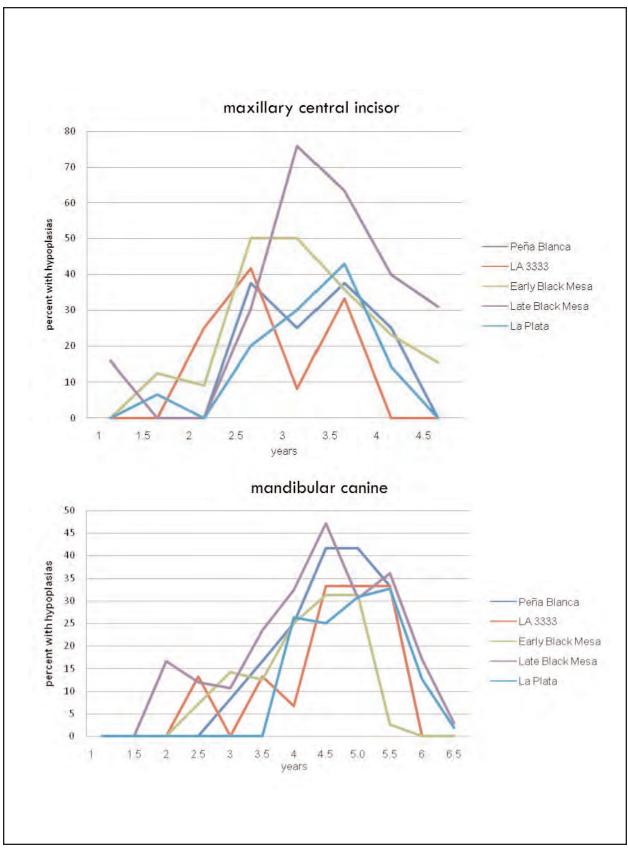


Figure 22.7. Comparison of proportions of hypoplasia lines .

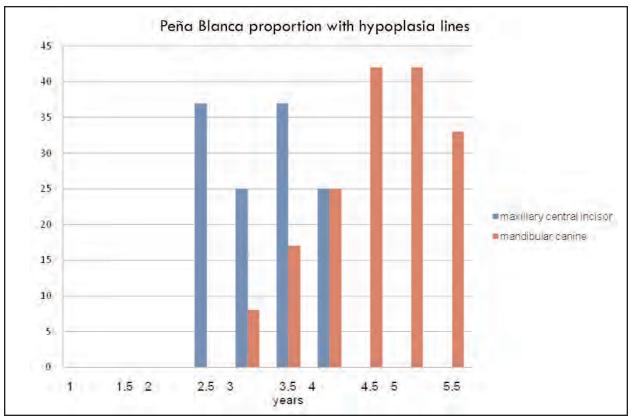


Figure 22.8. Proportion of Peña Blanca teeth with hypoplasia lines by age of formation.

more likely from periodic food shortage (Larsen 1997:49, 51). The small Early Developmental population has no indication that those dying young were more stressed. The mean proportion of scorable teeth (teeth having sufficient enamel and not coated with calculus) with lines for adult females (n = 6, mean 25.9, range 0-41.7) is slightly higher than that for the two children (mean 25.2, range 23.1-27.3). Rates for the later burials include two females at 20.0 and 57.1 percent (mean 38.5) and 3 males ranging from 9.1 to 38.5 percent (mean 22.5). Neither of the children from later time periods have enough scorable teeth to evaluate. With individual rates so variable, it is difficult to conclude there are changes associated with the time periods. This could indicate that the amount of stress recorded in dental hypoplasias was similar in the two populations or it could be entirely because of the small sample size.

Compared to other populations scored in a similar manner (Table 22.16, Fig. 22.7), the Peña Blanca sample generally falls in the middle of the range for maxillary central incisors

but is on the high end for the later ages (4–6 years) recorded for the mandibular canines. In general, one population that was clearly more heavily dependent on agricultural foods (La Plata) did not have greater incidences of the stressors that result in hypoplasia lines. It may well be that the differences in degree of dependence on agricultural products in many of these populations was not sufficient to result in clear differences.

In prehistoric Southwestern populations, foragers and early agricultural groups generally have few caries but rapid dental wear often led to abscesses and antemortem tooth loss. More agriculturally dependent groups have high rates of both caries and abscesses. Caries rates for a number of populations range from 8 to 85 percent with caries, 4 to 62 percent with abscesses, and 13 to 63 percent who had antemortem tooth loss (Stodder 1989:180–181). Percentages are undoubtedly influenced by the age distribution within the population and how instances were summarized, making

Age Interval	Peña	Blanca		9 Basin, LA 333	Black M	esa Early	Black N	lesa Late	Lal	Plata
	Incisor	Canine	Incisor	Canine	Incisor	Canine	Incisor	Canine	Incisor	Canine
.5 - 1.0	0.0	0.0	0.0	0.0	0.0	0.0	16.0	0.0	0.0	0.0
1.0 - 1.5	0.0	0.0	0.0	0.0	12.5	0.0	0.0	0.0	6.7	14.3
1.5 - 2.0	0.0	0.0	25.0	0.0	9.1	0.0	0.0	16.7	0.0	0.0
2.0 - 2.5	37.5	0.0	41.7	13.3	50.0	7.1	30.4	12.0	20.0	0.0
2.5 - 3.0	25.0	8.3	8.3	0.0	50.0	14.2	75.9	10.7	30.0	0.0
3.0 - 3.5	37.5	16.7	33.3	13.3	35.7	12.5	63.3	23.5	42.9	0.0
3.5 - 4.0	25.0	25.0	0.0	6.7	23.1	25.0	40.0	32.4	14.3	26.3
4.0 - 4.5	0.0	41.7	0.0	33.3	15.4	31.3	31.0	47.2	0.0	25.0
4.5 - 5.0	-	41.7	-	33.3	-	31.3	-	30.6	-	30.9
5.0 - 5.5	-	33.3	-	33.3	-	25.0	-	36.1	-	32.7
5.5 - 6.0	-	0.0	-	-	-	0.0	-	17.1	-	12.7
6.0 - 6.5	-	0.0	-	-	-	0.0	-	2.8	-	1.8

 Table 22.16. Proportion of Individuals with Hypoplasia Lines on the Maxillary Central Incisor and the

 Mandibular Canine by Age Compared to Other Populations

Sources: LA 3333, Akins n.d.b: Table 13; Black Mesa: Martin et al. 1991: Table 5-7; La Plata: Martin et al. 2001: Table 4.8

		< 30 years ((n=7)		35-40 y (n	=2)		45+ (n=6))	A	l Mature (n	=13)
	# teeth	# caries	# teeth w/ caries	# teeth	# caries	# teeth w/ caries	# teeth	# caries	# teeth w/ caries	# teeth	# caries	# teeth w/ caries
Upper	Dentition											
M3	5	-	-	3	1	1	6	2	2	14	3	3
M2	6	-	-	3	1	1	5	2	2	14	3	3
M1	7	-	-	2	-	-	7	4	4	16	4	4
P2	8	-	-	4	2	2	10	3	2	22	5	4
P1	8	7	3	2	-	-	9	1	1	19	8	4
С	8	-	-	3	-	-	11	1	1	22	1	1
12	6	-	-	4	1	1	12	1	1	22	2	2
11	6	-	-	1	-	-	11	1	1	18	1	1
Lower	Dentition											
11	6	-	-	4	3	2	10	-	-	20	3	2
12	6	-	-	3	1	1	12	2	2	22	3	3
С	6	-	-	3	-	-	12	-	-	22	-	-
P1	6	-	-	3	-	-	11	-	-	21	-	-
P2	6	-	-	3	-	-	9	1	1	19	1	1
M1	7	3	2	2	-	-	9	4	5	19	8	7
M2	6	-	-	3	1	1	6	2	2	15	3	3
M3	6	-	-	2	2	1	7	7	4	15	9	5

interpopulational inferences difficult.

For Peña Blanca (Table 22.17) only one child (the 7 year old) has caries (one in a maxillary molar) and relatively few were found in individuals under the age of 30 (9.7 percent of the teeth). Incidences increase in the 35 to 40 year (28.6 percent of teeth) and the 45 and older groups (23.1 percent of the teeth). On an individual basis, only one adult burial with teeth was without caries and that individual is a young female (18 to 19 years) resulting in a relatively high proportion (92.3 percent) of the adults with teeth having one or more caries. The general pattern is similar at the Classic period site of LA 70 where few young adults (21–35 years) had caries, more middle age adults (36–55 years) had caries, and few older adults (56+ years) had caries (Helgar 1976:J23). Alfred Herrera, another Classic period site, was different in that caries were almost as frequent in younger adults (Helgar 1968:291).

Antemortem loss and abscesses (Table

Tooth	249		367		367		367		616		616		617	
	♀ 4 5		♀ 4 5		⊊ 5 0		♀ 5		♀ 4		∂ 4		ð 45	
	AM	AB	AM	AB	AM	AB	AM	AB	AM	AB	AM	AB	AM	AB
Upper De	ntition													
M3	-	-	-	-	2	-	2	-	?	-	2	-	-	-
M2	-	-	-	-	2	-	2	-	?	-	2	-	-	1
M1	-	-	-	-	1	1	2	1	1	-	2	-	-	-
P2	-	-	-	-	-	-	1	1	2	-	1	1	-	-
P1	-	-	-	-	-	1	1	1	2	-	1	-	-	-
С	-	-	-	-	-	-	1	-	2	-	-	-	-	-
12	-	-	-	-	-	-	-	-	2	-	-	-	-	-
11	-	-	-	-	-	-	-	-	2	-	1	-	-	-
Lower De	entition													
1	-	-	-	-	-	2	-	-	1	-	2	1	-	-
12	-	-	-	-	-	1	-	-	1	-	-	1	-	-
С	-	-	-	-	-	-	-	-	?	-	-	-	-	-
P1	-	-	-	-	-	1	-	-	1	-	1	-	-	-
P2	-	-	-	-	-	1	2	-	1	-	1	-	-	-
M1	-	1	-	-	-	1	1	-	1	-	2	-	-	-
M2	1	2	-	-	1	-	1	-	1	-	2	-	-	-
M3	-		-	-	1	-	1	1	-	-	0	-	-	-
Totals	1	3	0	0	7	8	14	4	17+	0?	18	3	0	1

Table 22.18. Antemortem Loss (AM) and Abscesses (AB) for Individuals 45 Years or Older

22.18) were all in individuals over 40 years of age, and several had considerable loss and abscessing. Burials from the Classic period sites of LA 70 (Helgar 1976:J22–J23) and Alfred Herrera (Helgar 1968:290) indicate that abscessing began younger, two young (21–35 years) males and a female from LA 70 and one each from Alfred Herrera had abscesses as did six older males and four females from LA 70 and twelve males and a female from LA 70 and therrera. In addition, three older (over 35 years) males had lost half or more teeth in a dental quadrant as did a young female from LA 70 and four older males and three females from LA 70 and four older males and three females from Alfred Herrera.

Attrition scores increase with age for both the maxillary and mandibular anterior teeth and molars (Table 22.19). There is a very slight tendency for the later group of individuals to have greater scores for the anterior teeth and maxillary molars when compared by age sets. While this could indicate a greater reliance on maize ground on a metate, the sample is small and age ranges sufficiently broad, that no conclusions are possible.

Porotic Hyperostosis. Active, unhealed porotic hyperostosis lesions, found on the cranial vault and upper portions of the orbits, mostly occur in children less than 5 years old. When found in older juveniles and adults, the lesions are generally remodeled and healed. This age patterning suggests that the lesions were formed during episodes of childhood anemia. Diet was certainly a major contributor, but others include low birth weight, which can predispose a child to anemia and blood loss, chronic diarrhea, and parasitic infections (Larsen 1997:29–32).

Dietary iron deficiency anemia occurs when foods contain insufficient iron or when the iron is poorly absorbed. Meat is high in iron and is efficiently absorbed while the iron in plant foods is generally poorly absorbed. In addition, substances found in many nuts and cereals (including corn) inhibit iron absorption. Combining plant foods with meat or fish enhances the iron absorption (Larsen 1997:29). Regardless of the cause, where the cause of the anemia is dietary, a more varied diet containing sufficient animal protein should result in lower incidences of porotic hyperostosis. Some regions that have enough time depth to compare foragers with intensive agriculturalists show clear increases in the rates of porotic hyperostosis through time. The association in

Individual	Sex/Age	Anterior Maxilla	Anterior Mandible	Molars Maxilla	Molars Mandible
265-5	⊈ 50+	7.5	7.0	10.0	6.3
265-6	♀ 50+	5.9	5.7	-	4.1
6171-1*	∂ 45±5	7.3	6.3	7.2	8.0
6169-8*	<i></i>	7.1	6.7	-	10.0
265-4	♀ 45±5	5.1	5.0	5.3	7.5
249-1*	♀ 45±5	5.4	5.3	3.8	3.6
115862-1	♀ 35±5	4.4	4.6	3.5	3.5
265-7	♀ 35-45	3.7	4.7	-	4.2
265-3	♂ 30±5	2.7	3.0	3.9	3.6
6169-9*	<i>∛</i> 18-19	2.4	-	2.4	2.5
115862-3	♀ 18-19	2.0	2.7	3.1	2.6

Table 22.19. Attrition Scores Oldest to Youngest Mature Individuals (Anterior Teeth are Scored 1-8 and Molars 1-10)

* Late Developmental/Coalition sample

the Southwest is probably complex. Sedentism, especially crowded and dark living conditions and poor sanitation, also contributes to the parasite load and produces similar results (Larsen 1997:36–37). Indeed, the cause probably varies by population and setting. When the patterning by age is examined, porotic hyperostosis in some populations peaks under 1 year of age and is probably due to maternal malnutrition and low birth weight. In other populations the peak is between 1 and 3 years of age and probably due to weaning diets, diarrheal syndromes, and increased exposure to infection brought on by the loss of natural immunities acquired at birth. When porotic hyperostosis co-occurs with generalized infection (periostitis), the anemia was probably a product of infection, perhaps combined with dietary deficiency (Stodder and Martin 1992:58-59).

For Peña Blanca (Table 22.20), no child under a year old has signs of porotic hyperostosis, suggesting maternal stress was slight or absent, at least for these individuals. This changes dramatically in the next two age groups where all children had some degree that could result from the nutritional stresses caused by a weaning diet. Just over half of the females had this condition while none of the males did. There are no distinct patterns associated with time period in this small sample, however, there are differences between the sites and between males and females. Most of the females at LA 265 had signs of porotic hyperostosis while neither of those from LA 115682 did. All but three of the instances were slight or very slight in expression – and those were moderate. One individual with a moderate expression also had active periostitis that probably is the result of scurvy. The only observation of active, still healing porotic hyperostosis was in a 5- year-old child with no other signs of infection. This, too, may have had a different causation.

Rates and patterns of porotic hyperostosis are difficult to compare because of different standards used in recording and reporting. A compilation of 12 Southwestern populations gives a range of 15 to 88 percent for children up to 10 years of age (Stodder and Martin 1992:58). The Navajo Reservoir, Grasshopper, Arroyo Hondo, and Gran Quivira all have relatively low rates (less than 25 percent) while Black Mesa, Mesa Verde, late Canyon de Chelly, and San Cristobal have very high rates (more than 75 percent). The small Peña Blanca sample (50 percent) falls in the middle range.

Periosteal Reactions. Nonspecific infection, manifest as periosteal reactions or osteomyelitis, are responses to bacterial infections or traumatic injury. Periostitis is the basic inflammatory response resulting in irregularities in the bone

						-		21				
Time/Site	< 1 year		1-4		5-9		Females		Males		Total	
	With	Without	With	Without	With	Without	With	Without	With	Without	With	Without
Early Developmental												
LA 265	-	1	-	-	-	-	4	1	-	-	5	2
LA 6169	-	3	-	-	2	-	-	-	-	1	2	4
LA 115862	-	-	-	-	-	-	-	2	-	-	-	2
Total E.D.	0	4	1	0	2	0	4	3	0	1	7	8
Late Developmental/0	Coalition											
LA 249	-	-	-	-	-	-	1	-	-	-	1	-
LA 6169	-	-	1	-	-	-	-	1	-	1	1	2
LA 6171	-	-	-	-	-	-	-	-	-	1	-	1
Total LD/C	0	0	1	0	0	0	1	1	0	2	2	3
Total Peña Blanca	0	4	2	0	2	0	5	4	0	3	9	11

Table 22.20. Peña Blanca Summary of Porotic Hyperostosis

surface while osteomyelitis involves the surface and subsurface bone. Foraging populations generally have fewer and less severe instances of periostitis than groups making the transition from foraging to horticulture or to intensive agriculture. Increased population size and density are the main contributors along with interactions between groups and an emphasis on nutritionally poor foods, such as corn. Malnourished individuals are more susceptible to infectious pathogens and infection worsens nutritional status (Larsen 1997:82–91).

Similar porotic lesions from chronic inflamation are characteristic of scurvy, which is caused by vitamin C deficiency. Chronic bleeding results in minor trauma to vessels and lesions, particularly on the skull, scapula, and metaphyseal ends of subadult long bones. The most distinctive lesions are found on the greater wing of the sphenoid but lesions also occur on the roof and lateral margins of the orbits, the posterior maxilla, the interior surface of the zygomat, the infraorbital foramen, the palate, and the alveolar process of the maxilla. One study of North American subadults found instances were greatest in the birth to 2.9 year group (7.0 percent) and decline with age (1.0 percent in the 13 to 18.9 year age groups) with the overwhelming majority (87.0 percent) occurring in children under 7 years of age (Ortner et al. 2001:344-346). The transition to agriculture, along with losses due to cooking and prolonged storage, reduced the contribution of fresh fruits and uncooked vegetables to the diet and the vitamin C. This vitamin is necessary to fight infection and for normal formation of body tissues. Reliance on corn would predispose people to scurvy, especially when fresh produce was not available (Roberts and Manchester 1995:171).

For the prehistoric Southwest, rates of periostitis are generally low and increase over time, ranging from 2 percent in the Navajo Reservoir population to 23 percent at Black Mesa (Stodder and Martin 1992:62–63). Scurvy, which comprises an unknown proportion of the periostitis, is rarely reported. However, a recent study of collections in the Smithsonian Institution found lesion patterns characteristic of scurvy in subadults from Hawikuh, Pueblo Bonito, and Jemez with an overall rate of 2.0 percent. Rates are higher for sites in the Midatlantic (6.0 percent) and Southeast (38.0 percent) regions and scurvy is absent in those from the Plains.

One Early Developmental Peña Blanca burial, a newborn with extensive periostitis on the cranium, thorax, and limbs and one of the later burials, a 2.5-year-old child with active lesions on the greater wings of the sphenoid, the inferior occipital, and temporal bones, have lesion patterns suggesting scurvy. The only other periositis is on a young male with remodeled lesions on the tibia and femur shafts.

SUMMARY AND CONCLUSIONS ON MOBILITY AND AGRICULTURAL DEPENDENCE

While the number of Early Developmental Peña Blanca burials is small, the overall demo-

graphic profile is similar to that expected from a preindustrial population. This suggests that it is, at least vaguely, representative of the prehistoric populations living at these sites. If the burials are a reflection of that population, the intriguing combination of very young and very old individuals could suggest that the more mobile section of the population, older children, young and middle-aged females, and virtually all of the males, spent much of their time away from the site. Older females, very young children, and undoubtedly a portion of the individuals in those age groups that experience low mortality could have lived at the site yearround with influxes in population when labor was needed to plant and harvest the crops.

Finding relatively few burials is also consistent with a population that spent time away from the site and experienced most early to mid-aged deaths away from the residences. A general lack of patterning in mortuary practices above the site level suggests a kind of loose organization may have persisted throughout the time span.

The best evidence, although the sample size is small, for mobility in the Early Developmental population is in the long bone measurements and indices. Leg strength among females decreased through time while arm strength increased somewhat suggesting that a more mobile collecting strategy gave way to a sedentary one where corn grinding occupied a greater portion of their time. In males, mobility may have decreased somewhat but the wide range within the indices suggests a variety of roles for males. Since even the older females interred at these sites have robust and ovoid femurs, they had to have been mobile at one point. This pattern is not simply a matter of females tending the fields while males were away hunting.

Patterns of degenerative joint disease are also consistent with greater mobility in the early group. Feet are most commonly affected in the early group while evidence of arthritis is more widespread in the later group suggesting different kinds and probably more labor intensive activities. Overall, the early group was remarkably healthy, which is consistent with a more diverse diet. Indications of seasonal food shortage were found in both the early and later Peña Blanca groups, dental hypoplasia lines indicate relatively mild periodic stress beyond the age of weaning. Possible scurvy was found in both the Early and Late Developmental groups, suggesting some young children and their mothers may have lacked the fresh fruits and vegetables needed to provide Vitamin C. For this group, there is little evidence of infectious disease, also suggestive of a fairly adequate diet and a dispersed population.

Few in the Peña Blanca population experienced caries under the age of 30 and few had lost teeth before the age of 50. The Cochiti Dam populations seem to have greater frequencies and earlier onsets, which is consistent with a greater reliance on a carbohydrate diet. Within the Peña Blanca populations, the amount of attrition is greater in the later group, again, consistent with a diet that included more ground corn.

In sum, the data tend to support an inference of greater mobility and a more diverse diet for the Early Developmental population. It also suggests that succeeding groups were more sedentary and relied more on corn agriculture.

Cultural Affinity and Social Behavior

Increases in site density during the Late Developmental and Coalition periods have been interpreted as the result of colonization from the San Juan Basin and Colorado Plateau as well as natural increases augmented by immigration (Ware 1997:1–12). The possibility of a hiatus in occupation between the Early and Late Developmental periods and a change in the direction of ceramic influence from south to north during the Early Developmental could also suggest shifts in the populations occupying the Peña Blanca sites. In addition, the Cochitis do not claim direct association with the majority of the sites in the area, the exception being those adjacent to Frijoles Canyon (Lange 1990:8).

Thus, it is entirely possible that three distinct groups are represented in the prehistoric occupation of the Cochiti area. The original occupants of the Rio Grande Valley, including the Peña Blanca Early Developmental population, could have been ancestral Tiwa who were replaced by Tewas expanding down the Rio Grande or from the Upper San Juan area. Keresan ancestors of the Cochitis may have entered the area after AD 1300 (Ford et al. 1972:30–35) and could have inhabited at least some of the Classic period sites.

Cultural affinity can be approached by examining biological and cultural attributes. Cultural attributes, such as mortuary practices, should be more similar between related groups than successive but different groups. Given that there are only so many variations on the theme of human burial, these differences may be too subtle to provide clear indications of affiliation. Metric and nonmetric variation along with distributions of developmental disturbances might also provide information when adequate comparative populations exist. Finally, evidence for interpersonal violence could signal entry of a new group into an area. If found, trauma and violent deaths could provide insight into whether these kinds of conflicts occurred in the Cochiti area.

Mortuary Practices

According to Ellis (1968:60–69), historic Pueblo death rites identify the deceased's membership in social units in order for the individual to take their proper place in the afterworld. The social group can be ceremonial and not strictly related to kinship, like the corn groups of the Tiwa or like the religious groups of the Keresans, or it can be kinship based like the Tewa moieties. Isleta Tiwa preburial rites include laying a line of cornmeal to provide a road directing the deceased in the proper direction for his corn group. Face painting, using the color and emblems of the corn group, identify the spirit in the afterworld. Individuals are interred with their heads to the south, the direction from

which some Isletans came. Burial goods consisting of an individual's personally owned ceremonial equipment are buried apart from the body (Ellis 1968:62-64). Tewa burials are oriented east so the spirit can continue its journey. Religious objects are not considered personal possessions and are taken by members of his religious society. Four days after the interment, a ceramic vessel containing pieces of food brought by related families is deposited on the village trash mound (Ellis 1968:65-66). Keresans also paint faces to identify membership in a religious society. An individual's personal belongings and a vessel containing bits of food are laid on a special mound outside of the village by a religious society leader in some villages and thrown off a cliff in special areas at other villages (Ellis 1968:67–69). Although subtle, these differences may have antecedents that are recorded in prehistoric burials. Just as the practice of interring burials throughout a site and flexed and semiflexed burial have been replaced by extended burial in formal cemeteries, deposition of burial goods in areas other than the grave may be an accommodation to Catholicism (e.g., Ellis 1968:72). More important may be whether personal and religious or ceremonial items belong to the individual. If ceremonial and religious objects belonged to the individual, they would be buried, but if ownership rested with some group, they would not.

While there appears to be no patterns in the Rio Grande area mortuary practices, at least at the level examined, it may be because these are quite subtle. For example, lack of consistency in orientation may reflect membership in a group represented by a direction (either two or four directions). In cases where the groups represent four or even six directions, the overall proportion should reflect how many members belonged to a particular group, with all directions represented. In other groups, orientation may reflect the direction from which they came or a dual division. Similarly, we might expect some groups to bury all kinds of personal possessions with the individual, while others would not include religious or ceremonial objects, and still others might place goods apart from the body.

Looking to the northwest, the San Juan and Colorado Plateau, where some of the possible immigrants are thought to originate, finds a similar lack of consistency or evidence of continuity. Few reports describe more than a small number of burials and the information is often in a form that makes quantification and comparisons difficult. Many of the variables that are fairly routinely recorded are subject to observer bias and error. Excavation strategies, such as how much extramural area is examined, influence proportions of structure versus extramural burials, and interpretations of the burial location and grave preparation can be vague or subject to multiple interpretations. Likewise, definitions of extended, flexed, and semiflexed burial positions, and forcing a choice between those three, introduces a number of biases. Orientation is particularly vague as some report the direction faced, some the top of the head, some give no definition as to what orientation means or apply any combination of definitions (e.g., LA 70). Furthermore, the level of precision varies from exact degrees to one of the four cardinal directions. Objects considered burial goods also vary. Some consider everything in a grave as a burial good, even if it originated in the trashy soil used to fill the pit. Preservation of perishable materials (e.g., textiles, mats, leather) also differs. When these materials are preserved, few burials are without goods (e.g., Arroyo Hondo), but in areas where preservation is poor, more burials are interpreted as having no grave goods. Given these complexities, and the generally small sample sizes involved, anything other than major differences or changes in burial patterns are unlikely to be detected.

Table 22.21 examines these variables for the Cochiti area, Rio Grande, and three northern Anasazi populations. If immigrants from the northern areas arrived during the Late Developmental or Coalition period, burial practices at the later Peña Blanca components, at North Bank, the Galisteo Basin site of LA 3333, Pindi, and early Arroyo Hondo should resemble those from Dolores, La Plata, and/or Chaco Canyon or those of the Pajarito Plateau (e.g., Anschuetz et al. 1997:107; Crown et al. 1996:198). Those at the Classic sites could be more like those of the large pueblos on the Pajarito Plateau, those to the north (e.g., Sapawe), or sites to the west.

Within this small database, a few things stand out. Burial location is almost always mixed with only Arroyo Hondo having a vast majority of extramural (trash and plaza locations) and Alfred Herrera, Dolores, La Plata, and the later Chaco sample predominantly structure burials. The rest are more evenly distributed. While the northern sites tend toward burial in structures, this is a rare pattern in the Rio Grande samples. Another difference may be in the number of flexed burials. Large proportions of tightly flexed burials are typical of the Classic period sites and Arroyo Hondo Coalition but not of the earlier Rio Grande or the northern sites. When orientation (defined here as alignment of the spine and head with the head determining the orientation) is ranked by cardinal direction (for example, using the proportion for northwest, north, and northeast for the north total), easterly is the most common direction to rank first, usually followed by south. The exceptions are the Early Developmental Peña Blanca, the Alfred Herrera Classic period, and La Plata groups where southerly is ranked first, and the LA 70 Classic sample where westerly is ranked first. The later may be an error based on the way these burials are described. When translating many of these into a direction, I assumed that a burial placed on the left side facing south would have their head to the east and when the description said head west, they meant the orientation was west.

Northwest orientations are rare or absent in Coalition and Classic sites, suggesting that either orientation had nothing to do with the place from which the group came or that the origin was not in the upper San Juan. Orientation to the north and northeast are found but neither are as common as eastern orientations. If orientation does indicate place of origin, the high proportion of westerly ori-

			Galisteo										
			Basin LA	North		Alfred						Chaco Small	Small
	Реñа	Peña Blanca	3333	Bank	Pindi	Herrera	LA 70	Arroyo Hondo	Hondo	Dolores	La Plata	Sites	es
		Late Dev./	L Dev/									1030-	1100-
	Early Dev.	Coalition	Coalition	Coalition	Coalition	Classic	Classic	Coalition	Classic	850-1250	PII-PIII	1150	1175
% structure	56	50	67	47	54	86	45	28	ø	75	02	51	86
% extramural	44	50	33	53	38	14	55	72	92	25	30	49	14
% extended	ω	17	ı	14	0	0	ო	ı	ı	23	ო	4	22
% semiflexed	67	83	61	57	52	7	10	·	ı	43	50	48	52
% flexed	25		39	29	47	91	87	"almost invariably flexed"	riably flexed"	34	47	48	26
MN %	ı	ı	ო	10	ო	ı	•	ı	ı	9	2	9	4
N %	15	17	16	25	20	ø	19	20	œ	18	20	13	ø
% NE	80	17	12	80		Ð	ო	·	ı	18	2	0	•
Э %	80	17	41	33	30	16	24	43	58	27	22	25	42
% SE	15	50	9	17	ო	ω	•	·	ı	12	2	œ	•
% S			12	80	23	26	24	20	25	9	22	21	19
% SW	23	ı	ო	80	ı	ω	ı	'	ı	ო	10	0	•
M %	31	ı	9		ı	18	30	16	ø	თ	10	23	27
Rank NW-NE	4	ო	2	7	ო	4	4	7	ო	7	4	4	4
Rank NE-SE	7	-	-	-	-	0	2	-	-	-	ო	-	~
Rank SE-SW	-	7	ო	ო	ო	-	ო	7	0	ო	-	0	ო
Rank SW-NW	5	ı	4	4	0	ო	-	4	ო	4	7	ო	0
% with no goods	33	62	65	100	83	83	48	36	71	@66	43	<32	<29

entations at LA 70 could suggest part of the population came from the west and others from the south and east. Similar proportions could indicate a four-direction system that determined the orientation of graves. Alternatively, with the exception of La Plata, easterly is always ranked first or second, this may reflect the historic Tewa pattern reported by Ellis (1968) of orientation to the east so the spirit can continue its journey.

In general, the variability in the Cochiti, Rio Grande, and the more northern samples suggests that either conceptual rules concerning orientation were not that rigid or that it was complex with membership in a group associated with a certain direction producing the variable results. Internal consistency within sites, as opposed to groups of sites (e.g., Peña Blanca, Chaco Canyon, and La Plata), is much greater than indicated by summary totals, suggesting that orientation may be more of a local or family decision.

Looking to the north, burial practices at Forked Lightning and Pecos Pueblo lack quantification on many aspects of mortuary practice. At Forked Lightning (Coalition period), where 152 burials were found, burial practices were similar to those at the Cochiti Dam sites and at Arroyo Hondo. Burial tended to be in midden areas or rooms used for middens; none was subfloor. All were flexed or semiflexed, usually wrapped in twill matting with no regularity in orientation and little in position (30 were flexed on the left side, 21 on the right, 13 face down, and 47 on the back). Individuals with burial goods (30 of the 152 or 19.7 percent) had vessels or parts of vessels (n=18), Olivella shells or disc or tubular beads (n = 8), and a variety of other material. Five individuals, three older males and two young to middleaged females had medicine kits (Kidder 1958:26-28). At Pecos, Kidder excavated 1,938 burials dating from the Late Coalition/Early Classic to the Historic period. Burials were found everywhere; however, there were no subfloor infant burials, only a few premature infants found in pots. Throughout the prehistoric time spectrum all were flexed except for a

few small infants and four adults. The most common position was face down and tightly flexed (n = 272) with a few described as loosely flexed (n = 26). Burial on the back was common in the Late Coalition-Early Classic burials (36.7 percent of 49 burials) then declined steadily in favor of burial face down. Orientation was not uniform with the midden burials placed parallel to the slope rather than any particular direction. There was little evidence of perishable burial goods and ceramic vessels were rare and usually found with infants or small children. Other types of goods were infrequent. Shell (with 13) and turquoise (with 12) were usually found with infants and children under 2 years of age. Kidder describes a number of "medicine outfits" buried with adults of both sexes. Some of the more unusual finds include three pierced wolf molars with one, five wolf molars plus a crinoid stem with another, and one with a beaver tooth pendant (Kidder 1932:106-108, 1958:279-295). The prevalence of tightly flexed burial and variable orientation is consistent with practices recorded for LA 70 and Alfred Herrera.

Information on the burial practices for the Pajarito Plateau and the more Northern Rio Grande area is sparse to nonexistent, which is unfortunate, given the amount of excavation done at several of the large sites. What is reported implies a great deal of diversity between sites in the location, position, and in presence and types of burial goods. Hewett comments that the search for burials at Tyúonyi located none until they placed a series of trenches through the talus in front of the cliff wall, and none of those had pottery or other vessels (Hewett 1938:97). At Otowi, about 150 burials were excavated from the area around the structures. Burials were so dense that early burials had been disturbed when placing later ones. Burial position was not uniform, but more were placed on the back than on the face or side and the knees were always drawn up toward the chest. Some had matting or basketry and almost all had ceramic vessels, usually food bowls. Bone awls and polishing stones were also abundant (Hewett 1938:130-132). Summarizing his finds at Tsankewi'i and Tsirege, Hewett (1938:134–135) describes burial in houses, subfloor in houses, in urns, in crypts, and in cemeteries (mounds just outside the buildings). Flexed burials were most common. Infants were found under room floors at Puye, Tshirege, and Tsankawi (Kidder 1958:280). Clearly, burial practices on the Pajarito Plateau varied considerably and could suggest that divergent groups occupied the area.

Groups of artifacts considered medicine kits have a widespread distribution and one that could relate back to who owned an individual's religious or ceremonial objects. Kidder (1926:2) describes a pouch with a medicine stone, concretions, and two whistles buried with a middle-aged male, another middle-aged male with a medicine outfit of small oddly shaped stones and fossils (Kidder 1958:26-27) from Forked Lightning. In another publication, Kidder describes medicine outfits from three other individuals at Forked Lightning. A young female had a hematite concretion, three hematite pebbles, two waterworn obsidian pebbles, a quartz crystal, a limestone cylinder, a limestone pebble, six tiny pieces of turquoise, an oblong bone dice, and a crinoid stem. An adult male was buried with five small pebbles, an obsidian or dark quartz pebble, a piece of turquoise, a piece of limestone, a segment of crinoid stem perforated in the middle, two oblong dice, and a stubby awl. The third, an adult female, had a large flat fossil, a fossil bivalve, two crinoid stems, a tapering cylinder of soft white limestone, and a drill with a missing tip (Kidder 1932:110). Eight similar kits were found at Pecos Pueblo. Three from Glaze I contexts include an adult with two gypsum crystals, two pieces of limestone, three pieces of crystalline quartz, a bone tube, and a bone flageolet; a middle-aged adult male with two bubbly concretions, eight pebbles, seven quartz pieces, four obsidian knives or spear points, four smaller points, a projectile point, and a piece of shell. A Glaze II adult male had three ground olivella shells, four lumps of shiny mineral, a lump of prepared red ochre, a quartz chip, and a quartz projectile point.

Glaze III individuals with kits include a middle-age female with a dumbbell-shaped sandstone concretion, three waterworn pebbles, a section of crinoid stem, a worn quartz crystal, a crude and worn obsidian point, a cylinder made fro m fossil bone, a hematite cylinder, an olive green stone cylinder, and two wildcat claws; an older male had a bubbly sandstone concretion, a dumbbell-shaped concretion, a tiny quartz pebble, a worn piece of white stone with a black streak, two quartz crystals, and a piece of soft limestone, and an older male with a hollow hematite concretion, a bone tube, eight worn pebbles, a lump of soft ore, a tiny piece of copper, a fossil bivalve, a section of crinoid stem, a cylinder of limestone, and a biface. Finally, an elderly female from a Glaze IV or V context had a bone tube, seventeen unworked hematite pebbles, two other pebbles of a heavy material, a large waterworn quartz pebble, and an obsidian projectile point (Kidder 1932:106-108).

Only one is reported for Arroyo Hondo. A male was buried with projectile points, possibly a wooden bow, stone balls, sheets of mica, a bone awl tip, an eagle claw, a raven skin, and the wings of a raven (Palkovich 1980:17). Items suggestive of medicine kits from the Galisteo Basin Late Developmental/Early Coalition site of LA 3333 include a middle-aged female with a cache of awls, bone tubes, and concretions, and an older female with bone tools, stone balls, hematite, a canine tooth, claws, and other material found in a cache under the body. One female from Peña Blanca was buried with a number of bone awls and pieces of worked hematite. No similar finds are reported for Pindi, the Cochiti Dam sites, or Dolores. However, there are a few from Mesa Verde. Rohn (1971:93) describes a 33-year-old male with a number of vessels and inside one small bowl were 16 stone objects that he felt could have been a medicine man's kit. It was comprised of two cylindrical paint stones, two ground chunks of hematite, four side-notched projectile points, two ground pieces of petrified wood, and six pebbles. Also in the grave were a shale pendant blank, a lump of heavy

mineral, and four pebbles. At Long House a young adult was buried with a side-notched axe, a large pendant, a cone of green hornfels, a turquoise pendant, three hematite paint stones, a pair of eagle talons, a perforated eagle talon, a bone pendant, and two crystals of quartz and flourite. Cattanach felt this individual was probably a male and a medicine man, and that most of the items were in a container beside the body (Cattanach 1980:148).

A few individuals from small sites at Chaco Canyon had single items typically found in medicine kits (e.g., paint stones, crystals). A young adult, probably female, from BC 59, was buried with a pitcher, a bowl, a necklace with a jet bird effigy pendant, two quartz crystals, four steatite cylinders, a ground clear stone, and a smoothed stone awl. Each of the disturbed burial rooms at Pueblo Bonito contained numerous objects typical of medicine kits (Rooms 33, 320, 326, 329, and 330) but none could be associated with a particular individual (Akins 1986a:154-165). Aztec Ruin had similar disturbed contexts where medicine kit items were found with a number of disturbed infants and children in one room, with adults and children in another, and with two disturbed adults in a third room (Morris 1924:151-153, 155-161, 163-167). At La Plata, Morris 41 had a Basketmaker burial, a male, with a small pot containing chips of stone, projectile points, and other stones as well as other ceramic vessels and a stone bowl containing red pigment (Morris 1939:96). Rather than indicating a particular ethnic or linguistic group, these kits are widespread.

Developmental Disturbances

Similarities in the developmental defects or anomalies found in the axial skeleton may represent genetic markers that suggest relatedness in and among populations. In the living, most of these defects are undetected unless growth or development in childhood or functional stress or trauma in adulthood cause their identification. In prehistoric populations, patterning can provide information on the general occurrence of major defects, on biological affinities and homogeneity, and on cultural (e.g., marriage and residence patterns) and environmental influences (Barnes 1994:1–2, 5).

The most common and most informative of the defects found in the Peña Blanca population is that of cranial-caudal border shifting, lumbarization of the first sacral vertebra, and sacralization of the fifth lumbar vertebra. These defects, where the affected vertebra takes on the characteristic of adjacent vertebrae, are not rare and occur more often in females than in males. The lumbosacral border is the most frequent site of shifting with incidences reported for populations from Gran Quivira (n = 4, 4 percent), Chaco Canyon (n = 3, 2 percent), Mesa Verde (n = 1), Quarai (n = 3), Elden Pueblo (n = 1), Giuseua (n = 1), Amoxiumqua (n = 6), Hawikku (n = 7), Heshotauthla (n = 1), Puye (n = 36, 38.7 percent), Otowi (n = 3, 33.3 percent), and Tsankawi (n = 1, 14.2 percent) (Barnes 1994:79-80, 108-111, 252). One of the three female burials from LA 103919 near Pojoaque/Nambé has a lumbar sacral shift (Akins 2005) as do a male and a female from LA 391 in the same general area (Akins, in prep.a). What is unusual about Peña Blanca is the high incidence at one site, four of the five adult females from LA 265, suggesting a high degree of interrelationship. Incidences could be much higher as these are more difficult to detect in children, especially when preservation is poor, as in this sample. The other burials from other sites of this or later periods lack this defect. High frequencies are common at several of the Pajarito Plateau sites. Reported incidences seem lower for the northern groups, but at least one of the La Plata sites had very high frequencies. At this site (LA 35601), three of five males and none of the three females had cranial-caudal border shifting, as did one 9year-old child (Martin et al. 2001, appendix 2).

One of the more commonly reported defects or anomalies reported for prehistoric populations is spina bifida occulta, usually of the sacrum. This cleft, or failure of the arches to unite, occurs in low frequencies for Puye (9.8

percent) but is common for Otowi (66.6 percent) and Tsankawi (28.5 percent) (Barnes 1994:49, 262). This was observed in two Peña Blanca children, one Early Developmental period burial from LA 265 (S1 and S4) and one Late Developmental period burial from LA 6169 (S1–S4 with L5 misaligned).

Another example from the Peña Blanca population is a Type II block vertebra in the most common site of occurrence, that of the second and third cervical vertebra. Rarely producing symptoms, this particular defect is found in Anasazi populations throughout the Southwest including Gran Quivira, Chaco Canyon, Mesa Verde, Arroyo Hondo, the Kayenta area, Amoxiumqua, Hawikku, Heshotauthla, Yellow Jacket, Elden Pueblo near Flagstaff, Arizona, Puye, Otowi, Tsankawi (Barnes 1994:67–70, 237–240), at Alfred Herrera (Heglar 1968:265), and at LA 3333 (Akins, n.d.b).

More unique is the anagenesis of the coronal suture observed in a young child from LA 6169. Absence of sutures produces cranial deformity due to the displacement of the growing brain. The absence of this suture is more common in females and gives the cranium a rounded appearance. No case of bilateral anagenesis is reported by Barnes (1994:152–154).

Another is the presence of Stafne's defect in a woman from LA 6169. This occurs when the salivary gland develops prematurely and creates a deep cavity in the mandibular body that enlarges as the gland grows. Frequencies of this defect are high in Plains Archaic and Middle Mississippian populations but Barnes reported only one for the Southwest, from Amoxiumqua (Barnes 1994:170–171). Recent excavations at a Coalition/Classic site in Santa Fe found two in a population of over 150 (Akins, in prep.b).

Sternal apertures, when the fusion of sternal bands is incomplete, are commonly reported in prehistoric populations including those from Gran Quivira, Hawikku, Pueblo Bonito, Puye (14.7 percent), and Otowi (28.5 percent) (Barnes 1994:222–227, 288). A large aperture was present in the burial from LA 249, in a male and a female from Alfred Herrera (Heglar 1968:265), and a young male from Pojoaque/ Nambé, LA 391 (Akins, in prep.a).

A Late Developmental period child (LA 6169-1) has fused crowns (and possibly roots) of the deciduous mandibular lateral incisors and canines. Detailed information on dental anomalies are rarely reported. Somewhat similar is the fusion of the roots and about half the crowns of the right deciduous mandibular first and second incisors on a 3-year-old child from La Plata (LA 37601, Burial 9).

Most of the developmental defects observed in the Peña Blanca population are found in a wide range of Southwestern populations so that their presence does not provide concrete evidence of biological affinity. Within the Peña Blanca sites and time periods, there are differences. The most significant is the large number of lumbosacral defects from LA 265, which suggests a high degree of relatedness between at least the females from this site and perhaps homogeneity of this particular group but not of the Early Developmental population in general. All of the other developmental defects are single occurrences. Defects were found in all but one of the LA 265 burials but only three of those from LA 6169 and none of the LA 115862 burials. While some of this may be due to better preservation and more complete representation at LA 265, it could also indicate more diverse groups at the other sites and in the later time periods.

Metric and Nonmetric Variation

Studies of biological distance date back to at least the 1950s and peaked between 1970 and 1980. The recent decline is attributed, at least in part, to a recognition that the traits measured are only moderately heritable. However, when used in conjunction with paleodemographic and paleopathological information, these studies can provide a framework for viewing questions concerning topics such as biological variation or heterogeneity, migration, or endogamy (Buikstra et al. 1990:2–6). Indeed, *Standards* (Buikstra and Ubelaker 1994:61, 69) records metric and nonmetric dental and cranial measurements noting that genes greatly influence cranial shape and it is assumed that similarities in craniofacial morphology indicate the degree of relatedness between groups.

Two early studies of cranial variation include burials from the Cochiti Dam sites of LA 70, North Bank (LA 6462), and Alfred Herrera (LA 6455). Rodger Heglar's (1974) dissertation research focused on the question of whether the prehistoric population (n = 103)was similar to contemporary populations and published data on other prehistoric populations from north-central New Mexico (e.g., Paa'ko [n = 28], Pecos [n = 250], Pindi [n = 12], and Te'ewi [n = 16]). For comparison, Navajo Reservoir (n = 20), Hawikuh (n = 37), and Whitewater (n = 19) populations were also included (Heglar 1974:20-21). The methodology compared the means for 30 craniofacial measurements, 20 cranial indices, 75 postcranial measurements, stature, and 32 indices using t-tests and their probability levels. A smaller number of morphological traits (n = 16) were also considered (Heglar 1974:23, 27-29). Assuming that the Cochiti Dam archaeological population was Eastern Keres, Heglar ultimately concludes that the population was not morphologically homogeneous, was smaller craniofacially than that from Pecos Pueblo and the more northern populations and most similar to Paa'ko, were taller than any of the other groups, and that in size and shape the males are unlike any of the other groups. In general, he felt the population was biologically conservative and rather isolated and best considered a local example among similar circum-Rio Grande Valley prehistoric populations (Heglar 1974:105-106).

A few years later, James Mackey (1977:477–482) included the LA 70 and Alfred Herrera cranial measurements in a multivariate study questioning the link between Pecos Pueblo and the Towa villages. Comparing populations based on possible linguistic or cultural affiliation, he considered the following populations and affiliations: Hawikuh (n = 39, Zuni), Cochiti Dam (n = 21, Keresan), Hopi (n = 14 from six sites), Piro-Tompiro (n = 8 from four sites), Pottery Mound (n = 15, Southern Tiwa), Kuaua-Puaray (n = 9, Southern Tiwa), Jemez (n = 6

sites, Towa), Pecos (n = 99), Paa'ko (n = 21, Tano or Southern Tiwa), Puye (n = 28, including Puye, Tsirege, Otowi, and Tsankawi, Tewa), Sapawe (n = 11, Tewa), Salt River (n = 28, Hohokam), Rosa (n = 12 from five sites, no affiliation assigned), and Largo-Gallina (n = 19 from eight sites, no affiliation assigned). Since the paper focused on the Pecos-Jemez connection, no conclusions were reached regarding the Cochiti Dam population. However, F statistic distances for Cochiti Dam are smallest when paired with the Piro-Tomiros or Gran Quivira, Pardo, Quarai, and Chilili (5.53), Puye (8.10), Hopi (8.47), Rosa (8.51), and Paa'ko (8.62) populations and most divergent when compared to those from Pottery Mound (24.23), Pecos (17.41), and Salt River (13.49) (Mackey 1977:481). Another study (Mackey 1980:171-181), examining population affinities for Arroyo Hondo, but using discrete traits and not including Cochiti Dam, found that Arroyo Hondo appears genetically similar to other probable ancestral Tewa and Tano groups, that is Puye, Pindi, and Sapawe (Mackey 1980:180).

More recent works by Schillaci and colleagues (1998) and Schillaci (2001) use a subset of cranial measurements to examine migration. The earlier study concludes that, at least in the populations studied, there is no evidence to support an influx of people from the San Juan/ Mesa Verde to the Rio Grande area during the Classic period. Sapawe, Pecos, Arroyo Hondo, and Otowi form a cluster of probable Tewa/Tanoans (Schillaci et al. 1998:9). The later study, focusing on Pueblo IV/Classic populations, found close relationships between San Cristobal, Puye, and Hawikku and between San Cristobal and Hawikku (Schillaci 2001:8-9).

Absent DNA studies, which could provide greater precision in determining relationships or stable strontium isotope ratio studies useful in tracing migration patterns (Buikstra and Ubelaker 1994:170, 172), that were not done on the Peña Blanca or Cochiti Dam burials, any estimates of cultural affinity must rely on metric and nonmetric variation. These data remain largely unreported and unavailable; however, this report and information on file provides some of the baseline data needed for these studies. Building on past work and other nonbiological findings, future studies should consider the possibility of different linguistic groups inhabiting these sites. The Early Developmental period Peña Blanca burials could be most closely related to groups to the south such as those who inhabited the Albuquerque West Mesa, Pottery Mound, and perhaps Kuaua and Tijeras Pueblo. Late Developmental, Coalition, and even Classic populations are most likely to show affiliations with Tewa/Tano groups such as those from LA 3333, the Pojoaque/Nambé area, Arroyo Hondo, Pindi, Puye, Otowi, San Cristobal, and Pecos Pueblo. Other Classic populations or even individuals could show affiliations with populations to the west or from Chaco Canyon or Mesa Verde.

Trauma

Given the speculation about migrants supplementing or replacing the local population from the Late Developmental period on, we might expect that, if true, some interpersonal violence or conflict occurred. Such evidence could take the form of defensive site location, increasing site size, clustering of sites, line-of-site communications, burned sites or parts of sites, violent deaths, and unburied bodies (LeBlanc 1999:55–85). While the determined researcher could find evidence of all of the above in the general area, the paucity of supporting evidence and lack of clear evidence argues this was not the case. This is especially true if the evidence is broken down by time rather than considered as a single case.

None of the Peña Blanca burials from any time period could be construed as candidates for unburied or hastily buried bodies that might result from raiding or attacks on villages (e.g., LeBlanc 1999:85). While the bodies may not always be neatly arranged, most were deliberately placed and are often accompanied by burial goods. None of the trauma found in the Early Developmental burials need be the result of violence. A rib fracture, wedged vertebrae, and mandible dislocation are all in sep-

arate individuals, all older women, and most likely the result of age and accidents. Nor is it likely that the partial male cranium from LA 6169 should be classed as a trophy head. The only marks on the skull are carnivore gnaws found at the upper margins of both orbits and the nose and canine-like punctures in one orbit and the left sphenoid. The face, the mastoids, and the base are missing. This was, more likely, a cranium retrieved after it was disturbed by dogs. Its placement on the floor of a pit structure along with a partial bear mandible undoubtedly had some significance but to suggest it was the remains of a slain enemy or a trophy head (e.g., LeBlanc 1999:87-88) is unwarranted when there is abundant evidence for carnivore-disturbed burials at Peña Blanca. One child (LA 265-1) is missing the coronoid process and looks as if it were ripped off with tears in the superior surface of the horizontal ramus. Yet the mandible was in or very close to anatomical position when found and this could result from the rodent activity noted for this burial.

Very few burials from the Rio Grande region date to the Early Developmental period. To the south, at Rivers Edge west of Albuquerque, a small Early Developmental period population (n = 4) included a male (40 to 50 years of age) with cranial trauma, a depressed fracture on the parietal (Hilton and Ogilvie 1991:1, 14).

Of the four Peña Blanca burials that date to the Late Developmental period, the two children have no evidence of trauma. The older female may have perimortem or postmortem trauma. She was neatly arranged, on her back with arms to her sides and legs flexed to the left side at the hips, the left side of her face has fractures that could have occurred at the time of death, during, or shortly after burial. The malar is fractured in an unusual manner and the coronoid process is broken off of the mandible and was not recovered, although the jaw was in place. A young male from LA 6169 had a projectile point tip embedded in a lower rib and the point itself was found among the ribs. Since no healing had occurred, the injury could have contributed to his death. While it is possible that the injury resulted from an ambush, the point came from above and hit him from behind in the lower back, it could also have been from a hunting accident. Methods such as driving deer or pronghorn into a canyon or gully or surrounding and shooting animals must have resulted in occasional accidents. Since there is no evidence this was more than an isolated incident and the individual was returned to the site for burial, accidental death remains an option. Data on other populations dating to this period is sparse but intriguing. From LA 103919, near Pojoaque and Nambé, three female burials have rather large but healed cranial fractures. All are near the top of the head and one also has two fractured ribs. The single male from this site has no trauma (Akins 2005). Dating only slightly later, at the Late Developmental/ Coalition transition, the Galisteo Basin site LA 3333 has several examples of healed cranial trauma, including a 4-year-old child. Three males (37.5 percent) have small healed injuries, two on the frontal and one on the parietal and occipital. One also had a dislocated rib. Females had proportionately fewer incidences (28.6 percent) but several of these were severe. One woman has a piece of stone embedded in a parietal, small depression fractures in her frontal, and a large gash in the margin of one orbit; another has a broken nose plus large and small depression fractures in the parietal. Postcranial injuries in this group are largely hand, foot, and wrist injuries (Akins, n.d.b). Reed (1966) reports a projectile point embedded in a thoracic vertebra in a burial from earlier excavations at this site. All this suggests some level of interpersonal conflict at the end of the Developmental period. The pattern of injuries is consistent with sporadic raiding aimed at wife-stealing and stealing or destroying resources of other groups (e.g., Haas and Creamer 1996:205) and possibly tension between settled and migrant groups.

Trauma in Coalition period burials from Peña Blanca includes a male with a wrist fracture and a male with a healed cranial depression fracture and a toe fracture. The cranial fracture, along the coronal suture, could have resulted from conflict. For Arroyo Hondo, Palkovich (1980:168) reports a single incident where a male had a point embedded in his pelvis. Trauma was not common in the Classic period Cochiti Dam burials. Heglar (1976:J5) noted a wrist fracture, a broken mandibular condyle, and a depressed fracture or trepanation on the back of the head, all in males from LA 70. Alfred Herrera had a few more, largely wrist fractures (n = 3), a femoral neck fracture, a fractured clavicle, and three males with small healed cranial fractures, one possibly altered by trephination (Heglar 1968:55). It is hard to put these into proportions of the population, but the incidences are fairly low and perhaps consistent with the view that aggregation serves as a means to manage conflict (e.g., Crown et al. 1996:200).

This pattern of low level aggression contrasts with findings at Coalition period Forked Lightning near Pecos Pueblo where Kidder found many parts of the pueblo had burned and three rooms held unburied bodies, one with a battered face (1926:6). Similarly, at Pecos Pueblo, while not at all common, projectile points were second only to ceramics in abundance for items found in graves and several were found in the chest and the pelvic area (Kidder 1958:294). If migrants did settle in the Cochiti area, either the area was fairly empty so there was little or no competition for land and resources or they were peacefully integrated into the sites investigated.

Summary and Conclusions on Cultural Affiliation

Mortuary practices have yet to provide clear indications of cultural affinity within the Cochiti Dam sites or with groups from the Upper San Juan or Pajarito Plateau. Similarities are widespread. The distribution of developmental defects is equally widespread in prehistoric pueblo populations. High levels of a particular defect in burials from one of the Early Developmental sites do suggest it was occupied by a closely related group of females who were not that closely related to individuals found at the other early sites. Metric and nonmetric studies tend to suggest diverse populations occupied large areas rather than distinct territories being settled by the different linguistic groups.

Evidence for the level of the violence that might be expected if large numbers of unrelated people tried to move into an already settled area is absent from the Cochiti area. Regionwide, low level violence seems to be more common in the Late Developmental period and continued into the Coalition and Classic periods. Low level violence is more consistent with sporadic raiding that resulted in wife-stealing and stealing or destroying the resources of other groups, as is the infliction primarily on women. If migration occurred as might be indicated by the diverse burial practices and metric and nonmetric studies, the assimilation of these groups was relatively peaceful.

TAPHONOMY AND CULTURAL MODIFICATION

Carnivore and rodent disturbance and damage occurred fairly frequently in otherwise complete burials. These intrusions undoubtedly led to some dispersal of human bone. In addition to damage that is diagnostically carnivore or rodent, a number of burials have chop or cut-like marks that are extremely difficult to explain, especially since most occur on articulated or slightly disturbed burials and in a variety of locales. Table 22.22 gives this information by burial or isolated element, along with the general context and efforts to cover or protect the burial. The carnivore and rodent damage is reviewed before turning to the more problematic marks.

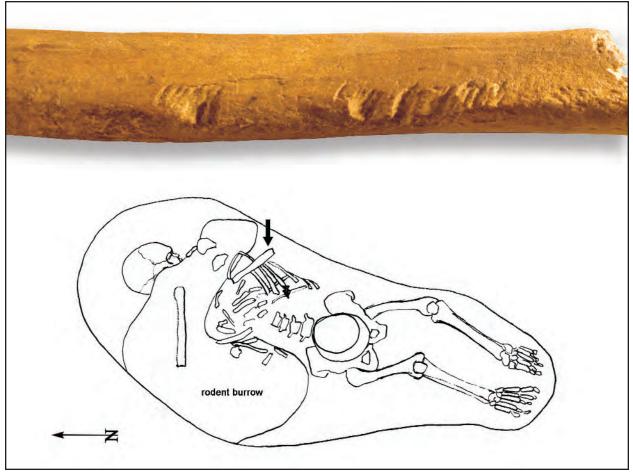


Figure 22.9. Rodent disturbance and gnawing, LA 6169, Burial 9.

or FS	Carnivore	Rodent	Cultural	Context/comments
LA 249-1	Possible: R pubis, 3 L ribs bone is eroded with fresh breaks	Possible - erosion rather than gnawing: L femur, proximal posterior; *scattered L foot and hand bones	Chops/cuts: L tibia anterior shaft, R tibia posterior shaft, R fibula lateral shaft; possible perimortem damage to left side of face, missing coronoid process but jaw was articulated	ARTICULATED ADULT FEMALE; shallow pit in midden, large cobbles above and around edge of pit; articulated burial; minor disturbance but much breakage on cranium
LA 265-1		*Burrow through torso, arms and hands removed some elements	Rodent or cultural?coronoid process looks torn off but jaw was close to normal position	ARTICULATED/RODENT DISTURBED CHILD; bell-shaped extramural pit sealed with adobe chunks and cobbles
LA 265-2			Chop: L femur midshaft medial	DISTURBED INFANT; shallow pit above vent shaft, no covering noted; poor preservation with few bones remaining; no comments on cause of disturbance
LA 265-3				ARTICULATED ADULT FEMALE; extramural pit, no covering noted; slight disturbance and shifting, not detailed by excavator
LA 265-4				ARTICULATED ADULT FEMALE; bell-shaped extramural pit, not sealed but lower fill contained slumps of construction adobe: rodent burrow in vicinity but no disturbance other than minor shifting
LA 265-5		*Minimal rodent disturbance		ARTICULATED ADULT FEMALE; pit structure, subfloor pit, metate 26 cm above cranium, pit may have been at least partially plastered over
LA 265-6	Vault - grooves and stellar-like pits; femurs: distal ends have punctures, irregular edges, and slight polish; jagged gnawed ends on L proximal tibia, L proximal fibula, R distal humerus			ARTICULATED ADULT FEMALE; lower fill of pit structure, extensive pile of adobe chunks over burial; excavator notes the left knee joint and lower right leg and lower right arm were removed by carnivores
LA 265-7	Rib shafts and R radius distal shaft - carnivore-like breakage		Possible cuts/chops: R(?) & L radii distal shafts - lateral; L distal ulna; 2 rib shafts - superior edge; longbone fragment, pitting in cranial case fragment; slight burn on 2 thoracic vertebrae	BACKHOE DISTURBED ADULT FEMALE; pit structure upper fill; unknown covering; few bones in place; 3 rib shafts have small very round holes, almost like insect borings; 2 left metatarsals are sunbleached
LA 265 FS 1479	Femur shaft - ends chewed off			ISOLATED ELEMENT/ADULT MALE
LA 6169-1 LA 6169-2		*Slight disturbance		ARTICULATED CHILD; fill of pit structure, no covering noted ARTICULATED ADULT FEMALE; shallow extramural pit, no covering evident but it could have been removed by road maintenance; backhoe impacted and very poor preservation
LA 6169-3		Probable rodent - lower left arm found above burial		DISTURBED FETUS/NEW BORN; pit structure fill, covering unkown
LA 6169-4		*Burrow - at edge of burial pit - disturbance uncertain		ARTICULATED FETUS/NEW BORN; upper fill of pit structure, pit filled with hard clay: disturbance mainly of midsection - probably rodent but not noted by excavator

		1 4010 22.	22: 0011111404.	
Site/Burial or FS	Carnivore	Rodent	Cultural	Context/comments
LA 6169-5	Gnaws on upper edges of orbits; punctures in orbit and sphenoid; much missing - possibly removed by canines			ISOLATED ELEMENT/ADULT MALE; partial cranium placed on pit structure floor along with bear mandible
LA 6169-6	Extensive damage mainly scalloped edges with rare gnaws and possible punctures: pubic symphyses, L lateral clavicle, L& R distal humerus, R prox radius and ulna, L proximal ulna, pits in L femur near both ends and L fibula distal shaft	*Rodent disturbance throughout midsection - disturbing vertebrae and hand bones	Carnivore or human? L femur shaft anterior and posterior - gnaws or anterior and posterior - gnaws or dull cuts. R femur and tibia - multiple deep chops	ARTICULATED ADULT FEMALE; extramural pit, no covering noted; cranium, upper thorax, R arm, parts of pelvis and right leg relatively undisturbed; poor preservation
LA 6169-7	Scalloped end, L distal femur	*Rodent disturbance	Cuts or abrasions? Posterior parietals – very fine but cut- like; possible chops (n=2), R posterior ulna	CHILD; pit structure upper fill, no seal noted; *some disarticulation and poor preservation
LA 6169-8	Punctures: L pubis; punctures and scallops: ribs of both sides; other elements have breaks and scalloped edges that could be from carnivores but no diagnostic marks	*Rodent disturbance throughout		LARGELY ARTICULATED ADULT MALE; pit room floor, no covering noted but cobbles in upper fill of room; midsection especially disturbed -probably by carnivores; otherwise fairly intact
LA 6169-9	Possible puncture L proximal humerus, R proximal humerus shaft, and rib shaft fragment	*Extensive burrow disturbed and removed bone from lower cranium to lower thoracic vertebrae; gnaws L humerus shaft	Projectile point tip in rib; point in rib cage	LARGELY ARTICULATED YOUNG ADULT MALE; pit structure lower fill, some large chunks of adobe in upper fill; intact except for rodent burrow area
LA 6169-10			Possible chops: R fibula proximal shaft lateral and L ulna medial midshaft	PARTIALLY ARTICULATED CHILD; upper fill of vent shaft, possibly by chunked and solidified adobe; Burials 10 & 11 were shallowly buried, superimposed and disturbed
LA 6169-11		*burrows through chest cavity and arm areas; bones moved by rodents	Possible chops: R humerus distal shaft medial , R ulna, L ulna and radius at midshaft; 3 L ribs look like the ends were cut off, other ribs have odd breaks- possibly carnivore	PARTIALLY ARTICULATED CHILD; same as B. 10; *some damage and movement during excavation
LA 6169-12 LA 6169-13		*Rodent burrow		FRAGMENTARY CHILD; extramural, covering unknown FRAGMENTARY/FETUS NEW BORN; few elements recovered from wall of backhoe trench
LA 6171-1	Scallops - possible carnivore damage R medial scapula body	*Rodent disturbance shoulder area and foot; some disarticulation of thorax; L humerus above rest of burial		LARGELY ARTICULATED ADULT MALE; extramural pit, covered by 6-7 layers of rock
LA 115862-1		Minor disturbance/movement; foot phalange found in vessel		ARTICULATED ADULT FEMALE; extramural pit, no covering noted but pit discovered by mechanical scraping in gravel terrace; poor condition; *root disturbance only
LA 115862-3		L radius shaft - gnaws or possibly chops - located just above or at the edge of a large seed jar	L radius shaft - rodent gnaws or chops	ARTICULATED YOUNG ADULT FEMALE; extramural pit, no covering but in gravel terrace with gravel fill; poor to good condition; no disturbance other than missing some hand and foot phalanges
* noted by excavator	cavator			

Table 22.22. Continued.

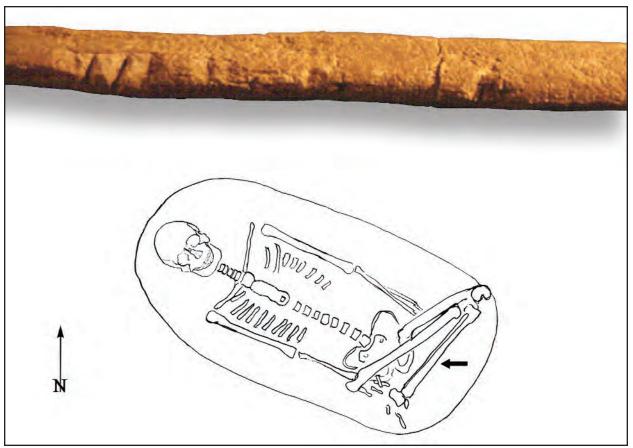


Figure 22.10. Cut marks on bone. Carnivore and Rodent Damage

Few intact burials lack some degree of rodent disturbance. This ranged from displacing a few small bones to rather massive churning of portions of the burial pit (Fig. 22.9). Rodent gnawing was rare but the condition of the bone may have obscured minor assaults on the poorly preserved individuals. Notations of rodent disturbance are almost ubiquitous.

Carnivores damaged a number of burials. Diagnostic marks (tooth punctures, gnaws or shallow grooves, pits, and scalloped edges) were found along with breakage patterns that frequently result from carnivores (e.g., Binford 1981:65–78). These occurred in relatively intact burials and on isolated elements that were undoubtedly removed from burials. The prehistoric population was well aware of the disturbance. In one instance (Burial 265-6), the excavator noted that the left knee, lower right leg, and lower right arm were removed by carnivores before someone augmented the adobe rubble covering the burial to protect the grave from further damage. Ultimately, the burial was covered with a mound of about a meter of rubble extending 1.5 m out from the structure wall against which the burial was placed. Another burial (6171-1) had several courses of rock sealing the pit and other burials had what appears to be deliberate attempts to thwart carnivore invasions (Table 22.22). Unfortunately, some excavators did not recognize the carnivore disturbance for what it was and did not try to explain the absences or dispersals or note any attempts to prevent further damage.

Cultural Modification

Several of the marks observed on the bones are most consistent with an interpretation of cultural modification. These "chop-like" or "cutlike" marks (Fig. 22.10) are found on articulated, undisturbed burials or parts of burials (249-

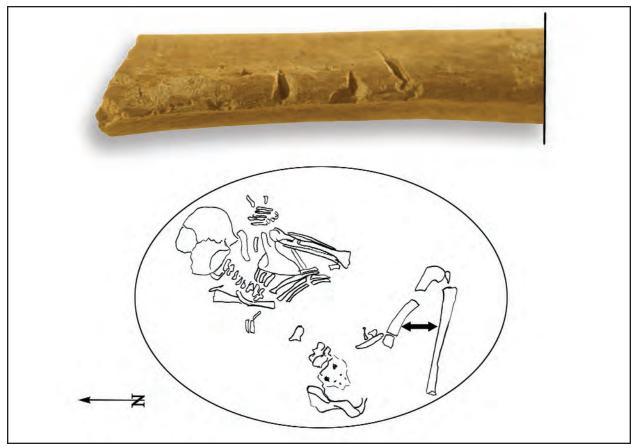


Figure 22.11. Chop-like marks on Burial 6.

1, 6169-6, and possibly 115862-3), as well as on a burial disturbed by the backhoe (265-7), burials with carnivore damage (6169-7), and shallow burial with disturbance (265-2, 6169-10 and 6169-11). Found at four sites, five date to the Early Developmental period, two to the Late Developmental, and one to the Coalition. Elements involved are largely arm and leg bones with more ambiguous marks on crania and ribs.

Some of the chop-like marks fit the definition accepted by White (1992:146), that is, broad marks that are V-shaped in cross section and generally perpendicular to the bone surface. Many are wider than those illustrated by White (1992:149) but are cleaner than his examples of percussion pits (White 1992:141, 255). Other marks have one clean side as if cut with a sharp instrument but the other side is rough as if removed by pressure rather than the cutting or chopping motion. In the adults, none the marks are associated with breaks, however in the two children, these resulted in breaking the arm bones. Other marks, some of the cutlike marks, the abrasions, and the percussion pit-like marks are ambiguous and open to multiple interpretations as to whether they are human in origin. What is clear is that none of these examples resemble dismembering of the individuals for consumption or even funerary purposes. Chops on anterior tibias and many of the other locations could serve no purpose such as releasing tension on muscles or tendons. It is uncertain when these actions occurred: before death, at death, at burial, well after burial, or any combination. Although noteworthy, the lack of clear patterning of any kind precludes any firm conclusions at this time.

Similar chop-like marks also occur on a Late Developmental period burial from the Pojoaque/Nambé area. A young male, deliberately buried with one or two ceramic vessels, has similar marks on his fibulas. Finding simi-

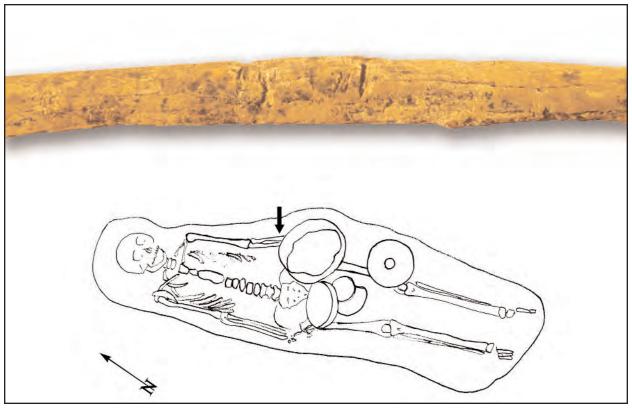


Figure 22.12. Chop-like marks on Burial 3.

lar marks outside of Peña Blanca may suggest it represents a more widespread practice that may have been overlooked in other area populations.

A single burned human bone was found among the 20,000 or so faunal specimens. The midsection piece of a left radius is burned black with a carmelized interior. This kind of uniform heavy burning generally occurs when there is no longer flesh on the bone and caramelizing when marrow in the medullary cavity is incompletely incinerated (Buikstra and Swegle 1989:255). It was found in the floor fill of Structure 76 at LA 6169, a layer of trashy material that contains burned soil and material suggesting a burned and dismantled roof. Given this context, the burning could very well be accidental.

CONCLUSIONS

Although the sample size is small, the Peña Blanca burials provide a great deal of insight into life during the prehistoric period. Most significant is the indication that groups practicing early agriculture were quite mobile. At least early on, the task of maintaining a permanent residence and the garden plots may have fallen mainly on older and less mobile women. This mobility pattern evolved into the more settled and agriculturally committed model we typically attribute to early Pueblo populations. As long as the younger members maintained a degree of mobility, and consequentially a more diverse diet, their general health was better than for many sedentary agricultural groups. While present, the conditions used to monitor health status, e.g., porotic hyperostosis, periostitis, and dental hypoplasia, are less severe than found in groups to the northwest, but appear to have increased significantly in later groups occupying the sites.

Cultural affinity remains elusive. Neither mortuary practices, distributions of developmental defects, nor metric and nonmetric studies show clear patterns that could identify populations such as the linguistic groups who occupied fairly distinct spatial territories in the Historic period. Burial practices and most developmental defects have wide distributions and much more detailed information is needed before we can use these to begin to trace the movements of prehistoric populations.

Finally, the presence of unusual marks on articulated burials suggests that we need to evaluate and expand our ideas about what constitutes mortuary practice and the range of taphonomic processes that could produce marks similar to those described here. Formally buried individuals rarely undergo the level of scrutiny afforded disturbed burials and disarticulated bones, however, finding marks on formally buried individuals suggests these should undergo a similar level of observation. Similarly, excavators need be more aware of disturbance when uncovering burials so that the effects of carnivores and rodents are not confused with human modification.

CHAPTER 23

FLOTATION SAMPLE ANALYSIS, MACROBOTANICAL SAMPLE ANALYSIS, AND WOOD IDENTIFICATION AT PEÑA BLANCA (LA 249, LA 265, LA 6170, LA 6171, AND LA 115862)

Pamela J. McBride, Mollie S. Toll, and Jessica Badner

Flotation, macrobotanical, and wood samples were examined from seven sites just north of Peña Blanca, New Mexico along State Route 22, south of Cochiti Dam. Sites ranged in age from the earliest Developmental to the Classic periods. A total of 236 flotation samples were analyzed and of these, 201 produced carbonized plant material, including weedy annuals, grasses, cacti and other perennials, as well as corn, beans, and squash (Table 23.1). Species composition was determined for a sample of charcoal from each flotation sample. Wood samples identified prior to submission for ¹⁴C dating (n = 67) and macrobotanical samples (n = 133) provided additional information.

An extensive survey of plant resources in the Cochiti Reservoir area conducted by Tierney (1979) provides valuable information about the diversity and seasonal availability of edible plant species in the study area. Peña Blanca sites are on a 5 km (2 mile) stretch of dissected Pleistocene gravel terrace above the Rio Grande floodplain on both sides of the Santa Fe River, similar to Tierney's Study Area G. Tierney found 96 native edible plants in the nine combined study areas, including 20 edible species in Area G. Spring resources that were abundant in the area included the roots and tender leaves of Cymopterus fendlerii (chimaya), the young leaves of Chenopodium sp. (goosefoot), Artemisia dracunculoides (false tarragon), and Cleome serrulata (beeweed), and the seeds of ricegrass (Oryzopsis hymenoides). Stipes and buds of Yucca angustissima (narrowleaf yucca), young joints and buds of cholla (Opuntia imbricata), and the emerging purslane plants (Portulaca) would have been available in late

spring. A transition from greens and buds to flowers, fruits, and some seeds begins in the early summer and continues to the peak productivity of the late summer and fall when wolfberry (*Lycium pallidum*) and cactus fruits, juniper cones, seeds of goosefoot, purslane, and dropseed grass, and piñon nuts mature.

The majority of contexts on the Peña Blanca project date to the Early Developmental. LA 6169, however, was occupied during the Early and Late Developmental as well as the Coalition periods; LA 6170 had both Early and Late Developmental components; and LA 249 had a Late Developmental pit structure, and middens associated with a Classic period pueblo outside the right-of-way. The Early Developmental site LA 265 was the largest of the project area sites and therefore had the greatest number of flotation samples that were analyzed. At least 15 wild plant taxa were identified from LA 265 contexts, with a predominance of disturbance-loving weedy annuals. Of these, Corispermum, Cycloloma, and Iva were not recorded at all by Tierney, but are found in the Northern Rio Grande area (Martin and Hutchins 1980) and probably do occur in the region. Grasses and grass-like plants, trees and shrubs of the grassland and upper piedmont, and cacti were also recovered, but were generally less abundant. Construction and fuelwood material were represented by seven wood taxa, as well as common reedgrass and grass stems that probably functioned as roof closing elements. Like the plant assemblage from LA 265, the 33 taxa that were recovered from throughout the Peña Blanca project reflect exploitation of the surrounding biotic

Office of Archeological Studies, Ethnobotany Lab Technical Series # 86

communities: grassland, riparian corridors along the Rio Grande and Santa Fe River and their tributaries, and the foothills and upper elevations of the Jemez Mountains.

METHODS

Flotation Processing

The 257 soil samples collected during excavation were processed at the Museum of New Mexico's Office of Archaeological Studies by the simplified "bucket" version of flotation (see Bohrer and Adams 1977). Flotation soil samples ranged in volume from 0.35 to 6.23 liters. Each sample was immersed in a bucket of water, and a 30-40 second interval was allowed for the settling out of heavy particles. The solution was then poured through a fine screen (about 0.35 mm mesh) lined with a square of "chiffon" fabric, catching organic materials floating or in suspension. The squares of fabric were lifted out and laid flat on coarse mesh screen trays until the recovered material had dried.

Full-Sort Analysis

The 257 Peña Blanca flotation samples represent 236 discrete proveniences. The remaining 21 samples represent additional bags of soil from various locations. One sample from each discrete provenience was subjected to full-sort analysis.

Each sample was sorted using a series of nested geological screens (4.0, 2.0, 1.0, 0.5 mm mesh), and then reviewed under a binocular microscope at 7–45x. Charred and uncharred reproductive plant parts (seeds and fruits) were identified and counted. Table 23.1 lists all carbonized plant taxa encountered in Peña Blanca samples by Latin and common names and the anatomical parts. Flotation data are reported as a standardized count of seeds per liter of soil, rather than an actual number of seeds recovered. Relative abundance of nonreproductive plant parts such as pine needles and grass stems was estimated per liter of soil processed.

To aid the reader in sorting out botanical occurrences of cultural significance from the considerable noise of post-occupational intrusion, data in tables are sorted into categories of "Cultural" (all carbonized remains), "Possibly Cultural" (indeterminate cases, usually of unburned, economically useful taxa either found together with burned specimens of the same taxon, or found in relatively good preser-"Non-Cultural" vation conditions), and (unburned materials, especially when of taxa not economically useful, and when found in disturbed contexts together with modern roots, insect parts, scat, or other signs of recent biological activity).

Charcoal Identification

From each flotation sample with at least 20 pieces of wood charcoal present, a sample of 20 pieces was identified (a maximum of 10 pieces from each screen size). In smaller samples, all charcoal from the 4 mm and 2 mm screens was identified. Each piece was snapped to expose a fresh transverse section, and then identified at 45x. Identified charcoal from each taxon was weighed on a top-loading digital balance to the nearest tenth of a gram and placed in labeled plastic bags. Low-power, incident light identification of wood specimens does not often allow species- or even genus-level precision, but can provide reliable information useful in distinguishing broad patterns of utilization of a major resource class.

Macrobotanical Samples

Wood specimens (generally bigger pieces than those recovered in flotation samples) were examined in the same manner as for flotation charcoal. Charcoal, destined for ¹⁴C dating, was separated by taxon, weighed, and placed in labeled foil packets. Corn specimens (all carbonized) were measured to the nearest 0.1 mm using dial calipers, following parameters detailed in Bird (1994) and Toll and Huckell (1996). To be considered measurable, cob fragments needed to possess a full circumference, and kernels needed to be complete in two of the three possible dimensions (length, width, and thickness). Dial calipers were used to measure carbonized kernels and beans in these three dimensions to the nearest 0.1 mm. Other specimens were identified as to taxon and part by comparison with modern reference specimens. When necessary, fragile specimens were wrapped in acid-free tissue and/or polyester fiber and placed in durable archival containers, to protect them from further breakage.

RESULTS OF FLOTATION, MARCROBOTANICAL, AND WOOD ANALYSIS

LA 249

Sampled proveniences at LA 249 include a Late Developmental pit structure (Feature 6) and two middens (AU 406 and 412) associated with a large Classic period adobe pueblo (Tashkatze Pueblo) outside the right-of-way. A burial and an extramural hearth (Feature 7) underneath the AU 412 midden, another extramural hearth (Feature 3), and a surface strip, contexts that could not be directly associated with a particular time period, were also sampled. The site is on a high, heavily dissected gravel terrace above the floodplain at 1,616 m in elevation.

Cultural plant remains from the Late Developmental pit structure fill consisted of corn parts (kernels, cupules, glumes, cobs, and stalk fragments) along with wood (Tables 23.2-23.4). Juniper was the most commonly identified wood taxon both in flotation and macrobotanical samples. Cottonwood/willow was the next most common taxon recovered and traces of Mormon tea, piñon, rose family, and saltbush/greasewood were also present. Flotation samples from the floor of the structure were only slightly more productive, yielding goosefoot seeds, yucca fiber, and corn (Table 23.5). As in the fill, juniper was the dominant wood identified, but only small amounts of cottonwood/willow were present along with unknown non-conifer and conifer wood (Table 23.6).

Cultural non-wood plant material was absent from flotation samples from the surface hearths (Features 3 and 7); uncharred goosefoot, dropseed grass, and purslane seeds were identified and represent non-cultural intrusives (Table 23.7). Ponderosa pine, a wood that would have been harvested at higher elevations in the Jemez Mountains, was identified in flotation samples from Feature 7 and from the AU 406 midden. Juniper, unknown conifer, and unknown non-conifer wood were also identified in Feature 7 samples. Carbonized corn cupules, cottonwood/willow, piñon, juniper, Mormon tea, rose family, and saltbush/greasewood wood were identified from the midden as well (Tables 23.8, 23.9). Fragments of corn stalk were the sole carbonized archaeobotanical remains recovered from AU 412 midden (Table 23.10). Corn cupules, glumes, and a cob were recovered from the burial and probably are part of the overlying midden deposits.

Corn was the only domesticate recovered in flotation samples from LA 249, and seems to have been an important part of the diet of site occupants throughout the occupation of the site. Absence of fall-harvested wild plants in the archaeobotanical record suggests that site occupation may have been limited to the growing season. Goosefoot and yucca fiber were restricted to samples from the earlier occupation and Feature 7. The wood assemblage was dominated by juniper, but cottonwood/willow occurred frequently and was the sole evidence for riparian plant use. Ponderosa wood was identified in midden samples and may be an indication that site occupants during the Classic period made forays to higher elevation locales to collect ponderosa for construction material. The balance of wood taxa consisted of local shrubs and piñon.

LA 265

The largest of the Peña Blanca project sites, LA 265, is an Early Developmental site located on a terrace just south of the confluence of the Rio Grande and Santa Fe River. Two-hundred and

seventy cultural features were excavated, including three pit structures and their interior features as well as five extramural activity areas with hearths, storage pits, possible shallow pit structures, and a variety of other pits.

Study Unit 1 is a large circular pit structure. Samples analyzed from the upper fill yielded charred goosefoot, cheno-am, cholla, and prickly pear cactus seeds along with common reed stems, piñon nutshell, and corn kernels and cob parts (Table 23.11). Juniper was the dominant wood taxon identified in flotation samples, followed by cottonwood/willow (Table 23.12). Traces of piñon, saltbush/greasewood, and conifer were also present. A carbonized corn cupule was found with an infant burial in the upper fill of the structure and probably represents part of the fill and not a deliberate inclusion. The majority of taxa from the floor fill and floor features of the pit structure were weedy annual seeds and corn kernels and cupules (Table 23.13). Floral remains from Study Unit 1 floor features probably represent general fill rather than residue from use of the features. This is substantiated by the recovery of piñon nutshell, corn cupules, and fragments of juniper and cottonwood/willow wood from the three linear floor features. Defined as possible foot drums, they would not be expected to yield any remains of food processing activities. The wood assemblage from floor features was also very similar to that from the structure fill with the exception of traces of rose family and unknown non-conifer wood (Table 23.14). Macrobotanical samples examined from the central hearth, postholes, an ash pit, and warming pits consisted primarily of juniper, cottonwood/willow, and saltbush/greasewood wood with a smattering of rose family wood and a few corn cupules (Table 23.15).

Macrobotanical remains from the extramural activity area (Study Unit 2) surrounding Study Unit 1 were scarce, including a few corn cupules and juniper, cottonwood/willow, and saltbush/greasewood wood (Table 23.16). In contrast, floral remains from two large, irregular-shaped pits (Features 14 and 34) and another large pit (Feature 15) in Study Unit 3 (another extramural area) were diverse and consisted of charred weedy annual seeds, piñon nutshell, skunkbush and banana yucca seeds, corn, and squash rind, as well as wood remains of juniper, cottonwood/willow, saltbush/greasewood, oak, and cholla (Tables 23.17–23.23).

Weedy annual seeds dominate the array of taxa recovered from upper fill in Study Unit 4 (a small pit structure; Table 23.24). Piñon nutshell and prickly pear cactus seeds represent perennial plant use. The only evidence of utilization of grasses for food came from the fill of Study Unit 4 in the form of dropseed grass grains; grass stems were also recovered and may represent the remains of tinder or roofing material. Corn kernels and cob parts were the only cultivar remains identified. The wood assemblage is similar to Study Units 1, 2, and 3, with juniper the dominant wood taxon and varying amounts of cottonwood/willow, conifer, piñon, oak, and saltbush/greasewood (Table 23.25). The floral assemblage from floor fill and features is less diverse than that found in general fill. Fewer annual taxa were present, but skunkbush seeds and a trace of cholla wood were additions that were not present in general fill (Tables 23.26-23.28). Carbonized juniper twigs and grass stems were recovered from the Feature 74 secondary hearth and may represent burned roofing material or residue from tinder.

Study Unit 13 is a small pit structure on the east side of NM 22 that is probably contemporary with the other two pit structures on the west side of the highway. Archaeobotanical remains from the upper fill, roof fall, and floor fill and floor features are very similar, with weedy annual, cholla, and skunkbush seeds occurring along with corn, grass stems, and juniper twigs (Tables 23.29 and 23.31). Wood taxa are the same as described for other proveniences at the site; juniper is the most commonly recovered taxon with varying amounts of cottonwood/willow, cholla, saltbush/greasewood, and pine present (Tables 23.30 and 23.32).

The pattern of plant use at LA 265 seems to

be focused on annuals like goosefoot, pigweed, and purslane with some use of perennial plant resources including yucca, cacti, skunkbush, and piñon. Corn and possibly squash were cultivated, although Cucurbita rind was extremely limited in distribution (restricted to Feature 14 from Study Unit 3). Wood use reflects a sitewide preference for juniper and cottonwood/willow; some piñon was used along with shrubs like saltbush, cholla, and members of the rose family. All of these resources would have been found growing in disturbed ground around fields or habitations (weedy annuals) along the Rio Grande or Santa Fe River (cottonwood/willow), or in the immediate site environs (cacti) and foothills of the Jemez Mountains (skunkbush). The presence of plant resources that could be gathered both during the growing season and in the fall points to the likelihood of longer-term occupation at LA 265.

LA 6169

LA 6169 is a multicomponent site with evidence of occupation that spanned the Early Developmental through Coalition periods. The most diverse floral assemblages came from an Early Developmental pit structure (Feature 47), a Late Developmental pit structure (Feature 76) that was built inside Feature 47 (both on the east side of the right-of-way), and a Coalition pit room (Feature 70) on the west side of the right-of-way. Some curious floral assemblages were found in Early Developmental storage bins (Features 119 and 121). At least seven plant taxa including common reedgrass, goosefoot, purslane, piñon, dropseed grass, possible squash rind, and corn were recovered (Tables 23.33, 23.34). With no evidence of postuse burning, the abundant and diverse charred economic plant parts are logically interpreted as secondary trash deposition. Common reedgrass stems, yucca leaf fragments, and willow family wood were recovered from a roof matting sample from Feature 47 (Table 23.35). The Cucurbita rind that was found in Feature 121 is the only evidence of other domesticates at LA 6169.

Plant remains from Feature 76 are more evenly distributed throughout this Late Developmental structure, but hedgehog cactus and winged pigweed seeds found in two separate floor samples are the sole examples of these species from LA 6169 (Table 23.36). Amaranth, goosefoot, and purslane were also identified in floor samples and the hearth. Grass stems and juniper twigs found on the floor could be roof closing materials or debris from tinder or firewood (see Tables 23.37 or 23.38).

The central hearth (Feature 98) of the Feature 70 Coalition pit room yielded a diverse array of annuals, perennials, and grasses (Table 23.39). Plant remains reflect the use of a variety of habitats from riparian (*Carex*) to Plains and Great Basin grassland (*Oryzopsis, Plantago*). A range of seasonality is also represented by *Oryzopsis* that generally matures in the spring, *Portulaca* and *Amaranthus* in late summer, and *Pinus edulis* in the fall. Possible uses of plants are also variable, including a source of dye (*Cleome*), pot herbs (*Cleome, Plantago*), and seeds commonly ground into flour (*Chenopodium, Sporobolus*). *Lycium* wood, rarely recovered from the project, was found in Feature 98 (Table 23.40).

Weedy annual seeds and corn were the dominant taxa recovered from the other Early Developmental pit structure (Feature 4), two other Coalition period pit rooms (Features 10 and 16), and extramural features in Study Units 6, 7, and 8 (Tables 23.41, 23.42, 23.43, 23.46). Over 30 cob fragments were recovered from the floor of Feature 16, representing the majority of cobs from the site; 9 of these were measurable. Piñon nutshell was identified in Feature 4 and an extramural roasting pit that was in use during the late Developmental (Feature 79). An unburned Prunus pit was recovered from Level 1 of the feature, suggesting some post-occupational contamination. The domesticated plum and apricot are introduced species and the pit displays rodent gnawing, revealing the probable source of introduction. The floor samples from Feature 15, another Coalition period pit room that was built into the wall of Feature 4, contained

exclusively grass stems, corn, and charcoal (Tables 23.43 and 23.45). The limited taxonomic diversity is probably because only two samples were analyzed. A thermal feature found in the upper fill of Feature 15 that probably represents a Classic period reuse of this part of the site, contained carbonized goosefoot seeds and grass stems (Table 23.43). A single cholla seed was identified in an extramural cobble-lined roasting pit from the late Developmental period (Feature 149; Table 23.46). It's tempting to suggest that cholla fruits were roasted in the feature, though one specimen constitutes very slim evidence for feature usage. Charcoal from shrubs (largely saltbush/greasewood and willow family) dominated the wood assemblage from the Coalition pit rooms (Table 23.44).

Plant remains from Feature 64, a large unburned pit buried underneath a sheet trash deposit in Study Unit 11 northeast of Feature 70, consisted of a few unburned goosefoot seeds and carbonized corn parts. Another large unburned extramural pit (Feature 159) in Study Unit 13 (possible midden) contained charred goosefoot and cheno-am seeds, corn cupules and juniper and cottonwood/willow wood. The contents of both pits probably reflect trashy deposits, rather than feature use.

Three extramural features on the east side of the right-of -way in Study Unit 6 (Feature 84), Study Unit 8 (Feature 145), and Study Unit 9 (Feature 127) could not be directly linked to a specific time period. Corn cupules were the only plant remains from Feature 84 (Table 23.46). Saltbush/greasewood was the sole wood charcoal from Feature 127, while Feature 145 produced the mix of wood charcoal types found throughout the site (Table 23.47). Weedy annual seeds and corn cupules were identified in Feature 127 (Table 23.48). An uncarbonized peach pit, another obvious intrusive, was recovered from Area 2 of Study Unit 8.

Wood from Developmental and Coalition period contexts alike is predominately juniper, cottonwood/willow, and saltbush/greasewood. Several contexts yielded sequestered wood taxa; oak was present solely in an interior warming pit (Feature 165) of Feature 47, a

trace of cholla wood was identified in the central hearth (Feature 17) of Feature 10, a minute amount of rabbitbrush was recovered from the floor of Feature 16, and wolfberry was identified in the central hearth (Feature 98) of Feature 70 and in a floor contact sample from Feature 76 (Tables 23.35, 23.37, 23.38, 23.40, 23.42, 23.44, 23.45, and 23.47). Wood from the probably Classic period thermal Feature 14 in the upper fill of Feature 15 was exclusively saltbush/greasewood. There does not seem to be any significant change in wood procurement practices through time. The floral assemblage from the site indicates an economy based on corn agriculture and, as at LA 265, a focus on weedy annual species and perennials that would have been harvested in the late summer and fall. Feature 70 was the only context with evidence for possible occupation in the spring.

LA 6170

At LA 6170, 151 cultural features were excavated, including three Early Developmental pit structures with associated extramural features, and a midden, a Late Developmental pit room, and the foundation of an early historic surface room. Flotation samples were not examined from the historic surface room and no diagnostic artifacts were present, so relative age of the structure is unknown.

General fill and floor fill/contact of Structure 2, a small, ovoid pit structure, associated with the earlier prehistoric occupation of the site, produced corn cupules and glumes, partially charred goosefoot seeds, and carbonized grass stems (Table 23.49). These were the only Structure 2 contexts that yielded floral material. Consistent with wood data from throughout the project, juniper was the most common taxon identified (72 percent by weight) and a smaller percentage of cottonwood/willow and saltbush/greasewood was also present (Table 23.50). A number of corn cobs, a few cupules, and a kernel were identified in macrobotanical samples from various structural fill contexts (Table 23.51).

Immediately north of the historic surface

room is a Late Developmental complex of superimposed features that includes a possible activity area with a subsurface cache of ground stone artifacts and a rectangular pit room (Structure 5A). The pit room and the activity area are mostly contained within the fill of an Early Developmental pit structure (Structure 5). Charred plant remains from the two mealing bins in Structure 5A probably reflect redeposited trash rather than remains from grinding activity. A corn kernel fragment, cupules, and glumes, piñon needles, and four-wing saltbush fruits were recovered along with uncharred goosefoot and dropseed grass seeds (Table 23.52). Prickly pear cactus seeds, corn cupules, and piñon nutshell were identified in samples from the fill and floor of the structure. Grass and common reed stems were also recovered in fill and floor samples. Wood taxa consisted of juniper, cottonwood/willow, and saltbush/greasewood.

In Structure 5 (the ovoid pit structure below Structure 5A), a partially burned roof collapsed after intentional or accidental burning shortly after the four main roof supports and large structural beams were removed. Results of flotation analysis from fill were divided into the components of general fill, roof and closing material, and floor fill and contact (Table 23.53). We note slightly greater diversity of taxa from general fill and roof fall samples: pigweed, goosefoot, purslane, yucca leaf fiber, monocot stems, and corn in general fill and roof material, compared to corn, grass and monocot stems, and piñon from the floor samples. Of the five Structure 5 features with floral remains, the central hearth, the heating pit, the Feature 20 cobble-lined thermal pit, and the Feature 19 ash pit contained non-wood cultural material. Weedy annual seeds, piñon nutshell, and corn were recovered from the four features (Table 23.54).

Macrobotanical samples from fill and features contributed some interesting additions to the list of taxa recovered in flotation samples (Tables 23.55 and 23.56). Bean cotyledons were identified from the ash pit and from the roof and closing material. Although corn cob frag-

ments were recovered in the ash pit and floor fill flotation samples, 119 cob pieces (17 of which were measurable) were identified in macrobotanical samples. Common reed stems, willow family wood, and a small amount of yucca leaf fiber were part of the macrobotanical sample from the roof component of fill, strongly suggesting roof beams were cottonwood and reed stems functioned as closing material of the structure. Yucca leaf strips may have been used to tie corn cobs to the ceiling or as part of the closing material as well. With the exception of a trace of mountain mahogany from floor fill/contact, the wood assemblage can be characterized as a repetition of taxa recovered from throughout the Peña Blanca project (Tables 23.55, 23.56, and 23.57).

Structure 50 is the third Early Developmental pit structure and is located on the east side of NM 22. Several sealed floor features indicate at least one remodeling episode. Floor fill and floor samples from Structure 50 yielded the richest array of floral remains from the structure, including obvious roofing materials (grass, monocot, and common reedgrass stems), along with three weedy annual taxa, yucca leaf, juniper twigs, cholla seeds, and corn (Table 23.58). Roof and closing material deposits also had monocot and common reedgrass stems, yucca leaves, corn, and chenoam seeds, indicating a mix of roof materials and fill or that corn and other plant materials were stored on the roof or hung from the ceiling. Three of the sealed floor pits produced plant remains: carbonized piñon nutshell (Feature 162 small thermal pit), corn cupules and uncharred goosefoot (Feature 157, storage pit), and charred piñon nutshell and uncharred goosefoot (Feature 177, large thermal pit; Table 23.59). The contents of the pits suggest a similar source for these deposits (such as secondary trash), despite the sealed openings of the features. A mix of charred and uncharred remains in the thermal pit 177 does not make sense for primary deposition. However, the piñon nutshell found in thermal pit 162 may represent the remains of one of the last meals consumed by inhabitants of Structure 50 before the pit was sealed. Plant remains from unsealed features consisted of weedy annual seeds, corn, piñon nutshell, and juniper wood. Bean cotyledons were identified in the ash pit and collared hearth macrobotanical samples (Table 23.60). Corn cobs, yucca fiber, and common reedgrass stems were other distinctive floral remains identified in macrobotanical samples from fill and features (Tables 23.60 and 23.61). Wood from all contexts was predominately cottonwood/willow and juniper (Table 23.62). Small amounts of piñon, mountain mahogany, and unknown non-conifer were also present. Ritual abandonment of Structure 50 is suggested by the presence of a partial deer cranium against the east wall with a corn cob including kernels, inside the inverted skull. Many kernels were scattered around the skull with some fused as a result of oozing endosperm when the pit structure burned.

South of Structure 50 is an extramural activity area (Study Unit 12) that consists of a cobble-lined thermal pit, a bell-shaped storage pit, a stain, and several smaller pits. There are differences in elevation of the features, indicating possible non-contemporaneity. Charred goosefoot seeds, corn, and yucca leaf fragments were recovered from the large cobblelined thermal pit (Feature 53) and the bellshaped storage pit (Feature 69; Table 23.63). Wood remains were minimal and consisted of less than a gram each of juniper, cottonwood/willow, and saltbush/greasewood. Uncharred fragments of juniper wood weighing 10.10 g in the macrobotanical sample from a posthole (Feature 81), provide an identity for the post. In an extramural area to the north, a shallow depression (Study Unit 14) filled with midden material shows no sign of plant-related activities: only uncharred cheno-am and stickleaf seeds were recovered.

Construction materials from LA 6170 were examined from two pools of wood specimens. Those examined to assess suitability for tree-ring dating were largely burned beam fragments from the roof fall layer of Structure 5. Of the 54 specimens, 78 percent were cottonwood/ willow and 22 percent juniper (Table 23.64). Other roof fall and fill samples were examined prior to submission for radiocarbon dating. All wood in fill from Structures 5 and 50 was cottonwood/willow; common reed stems were also part of the roofing material (Table 23.55 and 23.61). In Structure 2 fill and Feature 20 of Structure 5, however, juniper was the predominant wood type (78 percent by weight), while cottonwood/ willow made up 21 percent, and trace amounts of saltbush/greasewood and piñon were also encountered. This assemblage, with a strong conifer component and greater diversity, more closely resembles Early Developmental fuel contexts elsewhere at Peña Blanca sites (Tables 23.50 and 23.56).

Corn cobs and kernels from the four structures and Feature 69 (bell-shaped pit in Study Unit 12) were measured; The majority of the cobs (58 percent) were 12-rowed and are discussed, along with kernel morphological characteristics, in a regional comparative framework later in this chapter. Several beans from Structures 5 and 50 were also measured. One displayed clear characteristics of the common bean (*Phaseolus vulgaris*), and the other four are probably the same species.

Weedy annuals, perennials like prickly pear cactus and piñon, corn, and beans were the staples in the diet of LA 6170 inhabitants. Grass seeds were not recovered with any frequency, perhaps indicating a more minor role of grasses as a food resource. Grass stems (especially common reedgrass), were important elements of roof thatch material. Probably because of close proximity and rapid growth, cottonwood was the most commonly occurring roof beam material identified, followed by juniper. Mountain mahogany and saltbush/ greasewood were also present, but not in high frequencies. Evidence of ritual abandonment of Structure 50 provides insight into the importance of corn and deer not only as food, but in the spiritual life of the people who lived at LA 6170. Site complexity and the presence of fallripening resources suggest occupation of LA 6170 was similar to that at LA 6169 during the Early Developmental. LA 6170 appears to have been occupied, not only during the growing season, but extending into the fall when piñon and prickly pear cactus fruit were collected.

LA 6171

LA 6171 was an Early Developmental habitation with four pit structures, three activity areas, and a series of large, oxidized, bellshaped pits that are some of the earliest Developmental features identified in the Northern Rio Grande to date. The site was covered by a layer of Coalition sheet trash associated with unexcavated components to the east.

Study Unit 5 contained a series of extramural features, many of which were associated with Feature 38, an activity area later used as a dumping area for hearth or roasting pit refuse. Goosefoot and two corn cupules were the only charred taxa recovered from Feature 38 fill. The sample from Feature 39, an ash and firecracked rock concentration, or possible thermal feature within Feature 38 was more varied, vielding goosefoot, cheno-am and, prickly pear cactus (Table 23.65). Most of the wood from both features was juniper with trace amounts of saltbush/greasewood. Variations in taxa recovered from the two features could support the speculation that Feature 39 is a specific dumping episode within Feature 38 and that Feature 38 fill could be made up of more of these discrete dumping episodes. Structure 1, located to the southwest of Feature 38 contained a considerable number of burned goosefoot (15) and some corn remains (Table 23.65).

Structure 60 (Study Unit 6) was a shallow, oval, Early Developmental pit structure with very little evidence of roof fall. Samples examined from the central hearth, an ash pit, and two small pits yielded few plant remains, including goosefoot and cheno-am seeds; evidence of corn was sparse but ubiquitous, consisting of a few cupules in each feature and a kernel fragment from the ash pit (Table 23.66). The only flotation sample with wood charcoal was from the ash pit; juniper was the dominant wood taxon with a smattering of saltbush/greasewood.

Earliest Developmental features were located in Study Units 5, 6, and 7. Archaeobotanical remains from large, oxidized, bell-shaped cists (Features 43, 54, 56, and 92) that may have also been used as small structures are among the most

diverse at LA 6171. Goosefoot was prevalent in all samples that had charred seeds, but was most dominant in Features 43 and 56, accounting for 80 to 90 percent of the total burned seed assemblage (Table 23.67). Other weedy annuals recovered were seepweed, pigweed, winged pigweed, and bugseed. Charred grass seeds, monocot stems, and juniper seed fragments made up the remaining wild plant remains. Unburned spurge, goosefoot, and nightshade family seeds were likely intrusive. Cultivars included squash rind as well as corn cupules, glumes, and one corn kernel. As with the rest of the site, wood from these features was dominated by juniper with a small amount of cottonwood/willow and trace bits of saltbush/greasewood in Feature 55 (Table 23.68). It is possible that some of the sampled deposits were associated with later site occupations. However, cupules from Feature 54 produced a 2-sigma date range from AD 440-640 indicating early use of corn and an intact deposit.

Study Unit 4 was made up of two small, overlapping shallow pit structures (Structure 18 and 26) and two intrusive extramural features. As with Structure 60 in Study Unit 5, there was very little evidence of roof fall. Floral sampling in the earlier Structure 26 was limited to two quadrants and one thermal feature. The highest concentration of plant remains was found in the northwest quadrant. Charred weedy annuals consisted of goosefoot, sumpweed, and an unidentified species of the composite family. Evidence of cultivars in the form of a small amount of squash rind and corn was also recovered. One corn kernel and intrusive uncharred dove-weed seeds were recovered from the southwest quadrant (Table 23.69). Wood from Structure 26 floor was mostly juniper and saltbush/greasewood with trace amounts of cottonwood/willow (Table 23.70).

Despite extensive sampling, charred wild plant remains from Feature 27 (a small roasting pit in Structure 26) were extremely sparse and were limited to goosefoot seeds and juniper seeds and twigs (Table 23.69). The feature was lined with several discrete layers of burned twigs that were smothered with soil, as indicated by the small diameter and intact nature of the recovered wood. Juniper and saltbush/ greasewood comprised the majority of wood from the feature and can confidently be identified as fuel wood (Table 23.70). A dumping episode (Feature 105) in the fill of Structure 26 contained small quantities of burned and unburned goosefoot seeds, corn cupules, and juniper and cottonwood/willow wood. The episode could not be linked to any specific occupation.

In general, sparse amounts of weedy annuals were recovered from Structure 18 in the form of goosefoot, purslane, and pigweed seeds (Table 23.71). Because the eastern margin of the structure was excavated into Feature 26 fill, it is possible that the relatively large amount of goosefoot recovered from this half of the structure is intrusive. Unburned bugseed and goosefoot seeds and piñon needles were probably also intrusive. Flotation wood charcoal was dominated by juniper, with trace amounts of saltbush/greasewood, unknown conifer, and cottonwood/willow (Table 23.72). A corn cob was identified in macrobotanical samples from the southeast quadrant of the structure, in addition to an unburned hackberry seed.

Study Unit 2, an activity area immediately to the north of Study Unit 4, had sparse evidence of charred plant remains. Because other features were deflated or suffered extensive rodent disturbance, sampling was restricted to Feature 7 (ash pit), which contained charred goosefoot seeds and juniper and saltbush/ greasewood charcoal.

Structure 9 was an Early Developmental pit structure at the northern end of LA 6171. Unlike structures at the south end of the site, this pit structure was excavated into terrace cobbles, was deeper (60 cm), had well-defined roof fall, and was burned. Floor features yielded goosefoot, pigweed, and winged pigweed, as well as grass stems and a few corn cupules (Table 23.73). Wood from thermal features in Structure 9 contained a mixture of cottonwood/willow, saltbush/greasewood, and juniper (Table 23.74). Feature 16 (the ash pit), contained mostly juniper followed closely by cottonwood/willow with a small quantity of saltbush/greasewood. Wood analyzed from this feature was collected as a ¹⁴C sample and

may be biased towards the larger pieces of wood found in the feature fill. This may not be the case for Feature 13, the primary central hearth, from which only very small quantities of cottonwood/willow and juniper along with the only rose family wood from LA 6171 was recovered. Feature 12, the remodeled hearth, had a particularly high proportion (90 percent) of cottonwood/willow charcoal. This high frequency of riparian wood may be weighted by burned construction wood deposits, suggesting that the hearth was open when the structure collapsed. Greasewood/saltbush was the dominant wood type recovered from Feature 14, a thermal pit. Macrobotanical wood from structure fill was sparse but showed nearly equal parts of cottonwood/willow and juniper. The sample was dominated by the presence of grass stems, which may have been used as roofing material. Roof beam samples recovered from structure closing fill and identified prior to submission for dendrochronological dating, were all juniper.

Study Unit 8 was an activity area to the immediate north of Structure 9 and likely postdates the structure. Archaeobotanical remains from Features 96 (a deflated hearth) and 97 (a shallow pit) consisted of fewer than ten corn cupules from Feature 96.

Throughout time, inhabitants of LA 6171 exploited both desert scrubland and riparian environments. Floral remains show a familiar reliance on weedy annuals, as well as consistent evidence of reliance on agriculture. Indicators of agriculture in the Upper Rio Grande Valley as early as AD 500 are corn recovered from Feature 54 and possible squash rind found near the base of Feature 43. Taxa recovered from Early Developmental contexts are similar to, if not as varied as, those recovered from earlier contexts. Weedy annuals were predominant, and corn occurred in 15 of 20 samples (75 percent). Squash rind, recovered from Structure 26 floor was the only incidence of other cultivars besides corn.

Much of the wood recovered from LA 6171 was juniper (60 percent by weight). Juniper was dominant in thermal features with three exceptions:

Features 12 and 14 in Structure 9, and Level 2 of Feature 27 in Structure 26. Cottonwood/willow predominated in Feature 12, and saltbush/greasewood was dominant in Features 14 and 27.

Higher diversity and percent presence of weedy annuals from the earliest Developmental contexts may indicate greater dependence on wild plant resources compared to the ensuing Early Developmental. However, corn was actually encountered in slightly more of the flotation samples from the earlier time period (83 percent, compared to 75 percent of the Early Developmental samples). With the exception of juniper, wild plant remains in the earliest Developmental were restricted to late summer annuals. While prickly pear cactus was recovered from an Early Developmental context, a single occurrence of a fall-maturing plant does not make a strong argument for distinct differences in season of occupation between the two time periods.

LA 115862

Location of this pit structure on a narrow terrace above the floodplain ostensibly parallels that of similar nearby habitations of the same period (AD 800s). But digging into these gravel and cobble deposits, with practically no interstitial fines, was surely very difficult, especially given the tools at hand. Why did these Early Developmental people persist with this daunting and formidable task, when more amenable substrates abounded nearby? If the particular significance of this location lies in subsistence, floral remains do not reveal any distinctive or unusual qualities of this site. Rather, they are highly consistent with other project sites of this period.

Carbonized cultural plant debris is scanty within the pit structure (low-frequency goosefoot in the central hearth, and corn kernels, cupules, and glumes in floor fill, a basinshaped pit, and an ash pit; Table 23.75). Wood is predominantly juniper in both the ash pits and several postholes, but includes some cottonwood/willow from the river corridor, and bits of saltbush/greasewood from the floodplain and terraces (Table 23.76).

The extramural activity area thermal features produced a considerably more diverse assemblage of economic floral remains. Carbonized wild seeds included the usual weedy annual suspects (goosefoot, pigweed, purslane) as well as bulrush (Table 23.77). Corn remains were found in every feature, including a hearth (Feature 5), roasting pits (Features 9, 11), and charcoal or ash stains (Features 10, 12). The only wood data available from the extramural proveniences came from Feature 9; juniper is the predominant element in both flotation and macrobotanical wood samples (87 percent and 99 percent by weight, respectively). Feature 8, a small trash-filled pit southwest of the pit structure, contained carbonized goosefoot, cheno-am, and goosefoot family seeds and corn cupules. Again, site occupants seem to have focused on a restricted number of weedy annuals that mature in late summer. The site probably was occupied at least through the growing season.

LA 115863

LA 115863 is a multiple component sherd and lithic artifact scatter. A cobble-filled roasting pit was the only cultural feature encountered during data recovery. A flotation sample examined from the feature yielded less than a gram of charcoal, and there were no herbaceous floral remains.

DISCUSSION

Taxa Recovered at Peña Blanca Sites

At Peña Blanca's earliest occupation, goosefoot, pigweed, and corn turn up in most samples, but the weedy annual assemblage is otherwise sparse, and there are no edible perennials represented (LA 6171; Table 23.78). This is based on a very small sample, however, so we cannot interpolate economic and social implications. The Early Developmental period has a larger and more broadly based sample (133 flotation samples from five sites of various types and sizes). Here we see a wider spread of economic taxa (Table 23.78), with again a short list of weedy annuals (goosefoot, pigweed, and purslane) making up the bulk of occurrences of annuals in samples, and, in fact, 40 percent of all economic occurrences in these 133 samples (Table 23.79). There is a healthy array of perennials showing up in this time period, including piñon, squawberry, cacti, sedge, and yucca, and again, corn in nearly every sample. The Late Developmental stands out as having the highest emphasis on corn agriculture, with corn in every flotation sample (Table 23.80) and corn comprising 43 percent of all Late Developmental economic occurrences (Table 23.79). The list of weedy annuals is short (goosefoot, pigweed, purslane, and one occurrence of winged pigweed) and perennials (piñon, cacti) make up just 12 percent of economic occurrences. Similar to Salmon Ruin (Doebley 1981) and Chaco sites (Toll 1985, 1987), wild plant usage is showing an inverse relationship with corn.

Of all the plant taxa present in Peña Blanca sites, ubiquity (number or percentage of samples in which a taxon occurs) is consistently high for only cheno-ams and corn. The distinctly widespread prehistoric distribution of cheno-ams has been noted repeatedly for the Greater Southwest area (Gasser 1982; Minnis 1982; Adams 2001; Huckell and Toll, in press). The consistency of the prehistoric pattern combined with less ubiquitous contemporary distribution suggests that the prehistoric presence of cheno-ams on the landscape was significantly different, due to some combination of natural and anthropogenic factors. An enticing possibility is the encouragement of these taxa when they volunteered in agricultural fields, as documented in the twentieth century for the Cochiti (Lange 1968a:99). Bye (1981) has also provided evidence of the encouragement and harvest of goosefoot, pigweed, mustard, and purslane in modern cultivated fields of the Tarahumara of Northern Mexico.

Ricegrass has high potential subsistence value, due to its relatively large and nutritious seeds, ripening early in the growing season when food stores are at their lowest level

(Bohrer 1975:199). Tierney (1979:38) encountered modern ricegrass populations in her pebble terrace sample plot, as well as mesa top and Santa Fe River floodplain contexts. Ricegrass, however, was identified only at LA 6169 in a Coalition context. The much smaller seeds of dropseed grass turned up in low frequencies in Early Developmental contexts at LA 265, and Early Developmental and Coalition contexts at LA 6169. Grass frequency is low throughout all time periods, aside from the presence of grass and common reedgrass stems (probably as roof closing material). Among perennials with potential food value, juniper is most widespread followed by piñon (though many occurrences of both taxa are likely ambient debris, or fuel rather than food remnants). Far less frequent are occurrences of seeds of leafsucculents, possibly pointing to fruit consumption: cholla, prickly pear, hedgehog cactus, and yucca. Riparian areas of the nearby river corridor are represented by infrequent occurrences of common reedgrass, sedge, and bulrush.

The flotation contents of 9 roasting pits and 16 other thermal features with primary deposits were compared to see if differences in associated plant taxa could be detected (Table 23.81). The greatest taxonomic diversity was linked to Coalition period thermal features at LA 6169, followed by Early Developmental thermal features at LA 6169, 6171, and 115862. Within the Early Developmental period, roasting pits display far less floral diversity than other thermal features. There is also a case at LA 6169 where a Late Developmental extramural roasting pit produced twice the taxonomic diversity found in two contemporaneous interior thermal features.

Wood charcoal taxa richness was greatest from LA 265, though probably biased by the particularly large number of charcoal samples (n = 47) compared to other sites (Table 23.82). However, Classic period contexts at LA 249, with only nine samples, showed wood utilization that was nearly as diverse (Table 23.83). Some of the later Peña Blanca wood assemblages seem to have somewhat higher taxonomic diversity (see, for example, the Late Developmental and Classic period assemblages at LA 249 and the Coalition at LA 6169). Such patterns of increasing diversity, whether applied to wood use or plant foods, are often taken to indicate the effects of population pressure (Kohler and Matthews 1988). Woods avoided or rejected in the past may have been added to the use repertoire to meet growing needs. Cottonwood, willow, and box elder, for instance, are relatively soft, weak, and easily damaged by rot, but have a rapid replacement rate (Lamb 1975:86, 153; Vines 1960:87, 676-677). Juniper is widely the dominant wood taxon, without respect to time or site type. Exceptions include LA 6170, where a distinctly high percentage of Early Developmental samples contained willow family wood, and LA 6169, where the ubiquity of saltbush/greasewood from Coalition contexts was 10 percent higher than juniper.

A comparison between primary deposits in intramural and extramural thermal features shows that wood diversity is 50 percent greater in intramural features (seven to eight taxa, versus 4; Table 23.84). Juniper is the dominant taxon, followed by saltbush/greasewood and then the willow family. Though sample size could be skewing the results, it does look like shrubby woods are showing up in intramural thermal features and not in their extramural counterparts.

REGIONAL PLANT USE PATTERNS

Corn morphometrics provide a way of looking at the complex interdigitation of two realms of variability. Genetic or racial affinities in time and space certainly relate to ethnic or community ties and communication patterns, while morphological traits that reflect growing stress inform us about agricultural success from one area to another of the Rio Grande Valley and San Juan Basin, and within any given area over time. The number of kernel rows on a cob is an attribute that perhaps illustrates perfectly the informative and obfuscating potentials of corn data. Probably because this trait can be tallied consistently by any analyst with a minimum of

training and practice, this one measure is available for virtually every archaeological corn assemblage examined in this century. The trait is under genetic command, with variation (largely diminuition) due to stressful growing conditions. Theoretically, similar distributions of percent composition of various row numbers should illustrate genetic or racial affinities, in time and space. Divergences from general trends should indicate prominence of (or interaction with) alternate genetic strains, or the effects of difficult growing conditions. Sorting these patterns out for the prehistoric Southwest will clearly require much larger sample sizes than we've had to work with to date, and discriminatory statistics. We know that moisture, temperature, and mineral stress affect reduction in size of the corn plant as a whole, as well as the cob, and often results in irregular row configuration and undeveloped kernel rows (Denmead and Shaw 1960; Robins and Domingo 1953). We are limited, however, in what variables we can measure archaeologically on any significant number of specimens. Cob length is a far more sensitive measure of stress than cob diameter (Sanchez G. and Goodman 1992), but very few archeological cobs from open sites are complete in length (16 percent of River's Edge I cobs; 3 percent of cobs at the KP site; and less than 1 percent in the approximate 900 cob sample from Pueblo Alto; Brandt 1991b:25; Wiseman 1989:84; Toll 1987). Using the cruder measure of cob diameter, some relationships are still evident.

The Earliest/Early Developmental periods and late Basketmaker/Pueblo I are dominated by 12-rowed cobs in the Central Rio Grande Valley (Tables 23.85 and 23.86), as well as Chaco (Toll 1993a, table 26) and at LA 26749 near Crownpoint (Donaldson 1981). Ford (1976, F2) indicates presence of an "'old corn'... widely distributed in prehistoric times ... with a mean of 12 rows" at LA 70 in the Cochiti Dam flood pool. In the Middle/Late Developmental and Pueblo II, Peña Blanca and Cochiti sites share very similar row-number configurations (only slightly more 10-rowed cobs than 12) with Chaco, Bis sa'ani, ENRON, and Navajo Mines (Donaldson and Toll 1982; Struever 1977; Toll 1983, 1985, 1986, 1987, 1993b; Winter 1993). Several of these same areas share diminutive cob diameters, ranging from an average of 7.8 mm on the Navajo Mines area to 10.2 mm in Chaco. Note that at this same time period, Salmon Ruin (Bohrer 1980) and sites in the La Plata Valley (Toll 1993c, 1993d) are predominantly 12-rowed, and have average cob diameters ranging from 11.5 to 14.0 mm in the upper and lower La Plata Valleys, respectively. By Pueblo III a very interesting dichotomy in assemblages seems to be emerging: smaller sites in many areas have smaller, predominantly 10-rowed, cobs, while downtown Chaco sites reflect traits seen earlier in the major river valleys: very large cobs, with a significant majority 12-rowed. Interestingly, Salmon corn falls off slightly in size and goes to a majority of 10rowed cobs at this time.

Corn kernel morphometrics form a smaller and more difficult to interpret database. Peña Blanca kernel specimens derive entirely from the Early Developmental period (Table 23.87) and are somewhat wider and thicker than later kernels from the nearby Cochiti Dam project (Table 23.88). Contemporaneous kernels from farther south in the Rio Grande Valley are taller and broader, but thinner.

This patterning tells us something about where and when farming may have been more successful. Decrease in average cob size from Pueblo II to Pueblo III takes place not only at Salmon, but also at Bis sa'ani, Pueblo Alto, and throughout the La Plata Valley. ENRON corn gets smaller between Basketmaker/Pueblo I and Pueblo II, and then levels off. Likewise, undeveloped and irregular rows increase with time in the La Plata Valley, from 22 percent of cobs in Pueblo II, to 39 percent in Pueblo III. These observations suggest the likelihood that many, varied areas of northern New Mexico may have been experiencing difficulties producing corn in the AD 1000s and 1100s.

In an overview of farming at Cochiti Pueblo, Lange (1968a:94–95) indicates that beans were raised by almost every farmer. Beans were second in importance to corn and were sometimes planted with other crops. The place of beans as second in importance to corn is not often supported by archaeobotanical evidence. Beans are not normally found in significant quantities. This probably has more to do with how corn and beans were harvested, stored, and cooked, and how they preserve archaeologically, than how important beans were in the diet. Heavily indurated corn cobs survive better than beans. Beans have a thin, fragile seed coat that can break easily, leaving the endosperm exposed to environmental factors that cause deterioration (Gasser and Adams 1981). Other seeds with tougher seed coats have a distinct preservation advantage. At Walpi, Gasser and Adams (1981) recovered 509 beans as opposed to a whopping 24,746 watermelon seeds. There is also some suggestion, deserving of experimentation, that beans rarely survive carbonization except under low oxygen conditions. The additional widespread use of cobs for fuel adds to the lopsided visible presence of corn remains. Cobs shrink, but frequently survive in a fully recognizable form, in hearth fires (Brugge 1965).

Bean specimens recovered from Peña Blanca (all from site LA 6170) belong to the widespread and highly diversified species of common bean (Phaseolus vulgaris). Charred common beans are difficult to distinguish as to variety, as seed coat color and patterning are critical traits (Kaplan 1956). The average length of beans found at LA 6170 was 12.1 mm, average width 6.6 mm, and average thickness 5.0 mm (Table 23.89). We have at present only two bean specimens from Basketmaker/Pueblo I contexts at Chaco Canyon, the closest comparative bean assemblage available (Table 23.90). These beans are a similar shape, and slightly larger. In the succeeding Pueblo II period, Chaco beans from one site are morphologically close to the Peña Blanca specimens, while those from a second site are more diminutive, possibly indicating the presence of a different variety, or more difficult growing conditions. At Bc288 (Pueblo III), unburned beans allowed separation into multiple varieties, which proved to have corresponding morphological configurations that were respectively larger or stubbier than the Peña Blanca specimens.

Although there are no Archaic components at Peña Blanca, some discussion of Archaic patterns found farther south in the Middle Rio Grande has been included to provide some perspective on long-term changes in settlement patterns and subsistence strategies. Previous research in the Jemez Valley has resulted in the recognition of land use and subsistence patterns common to the Jemez Valley as well as the Middle Rio Grande and the Rio Puerco regions. Archaic settlement includes both a general Archaic signature and that of the San Pedro occupation in the Late Archaic, interpreted by Huckell (1987, 1990, cited in Elyea 1999) as intrusive settlement by agriculturists from Northern Mexico. Sites in the general Archaic category include campsites of foraging groups that occupied dunal sites for intervals in the summer months and moved to the upper elevations of conifer woodlands in the fall to gather piñon and cactus fruits (Toll and Cully 1985:391). Direct evidence is scarce for foraging camps in the conifer woodlands; the paucity of Archaic sites in conifer woodlands is primarily an artifact of where systematic surveys have taken place. Our knowledge of sites of any time period in the three areas is largely a product of strip surveys related to highway construction or housing development. These are likely to produce data about sites in the grassland biotic community, while little is known about sites in the valley margins or areas of more variable topography, such as the foothills of the Jemez Mountains. Flotation samples from Early to Middle Archaic sites in this category produced a limited number of weedy annuals, grasses, and cacti (Table 23.91). Middle to Late Archaic contexts yielded a greater diversity of weedy annuals, juniper, the same grass taxa found in Early and Middle Archaic samples, and yucca. Corn was recovered from very Late Archaic components of the multicomponent sites, LA 9193 and LA 110942. Late Archaic wood from two of the MAPCO project sites in the Jemez Valley was predominately juniper with small percentages of piñon,

saltbush/greasewood, rabbitbrush, and cot-tonwood/willow wood (Table 23.92).

Also included in the general Archaic category are sites with round or oval shallow structures with intramural features that include hearths and storage pits. These have been interpreted as winter-occupied habitations because of the presence of the intramural features and both spring and fall-ripening seed crops (Elyea 1999:149). While there are only a handful of sites associated with the San Pedro occupation in the area, a very different signature is apparent. Sites are more complex and include one or more pit structures, large storage features, and diverse assemblages of wild plants along with maize. The greater time invested in the construction of these sites suggests year-round occupation. The discovery of more sites from the San Pedro occupation with datable material might clarify the degree to which these Archaic settlement and subsistence styles overlap.

In the ensuing Basketmaker II/III (earliest Developmental) and Pueblo I (Early Developmental) periods, a shift occurs from a mobile hunting-gathering economy to a more sedentary economy in which maize agriculture played an important role. More substantial pit structures replace the shallow, brush or skincovered structures of the Archaic. Sites are in various locations ranging from gravel terraces to low rises above the Rio Puerco floodplain but all are fairly close to major tributaries of permanent streams (Cordell 1979; Wiseman 1976). Flotation samples from these periods document the use of maize, possibly squash, and even beans (LA 25862, McBride 1999), along with a variety of spring- to fall-ripening annuals, perennials, and grasses (Table 23.91). The wild plant assemblages were especially rich in the Early Developmental period when up to 25 taxa were present. As in the Archaic, juniper remains the dominant wood taxon and the number of shrubby, non-conifer woods exploited increases (Table 23.92).

Human remains from Early Developmental sites at Peña Blanca display characteristics of a fairly mobile group of individuals. A disproportionate number of older women and children indicate only a segment of the population may have been living at sites on a semipermanent basis (see Akins, Chapter 22). Corn was ubiquitous throughout the occupation of the Peña Blanca area, but osteological data tell us that people living there did not develop traits more typical of sedentary agriculturalists until the Late Developmental and Coalition periods (Akins, Chapter 22), suggesting a slow transition from a hunter-gatherer to a more sedentary lifestyle.

Few Pueblo II (Late Developmental) sites have been detected in the Jemez River Valley and changes from the preceding period seem to be limited to an increase in jacal or adobe surface structures (Gerow 1999:170) and an apparent standardization of pit structure features. Fourpost roof supports, ladder rests, ash pits, sipapus, and slab-lined ventilators show up more consistently than in earlier time periods (Wetherington 1968:88, cited in Gerow 1999:170). The Late Developmental signature at Peña Blanca does not seem to be significantly different from the preceding Early Developmental, with pit structures continuing to be built at sites with earlier components. A slight increase in the frequency of corn and a decrease in the diversity of wild plant taxa in flotation samples may reflect a shift in diet from the Early Developmental, but the vast difference in sample size between the two periods may be skewing the overall picture. The wood assemblage is also similar to preceding periods, but Mormon tea and wolfberry wood were absent in assemblages from previous periods.

Flotation samples from the Late Developmental KP site (LA 46300) on the north side of the Santa Fe River Valley gives us an alternative picture of plant use in an upland setting. The major differences between the two plant assemblages is the occurrence of yucca, bulrush/sedge, Echinocactus (Turk's head), and squash seeds that were not recovered at Peña Blanca. The Turk's head seeds may be a misidentification because this genus occurs today only in the southern portion of New Mexico (Martin and Hutchins 1980:1335). The

recovery of squash seeds is unusual. Based on remains from rock shelters, squash was probably used more intensively than the rare finds from open-air sites would indicate, where evidence of squash is normally restricted to small bits of rind. Preservation of other parts seems to be random and not dependent exclusively on optimal preservation conditions or provenience. At the KP site, seeds were recovered from all trash-fill levels as well as the floor. The balance of the floral assemblage from the site is not at all unusual, indicating preservation was not necessarily ideal. Differential recovery of squash remains could indicate varying success rates with this cultivar. Squash is less cold tolerant than beans or corn and may have been more difficult to grow than the other cultivars. Finally, it is thought that because wild squash have little or no flesh in the fruits, they may have been domesticated for their seeds; it was only when fleshier mutant varieties were selected for that the squash similar to what we know was developed (Heiser 1990:180; Sauer 1969:68). If the seeds were considered the important edible part of the fruit, then it follows that seeds would not usually be part of the archaeobotanical record.

The Pueblo III (Coalition) period is characterized by substantial above-ground residential structures, although pit structures are still being built (Gerow 1999:171) during the transition from the Late Developmental to the Coalition. Settlement in lowland agricultural settings expands into upland settings particularly, with the onset of a colder climate and winter-dominant precipitation (Stuart and Farwell 1983). Theoretically, this results in greater dependence on wild plants found at higher elevations (Doleman 1989), though Peña Blanca floral data show no such trend. The archaeobotanical assemblage from four Coalition pit rooms at LA 6169 that date to the early Coalition does not reflect any such dependence on upland species, but rather an increase in the number of weedy annuals and the presence of grasses like ricegrass that were not found in earlier time periods suggests an expansion of lowland plant resource use

instead of a decrease. The wood assemblage is very different from all others in that saltbush/greasewood is the most common taxon by weight and not juniper. In comparison, LA 3333, a pithouse village on the eastern edge of the Galisteo Basin yielded a similar array of plant remains, with the exception of hedgehog and *Opuntia* cactus and wild grape seeds. Both sites had a high percentage of corn in samples, indicating a considerable reliance on corn agriculture. The wood assemblage at LA 3333 reflects the location of the site; piñon and juniper are present in nearly equal percentages and only one shrubby taxon was recovered.

Population levels during the Pueblo IV or Classic period were at a maximum, possibly due in part to an influx of immigrants from the San Juan region (Cordell 1979). The period is marked by aggregations of populations into large, sometimes multistoried pueblos surrounding a plaza. A large number of small sites that also occur at this time have been interpreted as logistical foray sites that were occupied briefly throughout the year, with the pueblos serving as primary residences. Tashkatze Pueblo (LA 249) at Peña Blanca represents this occupation. Its location outside the highway right-of-way means we know little about plant utilization from the site aside from a few corn parts and wood charcoal recovered from middens associated with the occupation of Tashkatze. The Coalition to early Classic plant assemblage from LA 110953 consisted of isolated occurrences of goosefoot family, purslane, cheno-am, and grass seeds along with fourwing saltbush fruit. Although the assemblage was certainly more diverse than at LA 249, corn is the only plant remain that occurs with any significant frequency. Wood from LA 249 is consistent with project-wide results with the exception of ponderosa pine; LA 249 is the only site with evidence of this high-elevation conifer. What emerges from this overview of the Middle Rio Grande is that agricultural dependence gradually increased through time, but wild plant resources always played an important role in the diet of prehistoric populations; climactic fluctuations required a flexible regime that was generally dependent on agriculture, contingent upon weather conditions and population pressure.

SUMMARY AND CONCLUSIONS

Peña Blanca sites reflect common regional patterns of wild plant usage for the Upper Rio Grande Valley and the Colorado Plateau. Wild plant foods focus on a short list of weedy annuals, with dual crops of early summer greens, and late summer seeds. Goosefoot, pigweed, and purslane make up a major share of the floral array, with supplementation from winged pigweed and bugseed, and rare appearances by beeweed, marsh elder, groundcherry, plantain, and seepweed. As corn takes a more dominant share of plant foods over time, weedy annuals fall off slightly, while grasses (ricegrass, dropseed) and perennials (cacti, yucca, sedges, piñon nuts, and squawberry) become a more significant part of the dietary array.

When trying to determine seasonality of site occupation, it is tempting to look to floral debris as evidence of when site occupants were actively harvesting economic resources, and inhabiting the site. However, it's important to recognize the multiple factors that can complicate the relationship between time of harvest and time of use. Storage of foodstuffs and raiding caches found in animal nests are just two behaviors that result in the utilization of plant crops in seasons that post-date collection time. People also take advantage of the "on-theplant" storage system (Adams and Bohrer 1998:130) with resources such as juniper berries and four-wing saltbush fruits. When evaluating duration of occupation, the archaeobotanical assemblage cannot be used in isolation. Additional lines of evidence that should be brought into play include number of storage features, the nature of trash middens, and osteology, ceramic, and lithic studies

Adams and Bohrer propose examining seasonality using the following relationship: "the higher the proportion of weedy contributors, the more likely long-term, multi-season occupation is being expressed" (Adams and Bohrer 1998:132). Their premise assumes that as a site is occupied for longer periods, there is more disturbed land where weedy annuals thrive and the proportion of weedy annuals to climax species will be higher. The percentage of weedy annuals is compared to other plant categories at Peña Blanca through time in Table 23.93. The assemblages are dominated by weedy annuals and domesticates except in the Late Developmental when the occurrence of domesticates far exceeds any other category. By Adams and Bohrer's criteria, this indicates that sites were occupied for multiple seasons rather than year-round. Year-round occupation would require a considerable presence of "plant parts available during cold or dry dormant seasons" (Adams and Bohrer 1998:129), which are minimal at Peña Blanca. The concept of multiple season occupation implies a period or periods of absence during the annual cycle.

Evidence for springtime occupation of Peña Blanca sites is decidedly sparse, with a single occurrence of carbonized ricegrass recovered from the central hearth of the Coalition pit room 70 at LA 6169. The dearth of plants that mature in the spring suggests seasonal occupation of sites where farming took place on the floodplain of the Santa Fe River and stored corn from previous harvests formed the major part of the diet, supplemented by annual weed seeds from volunteer plants in garden plots and other disturbed areas. Several perennial taxa recovered from Early and Late Developmental sites have fruits and seeds that mature in the fall, suggesting that the season of occupation during these time periods extended from the growing season at least into early fall.

Corn morphometrics clearly show Peña Blanca's participation in the regional predominance of a *chapalote*-like variety (small, slender, cigar-shaped, and largely 12-rowed) in the Earliest/Early Developmental period. In the Late Developmental we see larger, more cylindrical cobs, and a boost in 8- and 10-rowed ears, attributed to *maiz de ocho*, a second-wave introduction from Mexico.

Wood charcoal suggests that the period of greatest pressure on local wood supplies may have been during the Early Developmental period, when the highest use of cottonwood and willow was noted. Juniper was the predominant wood used in all time periods. Piñon was a minor component, becoming slightly more evident in the Late Developmental period. Ponderosa pine was brought into the area in small quantities in the Classic period, probably for construction elements at Tashkatze Pueblo. Other construction materials are noted in the frequent appearance of reedgrass stems in roof fall levels. Saltbush/greasewood is the only shrubby wood type used consistently and in significant quantities.

Latin Name	and Wood Samp Common Name	Plant Part
		ו ומווג רמונ
Annuals:		
Amaranthus	Pigweed	Seed
Chenopodiaceae	Goosefoot family	Seed
Chenopodium /Amaranthus		Embryo, seed
Chenopodium	Goosefoot	Embryo, seed
Cleome	Beeweed	Seed
Corispermum	Bugseed	Seed
Cycloloma	Winged pigweed	Seed
Physalis	Groundcherry	Seed
Plantago	Plantain	Seed
Portulaca	Purslane	Seed
Cultivars:		
Cucurbita	Squash	Rind
Phaseolus vulgaris	Common bean	Cotyledon
Zea mays	Corn	Cob, cupule, glume, kernel
Grasses:		
Gramineae	Grass family	Caryopsis, culm, glume
Oryzopsis	Ricegrass	Caryopsis
Phragmites	Common reedgrass	Culm
Sporobolus	dropseed grass	Caryopsis
Other:		
Compositae	Composite family	Seed
Dicotyledonae	Dicot	Leaf
Euphorbia	Spurge	Seed
Iva	Sumpweed	Seed
Monocotyledonae	Monocot	Leaf, stem
Salvia		Seed
	Sage Bulrush	Seed
Scirpus	Unidentifiable	Seed
-	Unknown	
- Devennisler	UNKNOWN	Bark, embryo, stem, unknown, wood
Perennials:	Sagahruph	Wood
Artemisia	Sagebrush	
Atriplex canescens	Four-wing saltbush	Fruit
Atriplex/Sarcobatus	Saltbush/greasewood	
Carex	Sedge	Seed
Cercocarpus	Mountain mahogany	Wood
Chrysothamnus	Rabbitbrush	Wood
Cylindropuntia	Cholla	Seed, wood
Echinocereus	Hedgehog cactus	Seed
Ephedra	Mormon tea	Wood
Forestiera	New Mexico olive	Wood
Gymnospermae	Conifer	Wood
Juniperus	Juniper	Leaflet, seed, twig, wood
Lycium	Wolfberry	Wood
-	Non-conifer	Wood
Pinus	Pine	Wood
Pinus edulis	Piñon	Nutshell, needle, wood
Pinus ponderosa	Ponderosa pine	Wood
, Platyopuntia	Pricklypear cactus	Seed
Quercus	Oak	Wood
Rhus	Skunkbush	Seed
Rosaceae	Rose family	Wood
Salicaceae	Willow family	Wood
Yucca	Yucca	Fiber, leaf
	1 4004	

Table 23.1. Peña Blanca Charred Plant Taxa Recovered from Flotation, Macrobotanical,

Note: Indian ricegrass no longer goes by the Latin name *Oryzopsis*, but is now correctly referred to as *Achnatherum hymenoides* (Roemer and J. A. Schultes) Barkworth. In this report, it is still referred to in text and tables as *Oryzopsis*. Common names follow USDA 1974 *Field Guide to Native Vegetation of the Southwestern Region*, Forest Service, Southwestern Regional Office.

Stratum	29a, Upper Fil	29c, Mixed Pumice and I Alluvium	50, Level 8 Roof Fall	50, Level 9 Roof Fall	
FS#	315	309	283, 308	324	
	(Cultural			
Cultivars: Zea mays	+ cob frags., +c, +g	+ cob frags., +c, +g	+c, +g, .5k	+c	
<i>Other:</i> Monocotyledonae	-	+ stem	-	-	
Non-Cultural					
Annuals:					
Chenopodium	-	-	-	0.5	
Euphorbia	0.5	-	-	-	

Table 23.2. LA 249, Structure 6 Fill, Late Developmental/Coalition Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; All cultural material is carbonized.

+ less than 10, c cupule, g glume, k kernel

Stratum	29c, Mixed Pumice and Alluvium	50, Level 8 Roof Fall	50, Level 9	Tota	ls	
FS#	309	283, 308, 313	324	Weight	%	
Conifers:						
Ephedra	-	0.30g	-	0.30g	8%	
Juniperus	0.89g	1.31g	0.19g	2.39g	67%	
Pinus edulis	-	0.20g	-	0.20g	6%	
Unknown conifer	0.01g	0.06g	0.30g	0.37g	10%	
Non-Conifers:						
Rosaceae	0.15g	-	-	0.15g	4%	
Salicaceae	0.02g	0.07	-	0.09g	3%	
Sarcobatus/Atriplex	0.05g	-	0.02g	0.07g	2%	
Unknown non-conifer	-	-	0.02g	0.02g	<1%	
Totals	1.12g	1.94g	0.53g	3.59g	100%	

Table 23.3. LA 249 Structure 6 Fill, Late Developmental/CoalitIon Wood Charcoal from Flotation Samples, Weight in Grams

		29b, Pumice Deposits with	
		Ash and	50, Level 8
Stratum	29a, Upper Fill	Charcoal	Roof Fall
FS#	282	285	283, 286
Wood:			
Juniperus	31/9.12g	-	-
Rosaceae	3/0.64g	-	-
Salicaceae	6/1.12g	-	-
Cultivars:			
Zea mays	1cob/1.80g, 1s/0.12g	7/1.02g	11/2.92g

Table 23.4. LA 249, Structure 6 Fill, Late Developmental/Coalition Carbonized Wood and Macrobotanical Samples, Count and Weight in Grams

s = stalk

Table 23.5. LA 249, Feature 6 Late Developmental/ Coalition Floor and Features, Flotation Plant Remains, Frequency and Abundance per Liter

rieque	ncy and Ab	unuance per	
		Feature 10,	Feature 13,
Component	Floor	Pit	Pit
FS#	338	356	357
	Cult	ural	
Annuals:			
Chenopodium	0.50	-	-
Perennials:			
Yucca	-	-	+ fiber
Cultivars:			
Zea mays	+ cob, +c	+c	+c

Plant remains are seeds unless otherwise indicated; all cultural material is carbonized.

c = cupule, + = less than 10

readies, wood charcoarnonn lotation Samples, weight in Grans						
		Feature 10,	Feature 13,			
Component	Floor	Pit	Pit	Tota	als	
FS#	338	356	358	Weight	%	
Conifers:						
Juniperus	.80 g	.24 g	.42g	1.46 g	74%	
Unknown conifer	.07 g	.03 g	.14g	0.24 g	12%	
Non-Conifers:						
Salicaceae	-	-	.13 g	0.13 g	6%	
Unknown non-conifer	.03 g	.10 g	-	0.13 g	6%	
Totals	.90 g	.37 g	.69 g	1.96 g	100%	

Table 23.6. LA 249, Feature 6 Late Developmental/Coalition Floor and Features, Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.7. LA 249, Features 3 and 7
(Extramural Hearths), Flotation Plant
Remains, Frequency and Abundance per

	Liter	
Feature/FS	3/267	7/278
No	n-Cultural	
Annuals:		
Chenopodium	12.6	2.0
Portulaca	0.6	-
Grasses:		
Sporobolus	-	2.0

Plant remains are seeds unless otherwise indicated.

All cultural materials are carbonized.

Table 23.8. LA 249, AU 406 Midden (107N 115E),
Flotation Plant Remains, Frequency and Abundance
per Liter

Context FS	Stratum 30, Level 2 256	Stratum 30, Level 3 257	Stratum 30, Level 4 258		
	Cultu	ral			
Cultivars:					
Zea mays	-	+c	+c		
Non-Cultural					
Annuals:					
Chenopodium	115.5	14.5	0.5		
Euphorbia	1.0	-	-		
Portulaca	4.0	-	-		

Plant remains are seeds unless indicated otherwise; all cultural material is carbonized.

+ = less than 10, c = cupule

	108N 113F	104N 115F	106N 115F	106N 115F	105N 114F	106N 114F	105N 115F			
	Stratum 29.	Stratum 50.	Stratum 50	Stratum 29c.	Stratum 50.	Stratum 50.	Stratum 60.	105N 115E		
Context	Level 2	Level 8	Level 8	Level 9	Level 8	Level 9	Level 10	Stratum 29	Totals	<u>s</u>
FS	278	283	308	309	313	324	338		Weight	%
Conifers:										
Ephedra		.30g			ı		ı		.30g	5%
Juniperus	.64g	.57g	.47g	.89g	.25g	.19g	80g.	.64g	4.47g	71%
Pinus edulis		·	·		.20g		ı	ı	.20g	3%
Pinus ponderosa	07g.	·	·		ı		ı	·	.07g	1%
Unknown conifer	.03g	·	,	.01g	.06g	.30g	07g	.17g	.64g	10%
Non-Conifers:										
Rosaceae			·	.15g	·		ı	ı	.15g	2%
Salicaceae		.01g	.01g	.02g	.05g	,	ı	.13g	.22g	4%
Sarcobatus/Atriplex	,		·	.05g	ı	.02g	,	·	.07g	1%
Unknown nonconifer	.01g		·	,	ı	.02g	.03g	.10g	.16g	3%
Totals	.75a	88g.	.48a	1.12a	.580	.53a	90d	1.04a	6.28a	100%

Table 23.9. LA 249. AU 406. Wood Charcoal from Flotation Samples. Weight in Grams

Feature		Burial		
	Stratum 30,	Stratum 30,	Stratum 30,	
Context	Level 2	Level 3	Level 4	Stratum 29
FS	260	261	262	293
		Cultural		
Cultivars:				
Zea mays	-	-	+ s	+cob frags.,
				++c, +g
		Non-Cultural		
Annuals:				
Chenopodium	59.5	4.5	-	-
Euphorbia	5.0	2.0	-	++
Portulaca	-	0.5	-	-
Grasses:				
Sporobolus	0.5	-	-	-
Perennials:				
Juniperus	+t	1.0	-	-

Table 23.10. LA 249, AU 412 (Midden) and AU 413 (Burial), Grid 106N 113E, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless indicated otherwise; All cultural material is carbonized.

+ = less than 10, ++ = 11-25, c = cupule, g = glume, s = stem, t = twig

Stratum	1	1.1	1.2	2.1	2.2	2.3	2.4	2.5	3	3.1
FS #	827	828	829	830	831	832	833	834	835	836
				Cultura						
Annuals:										
Chenopodium	-	-	0.5	2.5	4.2	-	1.0	3.2	-	2.2
Cheno-am	-	-	-	-	-	-	-	2.2	-	-
Cultivars:										
Zea mays	+c	+c	+c	+c	+c, 0.3k	+c	+++c,	+c	+c	+c,
							+g			0.3k
Grasses:										
Phragmites	-	-	-	-	+s	-	-	-	-	-
Other:										
Monocotyledonae	-	-	-	-	-	-	+s	-	-	-
Unidentifiable	-	-	-	-	0.3	-	-	-	-	-
Perennials:										
Cylindropuntia	-	-	-	-	-	-	-	0.3	-	-
Pinus edulis	-	-	-	0.5	-	-	-	-	-	-
Platyopuntia	-	-	-	0.5	-	-	0.5	1.1	-	-
			1	Non-Cultu	ural					
Annuals:										
Amaranthus	-	-	-	-	-	-	-	1.1	-	-
Ambrosia	0.5	-	-	-	-	-	-	-	-	-
Chenopodium	18.0	-	-	-	-	-	-	-	-	-
Cryptantha	0.5	-	-	-	-	-	-	-	-	-
Euphorbia	1.0	-	-	0.5	-	-	-	-	-	-
Portulaca	2.5	-	-	-	-	-	-	-	-	-
Other:										
Unknown	0.5 pod	-	-	-	-	-	-	-	-	-

Table 23.11. LA 265, Study Unit 1 Upper Fill, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized. c = cupule, g = glume, k = kernel, s = stem, + = less than 10, ++ = 11-25, +++ = 26-100

10	ini iotati	on oun		Signe in	Clamo		
Stratum	2.1	2.2	2.5	3	3.1	Tota	als
FS#	830	831	834	835	836	Weight	%
Conifers:							
Juniperus	.20g	.60g	.40g	.08g	.30g	1.58g	60%
Pinus edulis	.04g	-	-	-	-	.04g	2%
Unknown conifer	-	-	-	.01g	-	.01g	<1%
Non-Conifers:							
Salicaceae	.04g	.04g	.04g	.01g	.40g	.53g	20%
Sarcobatus/Atriplex	-	.04g	.04g	-	.40g	.48g	18%
Other:							
Unknown	-	-	-	.01g	-	.01g	<1%
Totals	.28g	.68g	.48g	.11g	1.10g	2.65g	100%

Table 23.12. LA 265, Study Unit 1 (Pit Structure) Upper Fill, Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.12b. LA 265, Study Unit 1 Upper Fill, Macrobotanical Samples,

Count and Weight

	Roof Fall, SE	1 Infant
Stratum	1/4	Burial
FS#	1245	1679
Cultivars:		
Zea mays	2 cupules/	1 cupule/
	.10g	.04g

All plant material is carbonized, unless indicated otherwise.

Table 23.13. LA 265, Study Unit 1 Floor Fill and Features, Frequency and Abundance

		per Li	ter					
Component		Floor	Fill		Features			
Feature					107	108	109	
Quadrant/Feature Type	NW	NE	SW	SE	Linear	floor pit,	possible	
						foot drur	n	
FS	1039	1040	1238	1265	1532	1497	1498	
		Cultur	al					
Annuals:								
Amaranthus	-	0.5	-	0.5	-	-	-	
Chenopodium	-	0.5	0.5	-	-	-	-	
Corispermum	-	0.5	-	-	-	-	-	
Portulaca	-	2.0	-	-	-	-	-	
Cultivars:								
Zea mays		+c, 0.5k	+c	+c	+c	-	+c	
Perennials:								
Pinus edulis	-	-	-	-	-	-	0.5	
		Non-Cult	ural					
Annuals:								
Chenopodium	0.5	0.5	-	-	3.1	3.0	0.5	
Euphorbia	-	-	-	-	-	0.5	-	
Grasses:								
Sporobolus	-	-	-	-	-	3.3	-	

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized. c = cupule, k = kernel, + = less than 10

Component	Floor Fill		Feature 108	Tot	als
Quadrant/Feature Type	NW	NE	Linear floor pit, possible foot drum	Weight	%
FS	1039	1040	1497		
Conifers:					
Juniperus	.23g	.17g	.04g	.44g	32%
Unknown conifer	.02g	.03g	-	.05g	4%
Non-Conifers:					
Salicaceae	.03g	.01g	.80g	.84g	61%
Sarcobatus/Atriplex	.03g	-	-	.03g	2%
Unknown non-conifer	-	.01g	-	.01g	1%
Totals	.31g	.22g	.84g	1.37g	100%

Table 23.14. LA 265	, Study Unit 1 Floor Fill and	Features, Wood Charcoal
from	Flotation Samples, Weigh	t in Grams

Table 23.15. LA 265 Study Unit 1 (Pit Structure) Features, Macrobotanical Samples, Count and Weight in Grams

			Gianis			
Feature	102	106	110	117	118	189
Feature Type	Central	Posthole, NE	Ash Pit	Warming	Warming	
	Hearth	1/4		Pit	Pit	
FS	1551	1379	1500	1390	1456	1649
Conifer Wood:						
Juniperus	12/.53g	9/.63g	27/1.10g	45/1.55g	-	19/.70g
Non-Conifer Wood:						
Rosaceae	-	-	-	1/.01g	-	-
Salicaceae	7/.32g	2/.14g	21/.66g		11/.62g	1/.01g
Sarcobatus/Atriplex	-	-	12/.95g	106/5.35g	37/1.25g	-
Unknown non-conifer	-	-	1/.02g	1/.01g	-	-
Cultivars:						
Zea mays	-	3 cupules/	-	-	-	-
		.06g				

All plant material is carbonized.

Table 23.16. LA 265, Study Unit 2, Macrobotanical Samples, Weight in Grams and Count

		K	eyhole-Shap	ed Pit		Small Bell- Shaped Pit in F. 27	Storage	Shaped e Pit in F. 27	Storage Pit in F. 33	Hearth in F. 33	Bell-Shaped Storage Pit w/ Dog Burial
Feature	27	27	27	33	33	41	47	52	57	59	60
FS	1138	1246	1248	1228	1239	1223	1227	1260	1262	1263	1400
Conifer wood:											
Juniperus	19/5.12g	6/.66g	12/1.35g	23/2.64g	24/2.39g	37/1.47g	7/.31g	18/.72g	5/.26g	8/.19g	1/.40g
Unknown conifer	-	-	-	-	-	-	-	-	-	-	2/.21g
Non-Conifer wood:											
Salicaceae	18/.67g	-	7/.39g	5/.39g	5/.68g	29/1.25g	4/.08g	2/.03g	2/.01g	-	1/.18g
Sarcobatus/Atriplex	16/2.12g	-	1/.14g	1/.28g	-	8/.09g	-	-	-	2/.03g	-
Unknown non-conifer	2/.23g	-	-	1/.08g	1/.24g	-	-	-	-	3/.08g	-
Cultivars:	-			-	-					-	
Zea mays cupules	-	-	1/.06g	-	-	-	-	-	-	-	1/.07g
Other:			-								-
Unknown bark	-	-	-	-	-	-	-	-	-	-	6/.76g
Unknown plant part	-	-	-	-	-	-	-	-	-	-	4/.07g

All plant material is carbonized unless indicated otherwise.

Stratum	2	3	4	5	6	7	8	9
							1157,	
FS	1158	1159	1160	1161	1162	1163	1164	1156
			Cu	ltural				
Annuals:								
Amaranthus	-	-	-	-	-	-	-	0.3
Chenopodium	-	-	1.0	2.5	2.0	0.5	1.0	1.6
Cheno-am	-	-	-	-	2.0	-	0.2	1.3
Portulaca	1.0	-	-	-	-	-	0.2	-
Cultivars:								
Cucurbita	-	-	-	-	+ rind	-	-	-
Zea mays	+++c	+c	+c, +g	+c	+c, 1.0k	+c	++c,	+c,
							+g	0.6k
Other:								
Unidentifiable	-	-	-	-	1.0	-	-	-
Unknown	-	0.5pp	-	-	-	-	-	0.9pp
Perennials:								
Pinus edulis	-	-	-	0.5	-	0.5	-	0.3
			Non-0	Cultural				
Annuals:								
Amaranthus	-	-	-	1.0	1.0	-	-	-
Chenopodium	-	-	-	0.5	1.5	1.0	0.2	1.3
Cheno-am	0.5	-	-	-	-	-	-	-
Portulaca	-	-	-	-	-	0.5	-	-
Grasses:								
Sporobolus	-	-	-	1.0	5.0	2.0	-	-
Perennials:								
Quercus	-	+ leaf	-	-	-	-	-	-

Table 23.17. LA 265, Study Unit 3, Feature 14 (Large Irregular-Shaped Pit), Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated;

All cultural plant material is carbonized.

c cupule, g glume, pp plant part, k kernel, + less than 10,

++ 11-25, +++ 26-100

Stratum	2	3	4	5	6	7	8	9	Tot	als
FS	1158	1159	1160	1161	1162	1163	1157, 1164	1156	Weight	%
Conifers:										
Juniperus	.65g	.20g	.40g	.30g	.40g	.50g	1.10g	1.00g	4.55g	78%
Unknown conifer	.06g	-	-	-	-	-	-	-	.06g	1%
Non-Conifers:										
Cylindropuntia	-	-	-	-	-	.04g	-	-	.04g	1%
Quercus	-	-	-	-	-	-	.04g	-	.04g	1%
Salicaceae	.02g	.04g	.20g	.10g	.20g	.04g	.24g	.04g	.88g	15%
Sarcobatus/Atriplex	-	-	.04g	.04g	.04g	.04g	-	.04g	.20g	3%
Unknown non-conifer	.01g	-	.04g	-	-	-	-	-	.05g	1%
Totals	.74g	.24g	.68g	.44g	.64g	.62g	1.38g	1.08g	5.82g	100%

Table 23.18. LA 265, Study Unit 3, Feature 14 (Large Irregular-Shaped Pit), Wood Charcoal from Flotation Samples, Weight in Grams

Study Unit Macrobota	18b. LA 265, 13, Feature 14, inical Sample, Veight in Grams
Stratum	7
FS	1163
Cultivars:	
Zea mays	3cobs/.40g

.

All plant material i	is carbonized.
----------------------	----------------

Table 23.19. LA 265, Study Unit 3, Feature 15 (Very Large Pit), Flotation Plant
Remains, Frequency and Abundance per Liter

Stratum	2	3	4	5	6	7	10
					1022,		
FS	960	961	1020	1021	1240	1023	1267
		C	ultural				
Annuals:							
Amaranthus	0.3	0.5	0.5	-	0.5	-	1.1
Chenopodium	1.9	2	1	1.5	3.0, .3e	5	-
Cheno-am	0.3	1.5	-	-	-	-	-
Portulaca	0.6	-	-	-	0.5	-	-
Salvia	-	0.5	-	-	-	-	-
Cultivars:							
Zea mays	+c, .3k	+c, ++g, 1.0k	+c	++c, +g	++c, +g	++c, +g, .5k	+c, +g
Other:							
Unidentifiable	-	0.5	-	-	-	-	-
Unknown	.3pp	-	-	-	.3ur	-	-
Perennials:							
Juniperus	-	-	-	+t	-	-	-
Pinus edulis	0.3	-	-	0.5	-	-	-
Rhus	-	0.4	-	-	-	-	-
Yucca baccata	-	0.4	-	-	-	-	-
		Non	-Cultural				
Annuals:							
Chenopodium	7.8	53.6	0.5	-	1.3	-	2.1
Descurainia	0.3	-	-	-	0.3	-	-
Euphorbia	-	3.5	0.5	-	0.3	-	-
Portulaca	-	-	-	-	0.3	-	-
Other:							
Unidentifiable	-	0.5	-	-	-	-	-
Grasses:							
Sporobolus	11.3	-	25.0	-	0.5	-	-

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized. c = cupule, g = glume, pp = plant part, t = twig, ur = unknown reproductive, + = less than 10, ++ = 11-25, +++ = 26-100

Stratum	2	3	4	5	6	7	10	Tota	als
FS	960	961	1020	1021	1022, 1240	1023	1267	Weight	%
	900	901	1020	1021	1240	1023	1207	vveigni	70
Conifers:									
Juniperus	0.40g	2.40g	0.20g	0.29g	1.60g	0.29g	0.50g	5.68g	79%
Unknown conifer	-	-	-	0.04g	-	0.06g	-	0.10g	1%
Non-Conifers:									
Salicaceae	0.04g	0.14g	0.10g	0.07g	0.50g	-	0.20g	1.05g	15%
Sarcobatus/Atriplex	0.04g	0.08g	-	0.02g	0.24g	-	-	0.38g	5%
Unknown wood	-	-	-	0.01g	-	0.01g	-	0.02g	<1%
Totals	0.48g	2.62g	0.30g	0.43g	2.34g	0.36g	0.70g	7.23g	100%

Table 23.20. LA 265, Study Unit 3, Feature 15 (Very Large Pit), Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.21. LA 265, Study Unit 3, Feature 15 (Very Large Pit), Macrobotanical Samples, Count and Weight

in Grams

Stratum	3	5	7	10
FS	961	1021	1023	1267
Cultivars:				
Zea mays	1c/.02g	2c/.04g	4 cobs/.40g	2c/.04g

All plant material is carbonized unless indicated otherwise. c = cupule.

Table 23.22. LA 265, Study Unit 3, Feature 34 (Large Irregular-
Shaped Pit) by Stratum, Flotation Plant Remains, Frequency and
Abundance per Liter

Abundance per Liter											
Stratum	1	2	3	4	5	7					
		1403,									
FS	1446	1447	1150	1154	1155	1522					
Cultural											
Annuals:											
Amaranthus	-	0.2	-	-	-	-					
Chenopodium	-	0.9	0.9	-	-	-					
Portulaca	-	0.2	-	-	-	-					
Cultivars:											
Zea mays	+++C	+c	+c, +g	+c	+c	+c					
Other:											
Unknown	0.3e	-	-	-	-	-					
		Non-Cu	ltural								
Annuals:											
Chenopodium	0.3	-	-	0.5	0.5	0.5					
Euphorbia	-	-	0.9	-	2.5	-					

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized. C = cupule, e = embryo, g = glume

Stratum	1	3	4	Tota	als
FS	1446	1150	1154	Weight	%
Conifers:					
Juniperus	.20g	1.50g	.30g	2.0g	85%
Non-Conifers:					
Salicaceae	.04g	.10g	.10g	.24g	10%
Sarcobatus/Atriplex	.04g	.04g	-	.08g	3%
Unknown non-conifer	.04g	-	-	.04g	2%
Totals	.32g	1.64g	.40g	2.36g	100%

Table 23.23. LA 265, Study Unit 3, Feature 34 (Large Irregular-Shaped Pit) by Stratum, Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.24. LA 265, Study Unit 4 Upper Fill and Roof Fall, Flotation Plant Remains, Frequency
and Abundance per Liter

Component			Up	per Fill				Roof Fall
Stratum	1	2	3	4	5	6	7	8
FS	903	904	905	906	907	908	909	910
			Cultu	ral				
Annuals:								
Amaranthus	-	-	0.5	1.5	-	9.1	11.3	2.5
Chenopodium	-	2.0	1.5	3.0	-	3.9	-	0.5
Cheno-am	-	-	-	4.5	-	-	-	3.0
Corispermum	-	-	-	-	-	-	1.3	-
Physalis	-	-	-	-	-	-	-	0.5
Portulaca	-	-	-	0.3	-	-	-	4.5
Cultivars:								
Zea mays	+c	+++c, +g,	++c, +g	+c, .6k	+c	+c	+++c,	+c
		+cob, 6.5k					5.0k	
Grasses:								
Gramineae	-	-	+s	-	-	-	-	-
Sporobolus	-	-	-	-	-	-	-	1.0
Other:								
Unidentifiable	-	-	-	-	-	-	-	1.0
Unknown	-	-	2.5pp	-	-	-	-	1.0
Unknown #9211	-	-	-	0.3	-	-	-	-
Perennials:								
Pinus	-	-	+cs	-	-	-	-	-
Pinus edulis	-	-	0.5	-	-	-	-	-
Platyopuntia	-	-	-	-	-	-	-	0.5
- •			Non-Cult	ural				
Annuals:								
Amaranthus	-	-	-	-	-	-	2.5	1.0
Chenopodium	-	-	-	-	-	-	-	0.5
Grasses:								
Sporobolus	-	-	-	1.2	-	-	-	_

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, ++ 11-25, +++ 25-100, b = bark, c = cupule, cs = conescale, g = glume, k = kernel, pp = plant part

								Roof		
Component				Upper F	ill			Fall	Totals	
Stratum	1	2	3	4	5	6	7	8	Weight	%
FS	903	904	905	906	907	908	909	910		
Conifers:										
Juniperus	.11g	.44g	.27g	.50g	.40g	.59g	.41g	.30g	3.02g	70%
Pinus edulis	.01g	-	-	-	-	-	.18g	.04g	.23g	5%
Unknown conifer	.02g	.06g	-	-	-	.06g	.04g	-	.18g	4%
Non-Conifers:										
Artemisia	-	-	-	-	-	-	-	.04g	.04g	1%
Quercus	-	-	.05g	-	-	-	-	-	.05g	1%
Salicaceae	-	.19g	.09g	.04g	.04g	.03g	.05g	.10g	.54g	12%
Sarcobatus	.02g	-	-	-	-	-	-	-	.02g	1%
Sarcobatus/Atriplex	-	-	-	.04g	.04g	-	-	.04g	.12g	3%
Unknown non-conifer	-	-	.03g	.04g	-	-	-	-	.07g	2%
Other:										
Unknown	.04g	.01g	.01g	-	-	-	-	-	.06g	1%
Totals	.20g	.70g	.45g	.62g	.48g	.68g	.68g	.52g	4.33g	100%

Table 23.25. LA 265, Study Unit 4 Upper Fill and Roof Fall, Wood Charcoal from Flotation Samples, by Weight in Grams

Table 23.26. LA 265, Study Unit 4 Floor Fill and Floor Features, Flotation Plant Remains, Frequency and Abundance per Liter

Feature		Floo	or Fill	Abunuan	<u>20 per Liter</u> 100	72	73	74	76
reature		FIUC			100				
Component FS	NW 1/4 1024	NE 1/4 1031	SW 1/4 1052	SE 1/4 1055	Burial Fill 1313	Central Hearth 1364	Secondary Hearth 1296	Secondary Hearth 1317	Sealed Floor Pit 1339
				Cu	ltural				
Annuals:									
Chenopodium	0.4	0.9	0.3	1.5	0.5	-	-	5.2	-
Cultivars:									
Zea mays	+c	+c, 0.4k	+c	+c, +g	+c, 0.5k	+c	-	+c, 0.3k	+c
Grasses:									
Gramineae	-	-	-	-	-	-	-	+s	-
Other:									
Unidentifiable	-	0.4	-	-	-	-	-	-	-
Unknown	-	-	-	-	0.5e	-	-	-	-
Perennials:									
Juniperus	-	-	-	-	-	-	-	+++t	-
Platyopuntia	-	-	-	-	-	0.5	-	-	-
Rhus	-	-	-	-	-	0.5	-	-	-
				Non-C	Cultural				
Annuals:									
Chenopodium	-	-	-	-	4.5	2.8	2.5	-	-
Euphorbia	-	0.4	-	-	-	-	-	-	-
Salsola kali	+nr	-	-	-	-	-	-	-	-
Grasses:									
Sporobolus	0.7	-	-	-	-	-	-	-	-

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

c = cupule, g = glume, e = embryo, t = twig, k = kernel, nr = nonreproductive, + = less than 10, ++ = 11-25, +++ = 26-100

Component		Floor Fill		Central Hearth	Secondary Hearth	Sealed Floor Pit	Burial Fill	Tot	als
Feature	NW 1/4	NE 1/4	SE 1/4	72	73	76	100	Weight	%
FS	1024	1031	1055	1364	1296	1339	1313		
Conifers:									
Juniperus	.20g	.04g	.26g	.20g	3.60g	.90g	.20g	5.4g	74%
Pinus	-	-	-	.04g	-	-	-	.04g	<1%
Unknown conifer	-	-	-	-	-	-	.02g	.02g	<1%
Non-Conifers:									
Cylindropuntia	-	-	-	-	.04g	-	-	.04g	<1%
Salicaceae	.04g	.10g	.03g	.10g	-	.40g	.05g	.72g	10%
Sarcobatus/Atriplex	.04g	.01g	.03g	.10g	.20g	-	.07g	1.08g	15%
Totals	.28g	.15g	.32g	.44g	3.84g	1.30g	.34g	7.30g	100%

Table 23.27. LA 265, Study Unit 4 Floor Fill and Floor Features, Wood Charcoal from Flotation, Weight in Grams

Table 23.28. LA 265, Study Unit 4 Floor Fill and Floor Features, Macrobotanical Samples, Count and Weight

		1,	Central	Secondary						
Component	Floo	r Fill	Hearth	Hearth	N 1/2	S 1/2				
Feature	NW 1/4	SW 1/4	72	73	74	74				
FS	1024	1052	1365	1296	1316	1317				
Wood:										
Juniperus	-	21/7.48g	5/.74g	20/5.77g	20/3.95g	19/3.23g				
Pinus edulis	-	1/.23g	15/3.71g	-	-					
Salicaceae	-	4/.81g	-	-	-	1/.07g				
Cultivars:										
Zea mays	1cob/.20g	-	-	-	-	-				
All plant materia	All plant material is carbonized.									

Table 23.29. LA 265, Study Unit 13 Upper Fill and Roof Fall by Stratum, Flotation Plant Remains, Frequency and Abundance per Liter

	Remains	, Freque	ncy and	Abunu	ance per	Liter		
Component		U	lpper Fill			Roof Fall		
Stratum	1	2	2.1	2.2	2.3	3	3.2	3.3
FS	1168	1169	1170	1171	1172	1176	1175	1174
			Cultura	al				
Annuals:								
Amaranthus	-	-	-	1.7	-	-	-	-
Chenopodium	-	-	5.7	3.4	3.6	-	1.0	-
Cheno-am	-	-	-	-	1.8	0.5	3.0	-
Cultivars:								
Zea mays	+c	-	+c	+c	+c, +g	+c, +g	+c, +g	+c
Other:								
Unidentifiable	-	-	-	-	-	-	0.5	-
Unknown	-	-	1.4e	-	-	-	-	-
Perennials:								
Cylindropuntia	0.3	-	-	-	-	-	-	-
		N	on-Cultı	ural				
Annuals:								
Chenopodium	-	-	0.7	-	-	-	-	-
Euphorbia	-	0.6	-	-	-	-	-	-
Perennials:								
Croton	-	-	-	-	7.5	-	-	-

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, c = cupule, e = embryo, g = glume

				Roof		
Component	ι	Jpper Fill		Fall	Tota	als
Stratum	2.1	2.2	2.3	3.3	Weight	%
FS	1170	1171	1172	1174		
Conifers:						
Juniperus	0.20g	0.30g	0.40g	0.20g	1.10g	65%
Pinus	-	-	-	0.10g	0.10g	6%
Non-Conifers:						
Cylindropuntia	-	0.04g	0.04g	-	0.08g	5%
Salicaceae	0.10g	0.04g	0.10g	0.04g	0.28g	17%
Sarcobatus/Atriplex	-	0.04g	0.04g	-	0.08g	5%
Unknown non-conifer	-	-	-	0.04g	0.04g	2%
Totals	0.30g	0.42g	0.58g	0.38g	1.68g	100%

Table 23.30. LA 265, Study Unit 13 Upper Fill and Roof Fall by Stratum, Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.30b. LA 265,

Study Unit 13 Upper Fill by

Stratum, Macrobotanical Sample, Count and Weight

Sample, Count and Weight					
Component	Upper Fill				
Stratum	2.2				
Wood:					
Juniperus	5/.70g				
Pinus edulis	15/2.58g				
All plant material is carbonized.					

	Table 23.31. LA 2	65, Study U	nit 13,	Floor Fill and Burial, Flotation P	lant
	Rema	ains, Fre q ue	ency an	ld Abundance per Liter	
~			-		

Component		Structure Floor		F. 131 Adult Human Burial				
					NW 1/4 Level			
				NW1/4 Level	2, Below			
Quadrant	SE1/4	NW1/4	NE1/4	1	Burial			
FS	1303	1304	1305	1537	1548			
Cultural								
Annuals:								
Amaranthus	-	-	-	-	2.5			
Chenopodium	-	-	-	1.1	4.0			
Cheno-am	0.5	-	-	-	-			
Portulaca	1.0	1.0	-	-	-			
Cultivars:								
Zea mays	++c	+c	+c	+c	-			
Grasses:								
Gramineae	-	+s	-	-	-			
		Non-	Cultural					
Annuals:								
Chenopodium	0.5	41.0	-	-	-			
Euphorbia	-	-	-	-	0.5			
Portulaca	0.5	1.0	-	-	-			
Grasses:								
Sporobolus	-	-	34.0	-	-			

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

c = cupule, s = stem, + = less than 10, ++ = 11 to 25,+++ = 26 to 100

Table 23.32. LA 265 Study Unit 13, Floor Fill,
Wood Charcoal from Flotation Samples,

Weight in Grams							
Component	Structu	re Floor	To	otal			
Quadrant	SE1/4	NW1/4					
FS	1055	1024	Wt	%			
Conifers:							
Juniperus	0.60g	0.50g	1.10g	74%			
Non-Conifers:							
Cylindropuntia	-	0.04g	0.04g	3%			
Salicaceae	0.04g	0.30g	0.34g	23%			
Total	0.64g	0.84g	1.48g	100%			

-

Table 23.32b. LA 265, Study Unit 13, Burial, Macrobotanical Samples, Count and Weight in

	Grams			
Component	F. 131 A	dult Human Burial		
Quadrant FS	NW 1/4 NW 1/4 Level 2 Level 1 Below Burial 1537 1548			
Conifers:	1001	1040		
Juniperus	18/1.37g	-		
Non-Conifers:				
Salicaceae	1/0.14g	-		
Sarcobatus/Atriplex	1/0.09g	-		
Cultivars:				
Zea mays	-	1c/0.04g, 1e/0.04g		

All plant material is carbonized, unless indicated otherwise. c = cupule, e = embryo

Table 23.33. LA 6169, Feature 47 (Early Developmental Pit Structure) Floor Features,Flotation Plant Remains, Frequency and Abundance per Liter

	119 Storage	121 Storage	161 Small	163 Wall	165 Large
Feature	Bin	Bin	Burned Pit	Niche	Burned Pit
FS	1952	1908	1969	1995	1984
		Cultural			
Annuals:					
Chenopodium	1.1	0.2	-	3.0	-
Cheno-am	0.9	-	-	-	-
Portulaca	1.4	-	-	-	-
Cultivars:					
Cucurbita	-	+r	-	-	-
Zea mays	++c, 9.1e,	+c, +g, 0.2k	-	+c	-
	3.4k				
Grasses:					
Gramineae	-	+++s	+++s	-	-
Phragmites	+s	-	-	-	-
Sporobolus	2.9	-	-	-	-
Other:					
Monocotyledonae	-	+s	-	-	-
Unidentifiable	-	-	-	0.5	-
Unknown	0.9pp	-	-	-	-
Perennials:					
Pinus edulis	0.9	-	-	-	-
		Non-Cultura	l		
Annuals:					
Chenopodium	1.4	0.2	-	0.5	-
Cheno-am	-	0.2	-	-	-
Euphorbia	0.3	0.2	-	-	-
Portulaca	-	14.5	-	2.0	0.5
Grasses:					
Sporobolus	-	-		0.5	

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, ++ = 11-25, +++ = 25-100, c = cupule, e = embryo, g = glume, k = kernel, pp = plant part, r = rind, s = stem

Feature	119 Storage Bin	121 Storage Bin	161 Small Burned Pit	163 Wall Niche	165 Large Burned Pit	Tot	tals
FS	1952	1908	1969	1995	1984	Weight	%
Conifers:							
Juniperus	0.40g	0.20g	1.50g	0.20g	0.80g	3.10g	50%
Pinus edulis	-	-	-	0.10g	-	0.10g	2%
Non-Conifers:							
Quercus	-	-	-	-	0.04g	0.04g	1%
Salicaceae	0.20g	0.70g	-	0.04g	0.04g	0.98g	16%
Sarcobatus/Atriplex	-	0.04g	0.70g	0.10g	1.20g	2.04g	33%
Totals	0.60g	0.94g	2.20g	0.44g	2.08g	6.26g	100%

Table 23.34. LA 6169, Feature 47 (Early Developmental Pit Structure) Floor Features, Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.35. LA 6169, Feature 47 (Early Developmental Pit Structure) Floor Features, Macrobotanical and Wood Samples, Count and Weight in Grams

	47 Roof	119 Storage	121 Storage	152 Ash and	163 Large
Feature	Matting	Bin	Bin	Refuse Dump	Burned Pi
FS	1836	1964	1908	1895	1995
		Wood	ļ		
Non-Conifers:					
Salicaceae	-	-	20/15.52g	-	-
		Macrobota	nical		
Cultivars:					
Zea mays	-	18k/1.50g	-	3c/0.20g	-
Grasses:					
Phragmites stems	>50	-	-	-	-
Perennials:					
Salicaceae wood	11/1.10g	-	-	-	-
Unknown bark	2/0.04g	-	-	-	-
Yucca leaves	>10	-	-	-	-
Non-Cultural Perenr	nials:				
Celtis seed	-	-	-	-	1/0.04g

All plant material is carbonized unless indicated otherwise.

c = cupule, k = kernel

Feature	Floor (113							
Context FS	118N 132E SW Quad 1440	120N 132E NW Quad 1476, 1651	Posthole- Deflector Support 1677						
Cultural									
Annuals:									
Amaranthus	-	0.2	-						
Chenopodium	2.5	0.8	2.5						
Cheno-am	-	-	2.5						
Cycloloma	-	0.2	-						
Portulaca	-	-	0.8						
Cultivars:									
Zea mays	+c, +g	+c, 0.2k	+c						
Grasses:									
Gramineae	+s	+s	-						
Other:									
Unknown	-	-	+s						
Perennials:									
Echinocereus	-	0.3	-						
Juniperus	+t	-	+1						
	Non-Cu	ltural							
Annuals:									
Chenopodium	1.0	1.7	14.2						
Euphorbia	-	1.8	-						
Portulaca	-	-	0.8						
Grasses:									
Gramineae	-	+floret	-						
Sporobolus	-	0.5	-						

Table 23.36. LA 6169, Feature 76 (Late Developmental Pit Structure) Floor Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant

material is carbonized. '+ = less than 10, c = cupule, g = glume, l = leaf, k = kernel, s = stem, t = twig

Feature	Floor co	ntact	113	Tota	als
Context FS	118N 132E SW Quad 1440	120N 132E NW Quad 1476, 1651	Posthole- Deflector Support 1677	Weight	%
Conifers:					
Juniperus	0.9	0.71	0.40	2.01g	58%
Pinus edulis	-	0.30	-	0.30g	9%
Non-Conifers:					
Lycium	0.04	-	-	0.04g	1%
Salicaceae	0.30	0.50	-	0.80g	23%
Sarcobatus/Atriplex	0.04	0.24	-	0.28g	8%
Unknown non-conifer	-	0.04	-	0.04g	1%
Totals	1.28g	1.79g	0.40g	3.47g	100%

Table 23.37. LA 6169, Feature 76 (Late Developmental Pit Structure) Floor Features, Wood Charcoal from Flotation Samples, Weight in Grams Table 23.38. LA 6169, Feature 76 (Late Developmental Pit Structure) Floor Contact, Macrobotanical and Wood Charcoal Samples, Count and Weight in Grams

and Weight in Grams							
Feature		Floor Contac	t				
	118N/132E	118N/134E	117N/133E				
Context	SW Quad	SE Quad	SE Quad				
FS	1473	1625	1626				
	Wo	od					
Conifers:							
Juniperus	31/4.85g	-	5wood/4.10g				
Pinus edulis	6/0.63g	-	-				
Non-Conifers	•						
Salicaceae	12/2.18g	-	-				
Sarcobatus/							
Atriplex	1/0.49g	-	-				
	Macrobo	otanical					
Zea mays	-	1cob/.40g	-				

All plant material is carbonized unless indicated otherwise.

Table 23.39. LA 6169, Feature 70 (Coalition Pit Room) Floor Features, Flotation Plant Remains, Frequency and Abundance per Liter

Abundance per Liter							
	95 Human	98 Central					
Feature	Burial	Hearth					
FS	1597	1643					
	Cultural						
Annuals:							
Amaranthus	-	0.5					
Chenopodium	0.4	2.4					
Cheno-am	-	0.5					
Cleome	-	0.5					
Euphorbia	-	0.5					
Plantago	-	1.4					
Portulaca	-	0.5					
Cultivars:							
Zea mays	+c	+c, 1.9k					
Grasses:		,					
Oryzopsis	-	1.4					
Sporobolus	-	0.5					
Other:							
Dicotyledonae	-	+leaf					
Unidentifiable	-	2.4					
Perennials:							
Carex	-	0.5					
Juniperus	-	+					
Pinus edulis	-	+n					
	on-Cultural						
Annuals:							
Chenopodium	58.5	2.4					
Descurainia	2.5	-					
Euphorbia	0.4	7.1					
Nicotiana	-	3.8					
Other:							
Leguminosae	1.8	-					
Perennials:							
Carex	-	0.5					
Grasses:							
Sporobolus	0.7	-					
,							

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, c = cupule, l = leaflet, k = kernel, n = nutshell

	95 Human	98 Central		
Feature	Burial	Hearth	Tot	als
FS	1597	1643	Weight	%
Conifers:				
Juniperus	.10g	.10g	.20g	11%
Pinus edulis	-	.10g	.10g	6%
Non-Conifers:				
Lycium	-	.10g	.10g	6%
Salicaceae	.90g	.20g	1.10g	61%
Sarcobatus/Atriplex	.10g	.20g	.30g	17%
Totals	1.10g	.70g	1.80g	100%

Table 23.40. LA 6169, Feature 70 (Coalition Pit Room) Floor Features, Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.40b. LA 6169, Feature 70 (Coalition Pit Room) Floor Features, Macrobotanical and Wood Samples, Count and Weight in Grams

Feature FS	95 Human Burial 1713	98 Central Hearth 1644, 1645
	Wood	
Juniperus	-	9/4.67g
Salicaceae	-	10/0.09g
Unknown nonconifer	-	1/0.09g
Ма	crobotanical	
Cultivars:		
Zea mays	25 cupules/0.20g	-

All plant material is carbonized.

	13 Cobble		
	Concentration in		
	Roof Fall/Floor Fill	68 & 75 Human	75 Human
Feature	with Dog Burials	Burials	Burial
FS	498	1176	1164
	Cult	ural	
Annuals:			
Amaranthus	0.6	-	-
Chenopodium	1.7	1.6	-
Cheno-am	-	0.5	-
Portulaca	-	0.3	-
Cultivars:			
Zea mays	+c	+c	+c, +g
Other:			
Unknown	-	2.2pp	-
Perennials:			
Pinus edulis	-	0.3	-
	Non-Cu	ıltural	
Annuals:			
Euphorbia	-	1.1	-
Kallstroemia	-	1.6	-
Perennials:			
Croton	-	7.5	-

Table 23.41. LA 6169, Feature 4 (Early Developmental Pit Structure) Roof Fall/Floor Fill and Floor Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, c = cupule, g = glume, pp = plant part

Table 23.42. LA 6169, Feature 4 (Early Developmental Pit Structure) Roof
Fall/Floor Fill and Floor Features, Wood Charcoal from Flotation Samples,
Weight in Grams

	13 Cobble Concentration in Roof Fall/Floor Fill with Dog			
Feature	Burials	75 Human Burial	Т	otal
FS	498	1164	Wt	%
Conifers:				
Juniperus	.20g	.40g	.60g	68%
Non-Conifers:				
Salicaceae	.10g	.10g	.20g	22%
Sarcobatus/Atriplex	.04g	.04g	.08g	9%
Totals	.34g	.54g	.88g	100%

Component		Upper Fil		Floor and Floor Features					
					42 Small				
Feature		66 Ventilator Shaft		4 Floor	Burned Pit	35 Hearth	36 Ash Pit		
Stratum	11-2	2-ab		Floor					
Level	11	4	3	1					
FS	433 1386 1393		204	922	1092	1120			
			Woo	d					
Conifers:									
Juniperus	-	9/1.33g	10/0.32g	-	6/1.31g	14/1.61g	96/6.82g		
Pinus edulis	-	7/0.32g	-	-	-	-	-		
Non-Conifers:									
Artemisia	-	-	-	-	-	-	1/.03g		
Salicaceae	-	3/0.67g	4/0.06g	6/2.20g	14/1.96g	5/0.47g	15/.87g		
Sarcobatus/Atriplex	-	1/0.15g	-	-	-	1/0.11g	8/.49g		
			Macrobot	anical					
Zea mays	1cob/2	-	-	-	-	-	-		
	.20g								

Table 23.42b. LA 6169, Feature 4 (Early Developmental Pit Structure) Upper Fill, Floor, and Floor
features, Wood and Macrobotanical Samples, Count and Weight in Grams

All plant material is carbonized.

Table 23.43. LA 6169, Features 10, 15, and 16 (Coalition Pit Rooms) Floor and Floor Features, Flotation Plant Remains,Frequency and Abundance per Liter

Pitroom	10				15			16			
Feature	Floor Fill and Floor 72N87E	Floor Fill and Floor 72N 86E	17 Central Fire Pit	14 Thermal Feature in Upper Fill	Floor Fill :	and Floor	Floor Fill and Floor 80N 89E	Floor Fill and Floor 82N 89E	105 Hearth	128 Small Pit	130 Hearth
FS	604	633	721	580	935	936	1306	1320			
					Cultural						
Annuals:											
Chenopodium	0.3	-	-	3.0	-	-	0.6	-	9.1	-	-
Cheno-am	-	-	-	-	-	-	0.6	-	1.9	-	-
Corispermum	-	0.4	-	-	-	-	-	-	-	-	-
Portulaca	-	-	1.6	-	-	-	-	-	-	0.7	-
Cultivars:											
Zea mays	-	+c	0.4cob, ++c	-	+c, +g	+c, +g	+c	+c	+c, 1.1k	-	+c, 0.3e 0.6k
Grasses:											
Gramineae	-	-	-	+s	+s	-	-	-	0.4	-	-
Other:											
Unidentifiable	-	-	-	-	-	-	-	-	1.1	-	-
Unknown #9210	-	0.4	-	-	-	-	-	-	-	-	-
					Non-Cultur	al					
Annuals:											
Chenopodium	-	-	17.1	-	0.5	-	5.9	0.6	1.5	1.3	-
Corispermum	-	-	0.8	-	-	-	-	-	-	-	-
Euphorbia	0.5	-	>100	-	-	-	0.6	-	-	-	-
Kallstroemia	-	-	5.7	-	-	-	-	-	-	-	-
Nicotiana	95.1	23	-	-	-	-	-	-	-	-	-
Portulaca	-	-	-	-	2.0	-	-	-	-	0.7	-
Perennials:											
Echinocereus	-	-	-	-	-	-	-	-	0.4	-	-
Juniperus	-	-	0.8	-	-	-	-	-	-	-	-
Grasses:											
Gramineae	-	-	0.4	-	-	-	-	-	-	-	-
Sporobolus	-	-	_	-	_	-	0.6	-	-	4.7	-

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized. + = less than 10, ++ = 11-25, c = cupule, e = embryo, g = glume, k = kernel

Pit room	10	15		Totals					
Feature	17 Central Firepit	Floor Fill and Floor			130 Hearth	Weight	%		
FS	721	935	1306	1320	1697	1737	1832		
Conifers:									
Juniperus	.30g	.10g	.04g	.20g	.04g	.10g	.30g	1.08g	32%
Pinus edulis	.04g	.01g	.04g	-	-	-	-	.09g	3%
Non-Conifers:									
Chrysothamnus	-	-	-	.10g	-	-	-	.10g	3%
Cylindropuntia	.04g	-	-	-	-	-	-	.04g	1%
Forestieria	-	-	-	.04g	-	-	.10g	0.14	4%
Salicaceae	.04g	.10g	.04g	.10g	.10g	.04g	.04g	.46g	13%
Sarcobatus/Atriplex	.04g	-	.04g	.04g	1.00g	.04g	.30g	1.46g	43%
Unknown non-conifer	-	.04g	-	-	-	-	-	.04g	1%
Totals	.46g	.25g	.16g	.48g	1.14g	.18g	.64g	3.41g	100%

 Table 23.44. LA 6169, Features 10, 15, and 16 (Coalition Pit Rooms) Floor Features, Wood Charcoal from Flotation

 Samples, Weight in Grams

 Table 23.45. LA 6169, Features 10, 15, and 16 (Coalition Pit Rooms) Floor Features, Macrobotanical and Wood

 Samples, Count and Weight in Grams

Pit room	10	15			16		
Feature	17 Central Firepit	Floor Fill and Floor	Floor Fill and Floor	103 Mealing Basin	105 Hearth	129 Venti- lator	130 Hearth
	•						
FS	719	936	1615	1960	1694	1833	1830
			Wood				
Conifers:							
Juniperus	12/.43g	17/2.70g	-	-	9/.71g	-	20/1.72g
Non-Conifers:							
Artemisia	6/.16g	-	-	-	-	-	-
Salicaceae	9/.66g	1/.19g	10/.51g (9u)	-	-	-	7/.47g
Sarcobatus/Atriplex	2/.04g	10/1.08g	-	-	41/2.40g	-	13/1.30g
Unknown	-	-	-	1/.04g	-	-	-
		M	lacrobotanica	al			
Cultivars:							
Zea mays	5c/.06g	1cob/.90g	16c/.30g, 30cobs/ 5.80g	-	-	1cob/.30g	-
Grasses:							
Phragmites stems	-	-	-	3/.20g	-	-	-
Perennials:				-			
Unknown bark	-	-	1/.30g	-	-	-	-

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

c = cupule, u = uncarbonized

Feature	55 Large Pit 1098	79 Large Cobble- Filled Thermal Pit, Level 1	79 Large Cobble- Filled Thermal Pit, Level 2 1303	84 Large Cobble-Filled Thermal Pit	88 Large Burned Pit 1366	147 Large Cobble-Filled Thermal Pit	149 Large Cobble-Filled Thermal Pit	155 Burned Pit w/in Large Burned Pit 1901	156 Burned Pit
FS	1098	1248	1303	1247 Cultu		1822	1937	1901	1911
A				Cultu	rai				
Annuals: Amaranth			0.0						
	-	- 2.7	0.2	-	-	-	-	-	- 0.4
Chenopodium	-		5.2	-	3.8	-	6.5	0.5	
Cheno-am	-	-	0.2	-	-	-	-	1.0	-
Portulaca	-	-	-	-	-	-	5.0	0.5	-
Cultivars:									
Zea mays	+c	+c	+c, .2k	+c	+c, .5k	+c	+c	+c	+c
Other:									
Unidentifiable	-	-	0.2	-	-	-	-	-	-
Unknown	-	0.2	-	-	1.0e	-	-	-	-
Perennials:									
Cylindropuntia	-	-	-	-	-	-	0.5	-	-
Juniperus	-	-	-	-	-	-	+	-	-
Pinus edulis	-	-	0.2	-	-	-	-	-	-
				Non-Cu	Itural				
Annuals:									
Chenopodium	2.9	23.4	1.4	2.8	-	2.1	-	-	3.2
Euphorbia	-	0.2	0.4	-	-	-	-	-	0.4
Portulaca	-	0.2	0.4	-	-	-	0.5	-	1.6

Table 23.46. LA 6169, Study Units 6, 7 and 8 Extramural Features, Flotation Plant Remains, Frequency and Abundance per Liter

Table 23.46b. LA 6169, Study Units 6, 7, and 8 Extramural Features and Sheet Trash, Macrobotanical Samples, Count and Weight in Grams

79 Large	
Cobble-Filled	SU 8, 121N
Thermal Pit,	133E, Stratum
Level 1	1, Level 2
1304	945
Cultural	
-	3cupules/0.10g
Non-Cultural	
1stone/.50g	-
	Cobble-Filled Thermal Pit, Level 1 1304 Cultural

All cultural plant material is carbonized.

Tat	Table 23.47. LA 6169, Study Units 6, 7, 8 and 9 Extramural Features, Wood Charcoal from Flotation Samples, Weight in Grams	69, Study Unit	s 6, 7, 8 and 9 f	Extramural F	eatures, Wood	Charcoal fror	n Flotation S	amples, Weigł	nt in Grams		
	79 Large Cobble-	79 Large Cobble-				155 Burned			145 Large Cobble-		
	Filled	Filled	84 Large		149 Large	Pit w/in			Lined		
	Thermal Pit,	Thermal Pit,	Cobble-Filled	88 Large	Cobble-Filled	Large	156 Burned	127 Large	Thermal		
Feature	Level 1	Level 2	Thermal Pit	Burned Pit	Thermal Pit	Burned Pit	Pit	Burned Pit	Feature	Totals	s
FS	1248	1303	1247	1366	1937	1901	1911	1726	1792	Weight	%
Conifers:											
Juniperus	.20g	.50g	1.70g	.50g	30g	.40g	.20g	,	1.00g	4.80g	51%
Pinus edulis		.04g		,			·			.04g	<1%
Non-Conifers:											
Salicaceae		.04g	.04g	.04g	.04g	.04g	0.10g		0.10g	30g	3%
Sarcobatus/Atriplex	.04g			.10g	.04g	.04g	·	4.00g	0.04g	4.26g	45%
Unknown non-conifer	٦ ١			.04g			.04g			.08g	1%
Totals	.24g	.58g	1.74g	.68g	.38g	.48g	.24g	4.00g	1.14g	9.48g	100%

			145 Large
Feature	127 Large	Burned Pit	Cobble-Lined Thermal Feature
	134N 138.42E, Stratum 01,	134N 138.42E, Stratum 01,	
Context	Level 1	Level 2	
FS	1725	1726	1792
	Cul	tural	
Annuals:			
Amaranthus	0.7	0.2	-
Chenopodium	-	1.0	-
Cheno-am	-	0.5	-
Portulaca	3.4pc	-	-
Perennials:			
Juniperus	-	0.2	-
Cultivars:			
Zea mays	+c	+c, 0.2k	-
	Non-C	ultural	
Annuals:			
Chenopodium	13.7	0.3	0.3
Euphorbia	0.7	0.3	-
Portulaca	0.7	-	-

Table 23.48. LA 6169, Study Units 8 and 9 Extramural Area, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; All cultural material is carbonized (pc indicates partially charred). + = less than 10, c = cupule, k = kernel

	Structure	Floor Fill &	Floor Fill &					
Component	Fill	Contact	Contact					
		92N 102E,	93N 101E,					
		Stratum 255,	Stratum 255,					
		Level 17	Level 17					
FS	1008	1192	1203					
Cultural								
Annuals:								
Chenopodium	-	0.9pc	-					
Cultivars:								
Zea mays	+c	+c	+c, +g					
Grasses:								
Gramineae	-	-	+s					
	Non-C	ultural						
Annuals:								
Chenopodium	-	0.9	-					
Corispermum	-	0.9	-					
Cycloloma	-	0.9	-					
Other:								
Unknown	-	-	+s					

Table 23.49. LA 6170, Structure 2 Early Developmental Components, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized (pc indicates partially carbonized).

+ less than 10, c = cupule, g = glume, s = stem

Component		Floor Fill & Contact	Floor Fill & Contact	Tot	als
	Structure Fill	92N 102E, Stratum 255, Level 17	93N 101E, Stratum 255, Level 17	Weight	%
FS	1008	1192	1203		
Conifers:					
Juniperus	.30g	2.00g	.20g	2.50g	72%
Non-Conifers:					
Salicaceae	-	.04g	.20g	.24g	7%
Sarcobatus/Atriplex	-	.60g	.04g	.64g	18%
Unknown non-conifer	-	.10g	-	.10g	3%
Totals	.30g	2.74g	.44g	3.48g	100%

Table 23.50. LA 6170, Structure 2 Early Developmental Components, Wood Charcoal from Flotation Samples, Weight in Grams

			5 / 5	
		Wind/Water	Roof Fall/	Floor Fill &
Component	Overburden	Deposits	Redeposit	Contact
FS	971	1135	See below*	1191, 1192
		Wood		
Juniperus	4/.10g	14/1.26g	247/24.20g	27/4.05g
			7u/.20g	
Pinus edulis	-	-	2/.33g	-
Salicaceae	-	12/1.71g	190/17.64g	12/1.24g
Sarcobatus/Atriplex	-	-	4/.46g	-
Unknown non-conifer	-	-	2/.13g	-
	Ма	crobotanical		
Cultural				
Cultivars:				
Zea mays	-	9cobs/0.90g,	13cobs/6,12g,	3cobs/.20g
		4cupules/.10g	1cupule/.04g, 1kernel/.10g	

Table 23.51. LA 6170, Structure 2 Early Developmental Components, Wood Charcoal and Macrobotanical Samples, Weight in Grams and Count

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized. u = uncarbonized. * FS 1067, 1073, 1095, 1097, 1108, 1117, 1130, 1132, 1136, 1141, 1142, 1143, 1147, 1150, 1153, 1281.

Table 23.52. LA 6170, Structure 5A Late Developmental Components,
Flotation Plant Remains, Frequency and Abundance per Liter

	Structure		Feature 6,	Feature 7,
Component	Fill	Floor Fill	Mealing Bin	Mealing Bin
FS	1464	1484	1505	1506
	Cı	ultural		
Cultivars:				
Zea mays	+c	+c	+c, +g	+c, .5k
Grasses:				
Gramineae	+s	-	-	-
Phragmites	+s	+s	-	-
Other:				
Monocotyledonae	-	-	-	+s
Perennials:				
Atriplex canescens	-	-	1.1 fruit	-
Pinus edulis	-	0.5	-	+n
Platyopuntia	1.0	-	-	-
	Non-0	Cultural		
Annuals:				
Amaranthus	-	2.5	-	-
Chenopodium	7.0	2.5	5.6	0.5
Euphorbia	20.5	-	-	-
Grasses:				
Sporobolus	65.5	65.0		60.5

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, ++ = 11-25, c = cupule, g = glume, k = kernel, n = needle, s = stem

	Feature 5					
Component	Fill		Closing		loor Fill & Conta	
		101N 104E,	104N 102E,	102N 100E,	104N 100E,	104N 103E,
		Level 8	Level 18	Level 20	Level 18	Level 15
FS	1447	1540	1636	1677	1819	1824
			Cultural			
Annuals:						
Amaranthus	0.5	0.8	-	-	-	-
Chenopodium	-	-	12.2, 3.9pc	-	-	-
Portulaca	-	-	1.5	-	-	-
Cultivars:						
Zea mays	+c	+c	+c, +g	+c	0.9cob, +c	+c, 0.5k
Grasses:						
Gramineae	-	-	-	+s	+s	+s
Other:						
Monocotyledonae	-	+s	+++s	-	+s	-
Unidentifiable	0.5					
Perennials:						
Pinus edulis	-	-	-	-	-	0.5
Grasses:						
Gramineae	-	-	-	+g	-	-
		No	n-Cultural			
Annuals:						
Amaranthus	-	2.3	-	-	0.9	-
Chenopodium	1.0	4.5	0.9	-	11.9	13.5
Cheno-am	-	-	-	-	0.9	-
Euphorbia	0.5	0.8	-	-	5.1	2.0
Nicotiana attenuata	-	-	-	-	-	0.5
Portulaca	-	-	-	-	-	0.5
Grasses:						
Sporobolus	1.5	3.8	-	-	-	1.5

Table 23.53. LA 6170, Structure 5 Early Developmental Fill Components, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized (pc indicates partially carbonized).

+ = less than 10, +++ = 26-100, c = cupule, g = glume, l = leaf, k = kernel, pc = partially charred, s = stem

	- FI	requency and	Abundance p	er Liter		
			19 Ash Pit,	19 Ash Pit	19 Ash Pit	20 Cobble-
	12 Heating	18 Central	103.25N	103.20N	103.35N	Lined
Feature	Pit	Hearth	102.20E	102.14E	101.95E	Thermal Pit
FS	1926	1909	1911	1913	1914	1906
		(Cultural			
Annuals:						
Amaranthus	-	15.1	-	-	-	-
Chenopodium	-	0.5	-	-	1.0	-
Cheno-am	1.3pc	1.2pc, 10.5	-	-	1.0	-
Portulaca	-	2.5	-	-	-	-
Cultivars:						
Zea mays	-	+c, +g	1.0 cob, +c	-	+c, .5k	+c
Other:						
Monocotyledonae	-	-	-	-	-	+s
Unknown	-	-	-	2.3pp	-	0.7pp
Perennials:						
Pinus edulis	-	0.5	-	-	-	-
		Nor	n-Cultural			
Annuals:						
Amaranthus	-	20.9	-	-	0.5	-
Chenopodium	2.6	-	3.0	-	-	1.9
Cheno-am	82.5	3.5	-	1.1	-	-
Euphorbia	157.3	-	-	-	-	0.2
Malvaceae	1.3	-	-	-	-	-
Nicotiana attenuata	-	-	-	-	18.5	-
Portulaca	8.5	-	-	-	-	-
Perennials:						
Carex	1.3	-	-	-	-	-
Grasses:						
Sporobolus	-	-	-	-	2.0	-

Table 23.54. LA 6170, Structure 5 Early Developmental Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized (pc indicates partially carbonized). + = less than 10, c = cupule, g = glume, k = kernel, pp = plant part, s = stem

		Wind/Water		Floor Fill &	Ventilator
Component	Overburden	Deposits	Roof & Closing	Contact	Shaft
		1334, 1353,			
FS	1301, 1376	1370	*	**	1949
		Wood			
Conifers:					
Juniperus	10/1.10g	-	-	-	-
Non-Conifers:					
Salicaceae	6/0.50g	-	24/11.95g	-	-
			6uncharred/0.40g		
		Possibly Cult	ural		
Cultivars:					
Phaseolus cotyledon	-	-	1/0.10g	-	-
Zea mays	-	11cobs/0.90g	15cobs/3.31g,	11cobs/	29cobs/3.1
			3c/0.10g, 3	5.8g,	Og
			shanks/0.25g, 1	1c/0.04g	
			stem/0.20 g		
Grasses:					
Phragmites stem	3/0.12g	-	86/4.54g	-	-
Other:					
Monocotyledonae stem	-	-	1/0.19g	-	-
Perennials:					
Yucca leaf	-	-	0.04g	-	-

Table 23.55. LA 6170, Structure 5 Early Developmental Fill Components, Macrobotanical Samples, Count and Weight in Grams

* FS 1489, 1512, 1520, 1561, 1633, 1635, 1636, 1712, 1743, 1820, 1943

** FS 1817, 1819, 1823

Table 23.56. LA 6170 Structure 5 Features.	Macrohotanical Samples	Count and Weight in Grams
	macrobotamear campies,	

	11 Primary				20 Cobble-	
	Structural				Lined Thermal	24 Deflector
Feature	Posthole	12 Heating Pit	14 Posthole	19 Ash Pit	Pit	Posthole
				1913, 1911,		
FS	1903	1926	1898	1914	1906	1937
Wood:						
Juniperus	-	-	-	-	92/51.90g	-
Sarcobatus/Atriplex	-	-	-	1/0.50g	-	-
Jnknown	-	-	2/0.10g	-	-	-
Cultivars:						
Phaseolus cotyledon	-	-	-	1/0.04g	-	-
Zea mays	12cobs/5.30g	-	-	1cob/0.10g, 1kernel/0.04g	1cob/0.10g	39cobs/3.60, 1c/0.04g
Other:						
Unknown bark	-	8/0.30g	-	-	-	-

All plant material is carbonized unless indicated otherwise.

Structure	Struct	ture 5A		Structure 5								
Component	Structure Fill	Feature 6 Mealing Bin	Mealing Structure	Roof &	Closing	Floor Fill & Contact			Totals			
FS	1464	1505	1447	1540	1636	1677	1819	1824	Weight	%		
Conifers:												
Juniperus	0.50g	0.50g	0.10g	0.10g	0.10g	0.04g	1.60g	0.04g	1.98g	17%		
Non-Conifers:												
Cercocarpus	-	-	-	-	-	0.04g	-	-	0.04g	<1%		
Salicaceae	0.04g	0.60g	0.10g	0.10g	2.40g	3.10g	2.20g	1.50g	9.40g	81%		
Sarcobatus/Atriplex	0.04g	0.20g	0.20g	0.04g	-	-	-	-	0.24g	2%		
Totals	0.58g	1.30g	0.40g	0.24g	2.50g	3.18g	3.80g	1.54g	11.66g	100%		

Table 23.57. LA 6170, Structure 5A (Late Developmental) and Structure 5 (Early Developmental) Fill Components, Wood Charcoal from Flotation Samples, Weight in Grams

Table 23.58. LA 6170, Structure 50 Early Developmental Fill by Component, Flotation Plant	
Remains, Frequency and Abundance per Liter	

	Wind/Water	Frequency and			
Component	Deposits	Roof &	Closing	Floor Fill	& Contact
		120N 138E Stratum 750, Level 3	126N 142E Stratum 750, Level 8	124N 144E Stratum 755, Level 8	122N 141E Stratum 755, Level 8
FS	1967	2076	2120	2119	2156
		Cultur	ral		
Annuals:					
Amaranthus	-	-	-	-	1.5
Chenopodium	-	-	-	-	94.8
Cheno-am	-	-	1.0	-	-
Cycloloma	-	-	-	-	1.5
Cultivars:					
Zea mays	+c	+c, +g	+c	+c	+c, 4.4 cob frags., 7.4e, ++g, 100.7k, ++kf
Grasses:					
Gramineae	-	-	-	-	++++s
Phragmites	-	-	+s	+s	-
Other:					
Monocotyledonae Perennials:	+s	+++s	-	-	+++s
Cylindropuntia	-	-	_	-	3.0
Juniperus	-	-	_	-	+
, Yucca	-	+	-	-	+1
		Non-Cult	ural		
Annuals:					
Chenopodium	-	-	0.5	-	-
Euphorbia	-	-	3.5	-	62.2
Portulaca	-	-	1.0	-	-
Perennials:					
Lithospermum	-	-	1.0	-	-
Grasses:					
Sporobolus	-	-	1.0	-	-

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, ++ = 11-25, +++ = 25-100, ++++ = more than 100, c = cupule, e = embryo, g = glume, k = kernel, kf = kernel fragments, I = leaf, s = stem, t = twig

				LILE	1				
Feature FS	152 Collared Hearth 2269	153 Ash Pit 2273	154 Heating Pit with Cobble Fill 2157	157 Sealed Storage Pit 2321	162 Sealed Heating Pit 2281	166 Sealed Storage Pit 2368	169 Venti- lator Tunnel 2396	177 Sealed Heating Pit 2289	183 Sealed Storage Pit 2375
				Cultu	ral				
Annuals:									
Chenopodium	-	2.0	2.3	-	-	-	4.8	-	-
, Cycloloma	1.0	-	-	-	-	-	-	-	-
Portulaca	12.3	2.0	-	-	-	-	-	-	-
Cultivars:									
Zea mays	-	+c	++c, +g	+c	-	-	+c	-	-
Grasses:									
Gramineae	-	-	+nr	-	-	-	-	-	-
Other:									
Unknown	2.1e	-	-	-	-	-	-	-	-
Perennials:									
Pinus edulis	-	-	-	-	0.6	-	1.0	0.7	-
				Non-Cult	ural				
Annuals:									
Chenopodium	-	0.7	1.7	6.4	-	0.5	-	0.7	1.1
, Cheno-am	-	-	0.6	-	-	-	-	-	-
Euphorbia	-	-	-	-	-	34.1	1.0	-	49.7
Other:									
Unknown	-	-	-	0.9e	-	-	-	-	-

Table 23.59. LA 6170, Structure 50 Early Developmental Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, ++ = 11-25, c = cupule, e = embryo, g = glume, nr = non-reproductive

		Weight i	n Grams			
Feature	152 Collared Hearth	153 Ash Pit	161 Sealed Main Roof Support Posthole	164 Main Roof Support Posthole	169 Venti- lator Tunnel	172 Sealed Main Roof Support Posthole
FS	2269	2272	2334	2303	2336, 2396	2320
10	2209		tural	2303	2330, 2390	2320
Cultivers		Cu	lurai			
<i>Cultivars:</i> <i>Phaseolus</i> cotyledon <i>Zea mays</i>	1/0.10g 6cobs/1.60g	2/0.10g 1k/0.10g	-	-	- 1cob/0.10g,	-
,	Ĵ	5			3c/0.10g, 4s/0.90g	
Grasses:						
Phragmites stem	-	-	-	-	1/0.10g	-
Perennials:						
<i>Juniperus</i> wood	-	1/0.04g	-	-	-	-
Salicaceae	1bark/0.10g, 15wood/ 10.40g	4wood/ 0.04g	-	-	-	-
Perennials:						
Yucca fiber	-	14/0.04g	-	-	-	-
		-	ultural			
Other:						
Unknown wood	-	-	1u/0.04g	-	-	-
Perennials:			3			
Celtis seed	_	-	_	1/0.04g	-	3/0.10g

Table 23.60. LA 6170, Structure 50 Early Developmental Features, Macrobotanical Samples, Count and Weight in Grams

All plant material is carbonized unless indicated otherwise. c = cupule, k = kernel, s = stalk, u = uncarbonized

		Wind/Water	Roof &	Floor Fill &	Ventilator
Component	Overburden	Deposits	Closing	Contact	Shaft Fill
			2021, 2082,		
FS	2051	1967, 1981	2101	*	2445
		Cultu	ral		
Wood:					
Salicaceae	-	-	1/.06g	13/0.60g	-
Macrobotanical					
Cultivars:					
Zea mays	2cobs/.3g	3cobs/1.1g, 8c/0.2g, 28g/0.1g	4cobs/5.g	18cobs/14.5g, 13c/.2g, 91k/9.9g	2cobs/.3g
Grasses:					
Phragmites	-	-	30/2.79g	-	-
Other:			-		
Monocot	-	-	1s/2.5g	2leaf/0.04g	-
Unknown	-	-	-	2s/0.13g	6bark/0.5g
		Non-Cult	ural	-	-
Perennials:					
Celtis	_	-	-	1u/0.04g	-

Table 23.61. LA 6170, Structure 50 Early Developmental Fill by Component, Wood and
Macrobotanical Samples, Count and Weight in Grams

upule, g = glume, k = uncarbonized. * FS 2133, 2136, 2142, 2146, 2156

Table 23.62. LA 6170, Structure 50 Early Developmental Fill by Component, Wood Charcoal from Flotation
Samples, Weight in Grams

Component	Wind/Water Deposits	Roof & Closing		Floor Fill	Totals		
·		120N 138E Stratum 750, Level 3	126N 142E Stratum 750m, Level 8	124N 144E Stratum 755, Level 8	122N 141E Stratum 755, Level 8	Weight	%
FS	1967	2076	2120	2119	2156		
Conifers:							
Juniperus	0.10g	-	0.04g	0.04g	-	0.18g	2%
Pinus edulis	0.04g	-	-	-	-	0.04g	1%
Non-Conifers:							
Cercocarpus	-	0.10g	-	-	-	0.10g	1%
Salicaceae	0.20g	0.40g	1.10g	1.00g	4.70g	7.4g	95%
Unknown non-conifer	-	-	0.04g	-	-	0.04g	1%
Totals	0.34g	0.50g	1.18g	1.04g	4.70g	7.76g	100%

Table 23.63. LA 6170, Study Unit 12 (Extramural
Activity Area), Flotation Plant Remains, Frequency
and Abundance per Liter

Table 23.64. LA 6170, Wood Charcoal Specimens Examined Prior to Possible Tree-Ring Dating, Diameters in mm

	· · · · · · · · · · · · · · · · · · ·	
Feature	53 Cobble-Lined Thermal Pit	69 Bell-Shaped Storage Pit
FS#	2248, 2250 2403, 24	
	Cultural	
Annuals:		
Chenopodium	0.6	-
Cultivars:		
Zea mays	+c	++c, 2.8cob, + glume, .9k
Perennials:		
Yucca	-	+
	Non-Cultural	
Annuals:		
Chenopodium	5	-
Euphorbia	1.1	-
Portulaca	0.8	-
Grasses:		
Sporobolus	0.6	-

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, ++ = 11-25, c = cupule, k = kernel, l = leaf

Prior to Possible Tree-F Feature	FS	Juniperus	
Structure 2 roof fall/red deposit	1131, 1143	x	-
Structure 5A, fill	1463	х	-
Structure 5 sealed features	1926	x	-
	1020	4.7*	_
SU 12	2251, 2417		_
30 12	2231, 2417	x	-
Structure E	1257	х	-
Structure 5	1357	10.0.****	х
roof and closing material	1492	12.0+*pc	-
	1494	-	12.5-13.0+
	1495	-	х
	1501	-	х
	1502	-	3.3+*
	1509	-	х
	1513	-	х
	1514	-	х
	1516	-	х
	1517	-	х
	1519	-	x
	1521	-	9.5+*
	1536	-	5.4*
	1541	-	7.8+*
	1542	-	X
	1543	-	x
	1544	-	6.5+*
	1545	_	5.5+*
	1545	-	4.2+*
		-	
	1548	-	7.0*
	1552	-	X
	1555	-	5.8+*
	1556	-	5.6+*
	1557	-	9.4+*
	1559	-	5.2+*
	1560	-	7.3+*
	1565	-	4.9+*
	1566	-	5.4+*
	1567	8.5+*	-
	1568	-	5.9*
	1569	-	5.5+*
	1570	-	5.1*
	1571	-	7.4+*
	1572	-	7.0*
	1573	-	7.8+*
	1593	4.0+*	-
	1594	4.8+*	-
	1597	-	4.1+*
	1599	5.6+*	-
	1604	3.0+ X	_
	1610	^	-
		-	X
	1611	-	X
	1617	-	х
	2497	-	х
Number of samples		6, 1x	23, 16x

+ present but incomplete diameter. Only complete diameters included. * complete measurement with bark, +* complete but no bark

	and Abunda	ance per Liter	
		F. 39 Small	
		Burned Pit at	Structure 1
Feature	F. 38 Fill	Base of F. 38	Fill
FS	574	612	345
	Cult	ural	
Annuals:			
Chenopodium	8.2	1.0	15.0
Cheno-am	-	0.5e	-
Cultivars:			
Zea mays	+c	-	+c, +g
Other:			
Unidentifiable	-	0.9e	-
Perennials:			
Platyopuntia	-	0.5	-
	Non-C	ultural	
Annuals:			
Chenopodium	-	-	2.0
Cheno-Am	-	-	1.0
Grasses:			
Sporobolus	-	-	1.0

Table 23.65. LA 6171, Feature 38 Fill and Subfeatures and Structure 1 Fill, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized.

+ = less than 10, c = cupule, g = glume, e = embryo

ant Remains, Fr	equency and	d Abundance	per Liter
61 Warming	65 Small		
Pit	Pit	66 Ash Pit	77 Hearth
706	713	714	887, 888
	Cultural		
-	2.3	-	0.9
-	-	1.3	-
-	+nr	-	0.7embryo
+c	+c	+c, 0.6k	-
No	n-Cultural		
-	-	-	0.7
-	6.8	-	0.7
	61 Warming Pit 706 - - - +c	61 Warming 65 Small Pit Pit 706 713 Cultural - 2.3 - +nr +c +c Non-Cultural	Pit Pit 66 Ash Pit 706 713 714 Cultural - - - 2.3 - - - 1.3 - +nr - +c +c +c, 0.6k Non-Cultural - -

Table 23.66. LA 6171, Study Unit 6, Structure 60 Floor Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural material is carbonized. +less than 10, c cupule, k kernel, nr non-reproductive

F a structure	43 Large	54 Large	55 Small	56 Large	58 Small	92 Large	91 Small
Feature	Burned Pit	Burned Pit	Pit	Burned Pit	Pit	Burned Pit	Burned Pi
FS	600	793	864	613	614	868	937
			Cultura	l			
Annuals:							
Amaranthus	2.7	1.9	-	-	-	-	-
Chenopodium	51.7	6.1	6	26.8	6.5	-	5.1
Cheno-am	1.9	0.9	-	3.8	0.3	-	0.5
Corispermum	-	-	-	-	0.5	-	-
Cycloloma	0.9	-	-	1.3	-	-	-
Suaeda	-	-	-	2	-	-	-
Cultivars:							
Cucurbita	+r	-	-	-	-	-	-
Zea mays	+c, .4k	+c, +g	+c, +g	+c, +g	+c, +g	-	-
Grasses:							
Gramineae	-	3.7	-	-	-	-	-
Other:							
Monocotyledonae	-	+s	-	-	-	-	-
Unknown	4.7e	.9e	1.5e	-	.5e	-	.5pp
Perennials:							
Juniperus	-	+ fragments	-	-	-	-	-
			Non-Cultu	ral			
Annuals:							
Chenopodium	-	-	2	-	-	2	1.4
Euphorbia	-	-	2	-	-	-	-
Other:							
Solanaceae	-	-	-	1.3	-	-	-

Т	Table 23.67. LA 6171, Earliest Developmental Features, Flotation Plant Remains, Frequency and
	Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural material is carbonized.

+ = less than 10, c = cupule, e = embryo, g = glume, k = kernel, pp = plant part, r = rind, s = stem

Feature	54 Large Burned Pit	55 Small Pit	Tot	tals
FS	793	864	Weight	%
Conifers:				
Juniperus	0.40g	0.13g	0.53g	67%
Unknown conifer	-	0.17g	0.17g	22%
Non-Conifers:				
Salicaceae	0.04g	0.03g	0.07g	9%
Sarcobatus/Atriplex	-	0.02g	0.02g	3%
Totals	0.44g	0.35g	0.79g	100%

Table 23.68. LA 6171, Earliest Developmental Features, Wood Charcoal from Flotation Samples, Weight in Grams

Feature	·	ture Floor	27 Small Cobble-Filled Thermal Pit		
	Level 6	Level 6			
	Stratum 37	Stratum 45	Level 1		
	NW1/4	SW1/4	Stratum 77	Level 4	
FS	850	854	908	929, 930	
		Cultural			
Annuals:					
Chenopodium	3.9	-	-	0.7	
Compositae	0.5	-	-	-	
lva	0.5	-	-	-	
Other:					
Unknown	+nr	-	-	-	
Perennials:					
Juniperus	-	-	-	1.1, +twig	
Cultivars:					
Cucurbita	+rind	-	-	-	
Zea mays	+cupule,	+c	-	-	
	+glume				
	N	on-Cultural			
Annuals:					
Croton	-	7.7	-	-	
Euphorbia	-	-	0.6	-	

Table 23.69. LA 6171, Structure 26 Floor Fill and Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated;

All cultural plant material is carbonized.

			in Gram	S				
Feature	F. 26 Stru	cture Floor	F. 27 S	mall Cobble-F	-illed Therm	al Pit	Tota	als
	Level 6 Strat 37	Level 6 Strat 45	Level 1,	Ash/ Charcoal,				
Context	NW1/4	SW 1/4	Stratum 77	Level 2	Level 4	Level 4	Weight	%
FS	850	854	908	909	929	930		
Conifers:								
Juniperus	.20g	.20g	.50g	7.86g	1.70g	2.00g	12.46g	54%
Non-Conifers:								
Atriplex	-	-	-	8.54g	-	-	8.54g	37%
Salicaceae	.04g						.04g	<1%
Sarcobatus/Atriplex	.10g	.04g	.40g	.90g	.10g	-	1.18g	5%
Other:								
Unknown	-	-	-	.88g	-	-	.88g	4%
Totals	.34g	.24g	.54g	18.18g	1.80g	2.00g	23.1g	100%

Table 23.70. LA 6171, Structure 26 Floor Fill and Features, Wood Charcoal from Flotation Samples, Weight

Liter							
Quadrant	NW	SW	NE	SE			
FS	521	528	532	542			
	Cı	ultural					
Annuals:							
Amaranthus	-	-	0.5	-			
Chenopodium	0.5	0.3	2.0	9.1			
Portulaca	-	0.3	-	0.6			
Cultivars:							
Zea mays	+c	+c	+c, +g	+c, +g			
Other:							
Unidentifiable	-	-	-	0.6			
Unknown	+bark	-	-	+nr			
Perennials:							
Pinus	-	-	+fascicle	-			
	Non-C	Cultural					
Annuals:							
Chenopodium	-	0.6	0.5	0.6			
Corispermum	0.8	-	-	-			
Perennials:							
Pinus edulis	.3n	-	-	-			

Table 23.71. LA 6171, Structure 18 Floor, Flotation Plant Remains, Frequency and Abundance per

Plant remains are seeds unless otherwise indicated;

All cultural plant material is carbonized.

+ = less than 10, c = cupule, g = glume, n = nutshell, nr = non-reproductive

Table 23.72. LA 6171, Structure 18 Floor, Wood Charcoal from
Flotation Samples, Weight in Grams

Quadrant	NW	NE	SE	Tota	als
FS	521	532	542	Weight	%
Conifers:					
Juniperus	0.50g	0.50g	0.50g	1.50g	81%
Unknown conifer	-	-	0.04g	0.04g	2%
Non-Conifers:					
Salicaceae	0.10g	0.04g	0.10g	0.24g	13%
Sarcobatus/Atriplex	0.04g	0.04g	-	0.08g	4%
Totals	0.64g	0.58g	0.64g	1.86g	100%

	12 Remodeled	13 Primary	14 Small					
Feature	Hearth	Hearth	Burned Pit	16 Ash Pit				
FS	643	660	650	680				
Cultural								
Annuals:								
Amaranthus	2.0	-	-	1.6				
Chenopodium	0.5	-	-	-				
Cycloloma	-	-	-	1.3				
Cultivars:								
Zea mays	+c	-	-	+c				
Grasses:								
Gramineae	+s	-	+s	+s				
	Non	-Cultural						
Annuals:								
Amaranthus	-	-	-	1.3				
Chenopodium	-	0.6	0.8	1.6				
Other:								
Unidentifiable	0.5	-	-	-				

Table 23.73. LA 6171, Structure 9 Floor Features, Flotation Plant
Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated;

All cultural plant material is carbonized. c = cuple, s = stem, + = less than 10

	Macion	olanical), vv	eigint in Gran	15		
	Flotation		Macrobotanical		_	
	12					
	Remodeled	14 Small	13 Primary			
Feature	Hearth	Burned Pit	Hearth	16 Ash Pit	Тс	otal
FS	643	650	660	680	Wt	%
Conifers:						
Juniperus	0.20g	0.50g	6/.06g	10/2.74g	3.50g	42%
Non-Conifers:						
Rosaceae	-	-	4/.12g	-	0.12g	1%
Salicaceae	1.90g	0.30g	5/.09g	11/1.42g	3.71g	44%
Sarcobatus/Atriplex	-	0.90g	-	1/.15g	1.05g	12%
Unknown	-	-	4/0.05g	-	0.05g	1%
Total	2.10g	1.70g	19/0.32g	22/4.31g	8.43g	100%

Table 23.74. LA 6171, Structure 9 Floor Features, Wood Charcoal (Flotation and Macrobotanical), Weight in Grams

		Litter							
Feature FS	Floor Fill	18 Basin- Shaped Pit 224	19 Central Hearth 227	20 Ash Pit 233					
Cultural									
Annuals:									
Chenopodium	-	-	0.5	-					
Cultivars:									
Zea mays	+g	-	+c	+c, .5k					
	N	on-Cultural							
Annuals:									
Amaranthus	-	-	0.5	1.1					
Chenopodium	1.0	0.5	-	44					
Euphorbia	-	1.5	-	-					
Polanisia	-	-	-	0.5					
Portulaca	1.0	0.5	-	1.1					

Table 23.75. LA 115862, Study Unit 1 (Pit Structure) Floor and Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated; all cultural plant material is carbonized. + = less than 10, c = cupule, g = glume, k = kernel

Table 23.76. LA 115862, Study Unit 1 (Pit Structure) Floor and Features, Wood Charcoal from Flotation	ו and
Carbonized Wood Samples, Count and Weight in Grams	

Sample Type	Flotation	otation Macrobotan			iical Wood		Totals	
Feature FS	20 Ash Pit 233	14 Posthole, NE quad 209	16 Posthole, SW Quad 221	17 Posthole, NW Quad 222	21 Deflector Posthole 236	Weight	%	
Conifers:								
Juniperus	1.76g	39/.17g	21/.43g	-	26/.74g	3.10g	80%	
Non-Conifers:								
Salicaceae	.02g	-	17/.18g	2/.15g	14/.35g	.70g	18%	
Sarcobatus/Atriplex	-	-	1/.02g	-	1/.04g	.06g	1%	
Unknown non-conifer	-	-	-	-	2/.02g	.02g	<1%	
Other:								
Unknown wood	.01g	-	-	-	-	.01g	<1%	
Totals	1.79g	.17g	.63g	.15g	1.15g	3.89g	100%	

Frequency and Abundance per Liter								
		9 Large Cobble-	10	11 Large	12			
	5 Large	Filled Thermal	Charcoal/A	Cobble-Filled	Charcoal/A			
Feature	Burned Pit	Pit	sh Stain	Thermal Pit	sh Stain			
FS	154	192	193	197	195			
Cultural								
Annuals:								
Amaranthus	-	-	1.7	-	-			
Chenopodiaceae	-	-	0.8	-	-			
Chenopodium	-	-	19.8	-	1.0pc			
Cheno-Am	-	0.5	-	-	-			
Portulaca	-	-	-	1.5	-			
Cultivars:								
Zea mays	+ur	+c, 0.5k	-	+c, +g, +ur	+ur			
Other:								
Unidentifiable	-	0.5	-	-	-			
Unknown	-	0.5pp	2.0e	0.5pp	0.5e			
Perennials:								
Scirpus	-	-	0.8	-	-			
		Non-Cultu	ral					
Annuals:								
Amaranthus	-	-	-	-	2.5			
Cheno-Am	0.5	-	-	-	-			
Euphorbia	0.5	-	0.5 -		0.5			
Portulaca	-	-	9.7	-	7.5			
Suaeda	0.5	-	-	-	-			
Grasses:								
Sporobolus	2.0	-	-	-	-			

Table 23.77. LA 115862, Extramural Activity Area and Features, Flotation Plant Remains, Frequency and Abundance per Liter

Plant remains are seeds unless otherwise indicated;

All cultural plant material is carbonized (pc indicates partially carbonized).

+ = less than 10, c = cupule, e = embryo, g = glume, k = kernel, ur = unknown reproductive

	LA 6171 Earliest Developmental	LA 265 Early Developmental	LA 6169 Early Developmental	LA 6170 Early Developmental	LA 6171 Early Developmental	LA 115862 Early Developmental
# of samples with				07		•
charred remains	6	69	8	27	20	9
Annuals:						
Amaranthus	33%	23%	13%	15%	15%	11%
Chenopodium	100%	58%	75%	30%	70%	44%
Cheno-Am	83%	17%	25%	15%	10%	22%
Compositae	-	-	-	-	5%	-
Corispermum	17%	1%	-	-	-	-
Cycloloma	33%	1%	-	7%	5%	-
Iva	-	-	-	-	5%	-
Physalis	-	1%	-	-	-	-
Portulaca	-	14%	25%	15%	10%	11%
Salvia	-	1%	-	-	-	-
Suaeda	17%	-	-	-	-	-
Cultivars:						
Cucurbita	17%	1%	-	-	5%	-
Zea mays	83%	97%	88%	81%	75%	89%
Grasses:						
Gramineae	17%	4% stem	25% stem	4%, 7% stem	10%	-
Phragmites	-	1% stem	13% stem	7% stem	-	-
Sporobolus	-	1%	13%	-	-	-
Other:						
Monocotyledonae	17% stem	1% stem	13% stem	26% stem	-	-
Unknown #9211	_	1%	_	-	-	-
Perennials:						
Cylindropuntia	_	3%	_	4%	-	-
Juniperus	17%	3%	-	4% twig	5%	-
Pinus edulis	-	12%	25%	19%		-
Platyopuntia	-	9%		-	5%	_
Rhus	-	3%	_	_	-	_
Scirpus	-	-	_	-	-	11%
Yucca	-	-	leaf	4% fiber, 4% leaf	-	-
Yucca baccata	-	1%	-	_	-	_
Total taxa	11	20	10	13	12	6

Table 23.78. Peña Blanca Earliest Developmental and Early Developmental Carbonized Plant Remains
(Occurrence in Percent of Samples with Carbonized Remains)

Occurrences are seeds or fruits, unless otherwise specified. Zea mays occurrences include cupules, cob fragments, and kernels.

Table 23.79. Pena B			Developmental			<u>yo by</u>	Coalition Period		
	EARLIEST Econor Occurrer	nic	EARLY # Econor Occurrer	nic	LATE #/ Econor Occurre	nic	#/% of Economic Occurrences		
	Occurren	1003	Occurrer	1003	Occurren	1003	Occurren	1003	
Sites	LA 6171		LA 265, 616 6171, 11	LA 249, 6 6170		LA 6169			
Flotation samples	6		133		21		11		
Annuals: Amaranthus	2	52%	25	37%	4	27%		27%	
Chenopodium/Amaranthus	2 5	5270	20	3770	1 3	21 70	- 3	2170	
Chenopodium	6	-	20 72	-	9	-	5	-	
Cleome	-	_	12	_	-	_	1	_	
Corispermum	1	_	1	_	_	_	1	_	
Cycloloma	2	-	4	-	1	-	-	-	
Physalis	-	16%	1	8%	-	8%	-	20%	
Plantago	_	-	· _	-	-	-	1		
Portulaca	-	-	19	-	3	-	-	-	
Suaeda	1	-	-	-	-	-	-	-	
Cultivars:									
Cucurbita	1	-	3	-	-	-	-	-	
Zea mays	5	24%	118	38%	21	43%	9	30%	
Grasses:									
Gramineae	1	-	8	-	3	-	2	-	
Oryzopsis	-	-	-	-	-	-	1		
Phragmites	-	4%	4	5%	2	10%	-	13%	
Sporobolus	-	-	3	-	-	-	1	-	
Other: ¹									
Compositae	-	-	1	-	-	-	-	-	
Euphorbia	-	-	-	-	-	-	1	-	
Iva	-	0	1	1%	-	0	-	3%	
Salvia	-	-	1	-		-	-	-	
Scirpus	-	-	1	-	-	-	-	-	
Perennials:									
Atriplex canescens	-	-	-	-	1	-	-	-	
Carex	-	-	-	-	-	-	1	-	
Cylindropuntia	-	-	3	-	1	-	-	-	
Echinocereus	-	-	-	-	1	-	-	-	
Juniperus Pinus edulis	1	4%	4 15	11%	-	12%	1	7%	
	-	-	7	-	2	-	-	-	
Platyopuntia Rhus	-	-	3	-	I	-	-	-	
Yucca	-	-	3 4	-	-	-	-	-	
Total Number of Taxa	9		23	-	12	-	12	-	
Total Number of	25		318		49		30		
Occurrences									

Table 23.79. Peña Blanca Taxonomic Composition of Flotation Assemblage by Time Period

¹ Taxonomic group that includes both annual and perennials

	LA 6169	LA 6170	LA 249		
	Late	Late	Late		
	Develop-	Develop-	Develop-	LA 6169	LA 249
	mental	mental	mental	Coalition	Classic
# of samples with charred remains	10	4	7	11	4
Annuals:					
Amaranthus	10%	-	-	-	-
Chenopodium	80%	-	14%	45%	-
Cheno-Am	30%	-	-	27%	-
Cleome	-	-	-	9%	-
Corispermum	-	-	-	9%	-
Cycloloma	10%	-	-	-	-
Euphorbia	-	-	-	9%	-
Plantago	-	-	-	9%	-
Portulaca	30%	-	-	27%	-
Cultivars:					
Zea mays	100%	100%	100%	82%	100%
Grasses:					
Gramineae	20% stem	25% stem	-	9%, 9% stem	-
Oryzopsis	-	-	-	9%	-
Phragmites	-	50% stem	-	-	-
Sporobolus	-	-	-	9%	-
Other:					
Monocotyledonae	-	-	14% stem	-	-
Unknown #9210	-	-	-	9%	-
Perennials:					
Atriplex	-	25%	-	-	-
Carex	-	-	-	9%	-
Cylindropuntia	10%	-	-	-	-
Echinocereus	10%	-	-	-	-
Juniperus	10% leaflet, 10% twig	-	-	9% leaflet	-
Pinus edulis	10%	25%	-	-	-
Platyopuntia	-	25%	-	-	-
Yucca	-	-	14% fiber	-	-
Total taxa	11	7	4	14	1

Table 23.80. Peña Blanca Late Developmental through Classic Period Carbonized Plant Remains

Time Period and Feature Type	Early Developmental: Other Thermal Features	Early Developmental: Cobble-Filled Thermal Pits	Late Developmental: Other Thermal Features	Late Developmental: Cobble-Filled Thermal Pits	Coalition: Other Thermal Features
# of features with					
primary deposits	11	8	2	1	3
Annuals:					
Amaranthus	+	-	-	+	+
Chenopodium	+	+	+	+	+
Cheno-Am	+	+	+	+	+
Cleome	-	-	-	-	+
Cycloloma	+	-	-	-	-
Euphorbia	-	-	-	-	+
Plantago	-	-	-	-	+
Portulaca	+	+	+	+	+
Cultivars:					
Cucurbita	-	-	-	-	-
Zea mays	+	+	+	+	+
Grasses:					
Gramineae	-	+stem	-	-	+
Oryzopsis	-	-	-	-	+
Sporobolus	-	-	-	-	+
Other:					
Monocotyledonae	+stem	-	-	-	-
Perennials:					
Carex	-	-	-	+	-
Cylindropuntia	-	-	-	+	-
Juniperus	-	+	-	+leaflet	+leaflet
Pinus edulis	+	-	-	+	-
Platyopuntia	+	-	-	-	-
Rhus	+	-	-	-	-
Total taxa	10	6	4	8	13

Table 23.81. Peña Blanca Earliest Developmental through Coalition Thermal Features with PrimaryDeposits, Presence of Plant Taxa in Flotation Samples

	LA 6171 Earliest	LA 265 Early	LA 6169 Early	LA 6170 Early	LA 6171 Early	LA 115862 Early
Site/Time Period	Developmental	Developmental	Developmental	Developmental	Developmental	Developmental
# of samples with						
wood charcoal	2	47	8	15	14	2
Conifers:						
Juniperus	67%	74%	54%	36%	57%	97%
Pinus	-	<1%	-	-	-	-
Pinus edulis	-	1%	1%	<1%	-	-
Unknown conifer	22%	1%	-	-	<1%	2%
Non-Conifers:						
Artemisia	-	<1%	-	-	-	-
Atriplex/Sarcobatus	3%	6%	28%	3%	35%	-
Cercocarpus	-	-	-	1%	-	-
Cylindropuntia	-	1%	-	-	-	-
Quercus	-	<1%	1%	-	-	-
Salicaceae	9%	17%	16%	60%	8%	1%
Unknown non-conifer	-	1%	1%	1%	-	-
Total Weights	0.79g	32.26g	7.82g	28.54g	31.00g	2.09g

Table 23.82. Peña Blanca Earliest and Early Developmental Flotation Wood Charcoal, Percent Weight

Table 23.83. Peña Blanca Late Developmental through Classic Flotation Wood Charcoal, Percent
Weight

		Weight			
Site/Time Period	LA 6169 Late Developmental	LA 6170 Late Developmental	LA 249 Late Developmental	LA 6169 Coalition	LA 249 Classic
# of Flotation Samples with Wood Charcoal		•	·		
	8	2	6	9	9
Conifers:					
Ephedra	-	-	5%	-	9%
Juniperus	67%	53%	69%	25%	45%
Pinus edulis	6%	-	4%	4%	6%
Pinus ponderosa	-	-	-	-	2%
Unknown conifer	-	-	11%	-	20%
Non-Conifers:					
Atriplex/Sarcobatus	7%	13%	1%	35%	2%
Chrysothamnus	-	-	-	2%	-
Cylindropuntia	-	-	-	1%	-
Lycium	1%	-	-	2%	-
Rosaceae	-	-	3%	-	5%
Salicaceae	17%	34%	4%	31%	7%
Unknown non-conifer	1%	-	3%	1%	5%
Total Weight of Identified Charcoal	5.35g	1.88g	5.55g	5.07g	3.27g

Thermal Feature Type	Intramu	ral	Extram	ural
# of samples	13	9		
	weight	%	weight	%
Conifers:				
Juniperus	26.40g	65%	6.08g	56%
Pinus	0.04g	<1%	-	-
Pinus edulis	0.14g	<1%	0.04g	1%
Total Conifer	26.58g	65%	6.12g	57%
Non-Conifers:				
Atriplex/Sarcobatus	12.62g	31%	4.28g	40%
Cylindropuntia	0.04g	<1%	-	-
Lycium	0.10g	<1%	-	-
Quercus	0.04g	<1%	-	-
Salicaceae	1.48g	4%	0.38g	3%
Total Non-conifer	14.28g	35%	4.66g	43%
Total Weight of Identified Charcoal	40.86g	100%	10.78g	100%

Table 23.84. Peña Blanca Wood Charcoal from Intramural and Extramural
Thermal Features with Primary Deposits

			Cob	Row		Cob	Cupule	
Site	FS #	Row #	Portion	Туре	Length	Diameter	Width	RSL*
LA 249	282	12	М	ST	38.5	17.6	8.2	3.3
LA 265	653	14	М	ST	44.1	20.0	7.7	3.6
	727	10	М	ST	9.1	8.9	5.3	3.7
	690	10	М	ST	12.0	9.0	4.3	2.3
	1713	12	М	-	15.1	10.3	3.5	2.7
LA 6170	1073	14	Т	ST	24.9	9.3	3.1	2.8
	1130	12	Т	ST	78.9	19.2	7.8	3.3
	1143	16	М	ST	29.8	11.6	4.1	3.1
	1192	10	М	ST	11.2	6.9	3.2	3.1
	1463	10	Т	ST	16.4	8.2	4.5	2.6
	1636	8	Т	ST	21.5	5.4	5.6	2.7
	1636	12	М	ST	41.1	17.0	7.3	3.2
	1817	12	М	ST	39.5	7.6	6.8	3.3
	1819	12	Μ	ST	15.6	12.4	5.4	4.2
	1819	12	Т	ST	35.6	13.9	5.8	4.1
	1819	12	Т	ST	33.9	10.3	4.1	3.0
	1819	12	М	ST	16.1	9.1	4.7	3.2
	1823	12	М	ST	53.9	12.8	6.3	3.8
	1903	12	М	ST	31.7	15.0	5.9	4.1
	1903	12	М	ST	27.7	14.0	5.3	3.4
	1903	12	М	ST	26.8	13.6	6.4	3.1
	1903	12	М	ST	42.4	15.9	6.6	3.0
	1903	12	М	ST	59.3	20.2	7.8	3.5
	1937	12	М	ST	33.4	17.4	6.5	3.7
	1949	10	Т	ST	25.2	10.6	5.1	4.6
	1949	10	М	ST	12.4	9.9	3.6	2.7
	1949	14	М	ST	26.1	10.3	3.8	3.6
	1967	12	М	ST	28.0	14.5	5.7	3.4
	2082	16	М	ST	44.7	20.0	7.0	3.8
	2082	16	М	ST	25.8	17.8	7.0	3.5
	2082	16	М	ST	22.2	15.3	6.3	3.9
	2133	12	М	IR	30.3	14.6	6.2	3.0
LA 6170	2269	12	М	ST	22.5	15.6	6.5	3.0
	2407	8	Т	ST	34.9	9.1	4.0	2.5
	2407	12	М	ST	21.5	11.5	6.0	3.1
	2441	10	М	ST	23.3	11.8	6.3	4.0
Averages		12	22% T	3% IR	29.9	12.5	5.7	3.3
-			78% M	97% ST				

Table 23.85. Peña Blanca Zea mays Cob Morphometrics, in mm

36 cobs measured; Rachis segment length, M mid-section, IR irregular, ST straight, T tip

	Row Number					Cupule Width Cob Diameter mm mm			RSL mm			
	% 8 or Less	% 10	% 12	%14 or more	n	Average	n	Average	n	Average	n	Average
Peña Blanca	6%	19%	56%	19%	36	12	36	12.5	36	5.7	6	3.3
KP site [Late Developmental] ¹	17%	34%	47%	2%	66		66	[85% in 3-5 mm range] rachis	66	[94% in 3.0-3.5 mm range]	-	-
LA 3333 Galisteo Basin	14%	42%	40%	4%	43	10.8	43	12.7	43	6.1	43	3.1
River's Edge I ²	15%	15%	49%	21%	33	11.2	33	10.7 rachis	33	5.5	33	3.7
River's Edge II ³	-	10%	64%	26%	50	12.6	49	36.0 cobs with intact kernels	-	-	-	-
LA 3128 AD 650-900												
River's Edge III ⁴	-	14%	44%	42%	21	13	-	-	-	-	-	-

Table 23.86. Comparative Zea Cob Morphometrics, from the Middle Rio Grande Valley and San Juan Basin

248 Excavations along NM 22: Peña Blanca

Site	FS #	Lacks Embryo?	Swollen?	Height	Width	Thickness
LA 265	1471	N	N	8.3	6.9	5.5
		Ŷ	Ŷ	3.7	4.8	4.0
LA 6170	1136	Ŷ	Ŷ	5.4	7.3	6.0
		Ŷ	N	7.6	7.7	5.4
		Ν	Y	6.8	8.0	6.9
		Y	Y	6.7	7.6	5.9
		Ν	Ν	7.5	7.9	5.9
		Ν	Ν	8.6	8.0	4.5
		Ν	Ν	5.2	6.1	4.0
		Ν	Ν	4.6	6.1	3.8
		Y	Y	6.8	9.6	4.6
		Ν	Ν	6.9	5.9	5.9
		Ν	Y	6.2	8.1	5.1
		Y	Y	7.7	8.5	4.9
		Y	Y	7.1	8.3	5.9
		Y	Y	6.4	7.9	6.4
	2146	Ν	Ν	7.6	7.4	4.5
		Ν	Ν	8.3	7.4	4.2
		Ν	Ν	8.0	7.9	4.2
		Ν	Ν	8.2	8.6	4.4
		Ν	Ν	6.9	6.3	5.1
		Ν	Ν	8.6	8.0	6.2
		Ν	Ν	9.2	7.0	4.4
		Ν	Ν	7.9	6.6	4.6
		Ν	Ν	6.9	6.5	5.0
		Ν	Ν	8.0	7.7	4.0
		Ν	Ν	7.9	6.8	4.3
		Ν	Ν	8.0	6.8	3.6
		Ν	Ν	7.6	7.8	3.8
		N	N	8.3	7.9	4.7
		N	N	7.8	7.6	4.1
		N	N	7.7	7.4	4.4
		N	N	7.4	8.6	3.7
		N	N	8.6	8.0	4.7
		N	N	7.6	7.7	4.8
		N	N	8.7	8.1	5.1
		N	N	9.1	7.6	4.9
		N	N	7.9	7.9	3.4
		Y	Ŷ	7.9	9.6	4.8
		N	Ŷ	6.5	8.0	5.0
		N	Ŷ	10.7	9.2	4.9
		N	N	8.1	7.3	4.2
		N	Y	9.4	8.0	4.1
		N	Ň	7.8	7.1	5.8
		N	N	8.3	8.1	5.3
		N	N	7.1	7.6	4.4
		N	N	7.1	6.9	4.8
		Y	N	6.8	6.4	4.6
		N	Y	8.2	6.9	4.0 6.6
		N	Ý	7.1	7.6	6.7
		N	Y	8.2	8.6	7.1
		N	Y	7.6	8.9	7.1
		N	Y	6.4	9.1	5.9
Averages		17% lack	35%	6.4 7.7	9.1 7.8	5.9
. Woruges		embryo	swollen		7.0	0.1
		83% have	65% not			
		embryo	swollen			

Table 23.87. Peña Blanca Zea mays Kernel Morphometrics

N=52 kernels; N no Y yes

Time	Project	n of Kernels	Embryo Missing	Swollen	Mean HT in mm	Mean W in mm	Mean TH in mm	Endosperm Type
Early Developmental	Peña Blanca							
	LA 265	2	50%	50%	6 [3.7-8.3]	5.9 [4.8-6.7]	4.8 [4.0-5.5]	unk.
	LA 6170	50	18%	34%	7.8 [6.4-10.7]	7.9 [6.4-9.1]	5.1 [3.4-7.2]	unk.
	River's Edge II ¹							
	LA 3128	85		15% ²	8.7 ³ [5.3-11.0]	8.9 [5.6-1.2]	4.1 [3.0-6.2]	flint
	River's Edge III ⁴							
	LA 59624	(no count; 42.7g)			[not measure	d or described]	flint
Late Developmental	Cochiti ⁵							
	LA 6461	61	-		7.9	7	3.6	

Table 23.88. Comparative Zea Kernel Morphometrics over Time, from Peña Blanca Sites, the Middle and Northern Rio Grande Valley, and the San Juan Basin

All specimens carbonized

¹ Brandt 1991b:Appendix 9 (raw data)

² noted as Round

³ Average computed from raw data is 8.7, however Brandt (p. 26) quotes average height (same dimension as length) as 7.9 mm. All other average dimension match raw data. ⁴Brandt 1992

⁵ Ford 1968:242

Table 23.8		0 <i>Phase</i> nsions ir	olus Morpho 1 mm)	metrics
				Estimated Thickness (Partial
FS #	Length	Width	Thickness	Beans)
Whole Beans				
1820	12.5	7.6	5.1	-
2269	11.2	6.8	4.7	-
Partial Beans				
1913	12.9	7.2	2.6	5.2
2272	11.9	6.1	2.9	5.8
2272	broken	5.3	2.0	4.0
Averages	12.1	6.6	5.0	-

Table 23.89 | A 6170 Phaseolus Mornhometrics

	/	All Spe	cimens		Whole Bea	ans	Single Cotyle	dons
Site and Time Period	Average Length	n	Average Width	n	Average Thickness	n	Average Thickness	n
Peña Blanca: LA 6170 ¹	12.1	4	6.6	5	4.9	2	2.5	3
Chaco: (Contemporary with Peña Blanca) BM/Pl								
29SJ628 ² Chaco: (Later periods) PII	12.9	2	6.8	2	5.5	2	-	-
29SJ626 ³	12	6	7	7	5	7	-	-
29SJ629 ⁴	9.5	12	5.7	14	4.3	5	2.7	9
Chaco: PIII_Bc288 ⁵								
C-11, C-14	13.8	24	7.3	24	5.4	24	-	-
C-15	9.3	5	6.6	5	4.8	5	-	-

Table 23.90. Comparative Morphometrics of Common Beans (Phaseolus vulgaris) in Peña Blanca and
Chaco (Average Dimensions in mm)

¹This study (carbonized specimens).

²Toll 1993a (carbonized specimens).

³Toll 1986 (carbonized specimens).

⁴Toll 1993b (carbonized specimens).

⁵Kaplan n.d. (unburned specimens).

Early-Middle Archaic: LA 109137 ¹	n of Samples*	Location	Annuals	Grasses	Trees and Shrubs Other Perennials	Other Perennials	Cultivars
2	1(11)	On Ceja Mesa between the <i>Sporobolus</i> 100% Rio Puerco and Rio Grande drainages near Bernalillo	Sporobolus 100%			Platyopuntia 100%	
Middle Archaic: LA 190105, 109108, 109109 ²	16 (18)	On Ceja Mesa between the Cheno-Am 13% Rio Puerco and Rio <i>Chenopodium</i> 1 Grande drainages near <i>Portulaca</i> 6% Bernollio	Cheno-Am 13% Chenopodium 19% Portulaca 6%	Gramineae 6% Sporobolus 6%		Cylindropuntia 88% Echinocereus 6%	
MAPCO, LA 25675, 25851 ¹ Middle-I ate Archaic:	2 (4)	Las Huertas and Jemez Valleys	Chenopodium 100% Descurainia 50%				
MAPCO, LA 110952 ¹	9 (13)	Jemez Valley on Zia Pueblo lands	Cheno-Am 11% Chenopodium 11%	Gramineae 78% Oryz <i>opsis</i> 22%			
Late Archaic: Unit 22, LA 109100, 109105, 109110 ²	12 (19)	On Ceja Mesa between the <i>Amaranthus</i> 17% Rio Puerco and Rio Cheno-Am 8% Grande drainages near <i>Chenopodium</i> 42' Bernallilo <i>Helianthus</i> 8% <i>Physalis</i> 17%	Amaranthus 17% Cheno-Am 8% Chenopodium 42% Chenopodium berlandieri 8% Helianthus 8% Physalis 17%	Gramineae 8%	Juniperus 50%	Cylindropuntia 42% Echinocereus 8%	
MAPCO, LA 25864, 27632, 110942, 110948, 110952 ^{1, 3}	32 (38)	On a stabilized dune (LA 25864) and terraces on Santa Ana and Zia Pueblo lands	Amaranthus 3% Cheno-Am 50% Chenopodium 31% Portulaca 6% Suaeda 3%	Gramineae 25% Oryz <i>opsis</i> 9% Sporobolus 47%	Juniperus 41%	Sphaeralcea 6% Yucca 6%	Zea mays 16%
Highway 44, LA 91934	4 (13)	On a ridgetop in the Jemez Valley near Zia Pueblo		Sporobolus 25%	Juniperus 25%		Zea mays 50%
Earliest Developmental PEÑA BLANCA LA 6171	6 (7)	E edge of Rio Grande floodplain on a terrace,Cochiti Pueblo	Amaranthus 33% Cheno-Am 83% <i>Chenopodium</i> 100% <i>Corispermum</i> 17% Cycloloma 33% Suaeda 17%	Gramineae 17%	Juniperus 17%		Cu <i>curbit</i> a rind 17% Zea mays 83%
MAPCO, LA 25856, 109129 ^{1,3}	24 (24)	On coppice dunes (LA 25856) and a terrace in the Jemez Valley on Zia Pueblo lands	Amaranthus 46% Cheno-Am 58% Chenopodium 92% Corispermum 67% Cycloioma 52% Descurainia/Sisymbrium 8% Helianthus 43% Physalis 4% Portulaca 48%	Gramineae 21% Oryzopsis 35% <i>Phragmites</i> stems 13% Sporobolus 67%	Jurniperus 33% Pinus edulis nutshells 17%	Boerhavia 17% Cylindropuntia 46% Cyperaceae 33% Echinocereus 21% Eriogonum 4% Platyopuntia 42% Sphaeralcea 8% Yucca pod 4% Yucca baccata 13%	poss. <i>Cucurbita</i> 4% Zea mays 100%

Project/Site	n of Samples*	Location	Annuals	Grasses	Trees and Shrubs	Other Perennials	Cultivars
Early Developmental Rivers Edge I ⁵	7 5 (114)	Terrace just W of Rio Grande, W of Corrales	Cheno-Am 61% Corispermum 1% Cruciferae 1% Cycloioma 4% Nicotiana 1% Portulaca 8%	Gramineae 7% Oryzopsis 8% Sporobolus 4%	Juniperus 3% Pinus edulis 4%	Cylindropuntia 5 7% Cyperaceae 9% Echinocereus 5 % Fabaceae 1% Yucca 3%	Zea mays 99%
Rivers Edge II ⁶	60 (68)	Terrace just W of Rio Grande, W of Corrales	Amaranthus 3% Cheno-Am 23% Chenopodium 32% Cleome 2% Corispermum 22% Cycloloma 7% Physalis 2% Portulaca 2%	Gramineae 1 5% Oryzopsis 2 5 % Phragmites stems 2% Sporobolus 12%	Atriplex 2% Celtis 2% Juniperus 10% Pinus edulis nutshell 10%	Cyperaceae 2% Cylindropuntia 15% Malvaceae 2% Platyopuntia 2%	Cucurbita 2% Phaseolus 3% Zea mays 9 5 %
Rivers Edge III LA 5 9624, 5 9632, 80899 ⁷	16 (18)	Terrace just W of Rio Grande, W of Corrales	Cheno-Am 31% Chenopodium 19% Corispermum 6%	Gramineae 38% Oryzopsis 13% Phragmites stem 38%	Juniperus 6% Pinus edulis 13% Pinus ponderosa needle 6% Psuedotsuga menziesii 6%	Rhus trilobata 13% Sphaeralcea 6% Yucca 6%	Zea mays 7 5 %
PEÑA BLANCA LA 265, 6169, 6170, 6171, 11586 ²	133 (142)	Terraces overlooking Rio Grande floodplain, Cochiti Pueblo	Amaranthus 19% Cheno-Am 15% Chenopodium 54% Compositae 1% Corispermum 1% Iva 1% Iva 1% Portulaca 14% Salvia 1% Salvia 1%	Gramineae 6% stems 2% Phragmites stems 3% Sporobolus 2%	Juniperus 3% Pinus edulis 11% Rhus 2%	Cylindropuntia 2% Platyopuntia 5% Scipus 1% Yucca 2% Yucca baccata 1%	Cucurbita 2% Zea mays 89%
North Hill ⁸	29 (48)	W of the Rio Grande along S edge of Arroyo de los Montoyas near Albuquerque	Cheno-Am 45% cf. <i>Croton</i> 3% Nicotiana 3%	Gramineae 3% Oryzopsis 3% Sporobolus 3%	Juniperus 3% Pinus edulis 11% Rhus 2%	Cylindropuntia 7% Fabaceae 3% Platyopuntia 3% Sphaeralcea 3% Yucca 7%	Zea mays 76%
Highway 44, LA 32698 ⁴	39 (41)	On top of a dune in Jemez Valley	Amaranthus 18% Amsinckia 3% Cheno-Am 54% Chenopodium 72% Cleome 3% Corispermum 5% Cycloloma 28% Descuralnia/Nicotiana 3% Sisymbrium 18% Portulaca 18%	Gramineae 28% Oryzopsis 28% Sporobolus 8%	Atriplex canescens 8% Juniperus 13% Pinus edulis nutshell 28%	Carex 5 % Cylindropuntia 13% Cyperaceae 10% Echinocereus 10% Platyopuntia 21% Sphaeralcea 3% Yucca baccata 3%	poss. <i>Cucurbit</i> a 13% Zea mays 92%

Project/Site	n of Samples*	Location	Annuals	Grasses	Trees and Shrubs	Other Perennials	Cultivars
MAPCO, LA 25862 ³	14 (17)	Sandy slope on the S edge of Jemez River Valley on Zia Pueblo lands	Amaranthus 21% Cheno-Am 64% Chenopodium 57% Conspermum 35%	Gramineae 14% Cryzopsis 21% Phragmites stems 14%	Atriplex canescens 14%	Cylindropuntia 14% Cyperaceae 7% Platyopuntia 21% Yucca baccata 21%	poss. Cucurbita 7% Phaseolus 7% Zea mays 100%
ZIA LA 99529°	55 (58)	On top of Kowasalya Tsia Mesa in the lower Jemez River Valley on Zia Pueblo lands	oyuouna 30% Cheno-Am 9% Cheno-Am 9% Chenopodium berlandieri 4% Corispermum 2% cf. Cyclofoma 2% DescurainiaCisymbrium 7% cf. Nicotiana 2% Portulaca 16%	Gramineae 2% Oryzopsis 2% Sporobolus 4%	Atriplex carescens 2% Juniperus 7% Pinus eduils nutshell 2%	ct Boerhavia 2% Echinocereus 4% Platyopuntia 5% ct. Rhus 2% Yucca baccata 2%	Zea mays 95%
Middle-Late Developmental Unit 20 West, LA 99676, 99689 ²	ental , 4 (5)	On Ceja Mesa between the Rio Puerco and Rio Grande drainages near Bernaillo	Chenopodium 75% Chenopodium berlandieri 25% Corispermum 25% Cycioloma 25% Portulaca 25%	Sporobolus 25%	Juniperus 25%	Cylindropuntia 25%	
LA 25852, 25860, 25869 ¹⁰	11 (14)	S of Jemez River in piñon/juniper woodland near Zia Puehlo	Chenopodium 45% Portulaca 9%			Cyperaceae 9% Malvaceae 9%	Zea mays 91%
Highway 44 LA 9193 ⁴	38 (55)	On a ridgetop in the Jemez River Valley near Zla Pueblo	Amaranthus 5% Cheno-Am 18% <i>Chenopodium</i> 29% Cycloloma 5% Polanisia 3% Portulaca 5% Suaeda 3%	Gramineae 11% Oryzopsis 5% Phragmites stem 18%	Pinus eduils nutshell 3%	Cylindropuntia 3% Echinocereus 3%	Zea mays 79%
Laue Developmental PEÑA BLANCA LA 249, 6169, 6170 Coalition	21 (21)	Terraces overlooking Rio Grande floodplain, Cochiti Pueblo	Amaranthus 5% Cheno-Am 14% Chenopodium 43% Cycloloma 5% Portulaca 14%	Gramineae stem 14% Phragmites stem 10%	Atriplex canescens 5% Pinus edulis nutshell 10%	Cylindropuntia 5% Echinocereus 5% Platyopuntia 5%	Zea mays 100%
6169 LA	12 (25)	Terraces overlooking Rio Grande floodplain, Cochtit Pueblo	Cheno-Am 25% Chanopodium 50% Cleorne 8% Corispermum 8% Euphorbia 8% Plantago 8%	Gramineae 8% stem 8% Oryzopsis 8% Sporobolus 8%	<i>Juniperus</i> leaflet 8%	Carex 8%	Zea mays 83%
GALISTEO LA 33331 ¹	52 (56)	Edge of eastern Galisteo Basin	Amaranthus 37% Amaranthus 37% Chenopodium 42% Cleome 2% Cycloloma 4% Helianthus 4%	Oryzopsis 4%	<i>Juniperus</i> leaflet 25% Pinus edulis needle 2%	Echinocereus 4% Opuntia 2% Vitis 2%	Zea mays 92%
Coalition-Early Classic MAPCO LA 110953 ³	9 (11)	On dunes of an upper terrace 1 km S of the Jemez River on Zia Pueblo	Cheno-Am 11% Chenopodiaceae 11% Portulaca 11%	Gramineae 11%	Atriplex canescens 11%		Zea mays 56%
Classic PEÑA BLANCA LA 249	4 (14)	Terrace overlooking Rio Grande floodplain, Cochiti Puebio					Zea mays 100%

Table 23.91. Continued.

	N of Samples [total weight or			
Project/Site	pieces]	Juniperus	Pinus	Other Species/Comments
Late Archaic:				
MAPCO, LA 27632, 110942 ¹	4 radiocarbon samples [26.5g]	77%	Pinus edulis <1%	Atriplex/Sarcobatus 9% Chrysothamnus <1% Salicaceae 1% Unknown 1% Unknown conifer 11% Unknown non-conifer <1%
Earliest Developmental:	0[70~]	670/		Atripley (Corechatus 20)
LA 6171	2 [.79g]	67%		Atriplex/Sarcobatus 3% Salicaceae 9% Unknown conifer 22%
Early Developmental: LA 265, 6169, 6170, 6171, 115862	86 [101.71g]	57%	Pinus <1% Pinus edulis <1%	Artemisia <1% Atriplex/Sarcobatus 15% Cylindropuntia <1% Quercus <1% Salicaceae 26% Unknown conifer 1%
Highway 44, LA 32698 ²	23 [459 pieces]	66%		Unknown non-conifer <1% Atriplex/Sarcobatus 12% Cylindropuntia 1% Rosaceae <1% Salicaceae 5% Unknown 1% Unknown conifer 14% Unknown non-conifer <1%
North Hill, LA 45996 ³	6 [6.3g]	68%	Pinus edulis 2%	Atriplex 3% cf. Cercocarpus 2% Cylindropuntia 14% Salicaceae 10%
Zia, LA 99529 ⁴	56 [38.6g]	90%	Pinus edulis 1%	Unknown conifer 2% Atriplex/Sarcobatus 1% Cercocarpus <1% Compositae 2% Cylindropuntia 1% Chrysothamnus 1% Salicaceae 1% Unknown conifer 1% Unknown non-conifer <1%
Late Developmental: LA 249, 6169, 6170	16 [12.78]	66%	Pinus edulis 4%	Atriplex/Sarcobatus 6% Ephedra 2% Lycium <1% Rosaceae 1% Salicaceae 14% Unknown conifer 5% Unknown non-conifer 1%
Coalition: LA 6169	9 [5.07g]	25%	Pinus edulis 4%	Atriplex/Sarcobatus 35% Chrysothamnus 2% Cylindropuntia 1% Lycium 2% Salicaceae 31%
LA 3333 ⁵	11 [8.8g]	55%	Pinus edulis 42%	Unknown non-conifer 1% Atriplex/Sarcobatu s <1% Unknown conifer 3% Unknown non-conifer <1%
Classic: LA 249	9 [3.27g]	45%	Pinus edulis 6% Pinus ponderosa 2%	Atriplex/Sarcobatus 2% Ephedra 9% Rosaceae 5% Salicaceae 7% Unknown conifer 20% Unknown non-conifer 5%

Table 23.92. Comparative Ubiquity of Carbonized Wood from Middle Rio Grande Sites (percent composition by weight or number of pieces)

¹ McBride 1999; ² McBride 2001; ³ Brandt 1990; ⁴ McBride 2000; ⁵Toll and McBride n.d.

Time Period	# of Occurrences	Weedy Annuals	Grasses	Perennials	Domesticates
Earliest Developmental	13	46%	8%	8%	38%
Early Developmental	239	37%	1%	12%	49%
Late Developmental	41	22%	-	17%	61%
Coalition	22	41%	9%	5%	45%
Classic	4	-	-	-	100%

Table 23.93. Occurrences of Plant Taxa by Botanical Category and Time Period, in Peña Blanca Sites

Chapter 24 Pollen Analysis of Six Sites (LA 249, LA 265, LA 6169, LA 6170, LA 6171, and LA 115862)

Richard G. Holloway, Ph.D. Quaternary Services, Flagstaff, AZ

LA 249 is a multicomponent site, from which pollen samples were collected from the Late Developmental period (AD 1100 to 1200). It is located on a high gravel terrace on the east side of the Rio Grande River at an elevation of 5,330 ft. This is the most northerly site in the project area. The modern vegetation is characterized as a plains-mesa grassland with scattered *Juniperus* plants as the main arboreal component. The understory consists primarily of perennial shrubs such as Gutierrezia sp. (snakeweed), and members of the Cactaceae family. Dominant shrubs include Artemisia sp. (bigelow sagebrush), Eurotia sp. (winterfat), and Chrysothamnus sp. (rabbit brush). The grasses include Bouteloua gracilis (blue grama), Bouteloua curtipendula (sideoats grama), Hilaria sp. (galleta grass), Muhlenbergia sp. (ring muhly), Oryzopsis hymenoides (Indian rice grass), and *Sporobolus* sp. (sacaton/dropseed).

LA 265 is large, multicomponent site near the southern portion of the project area at an elevation of 5,300 ft. The site is located on a terrace immediately south of the confluence of the Rio Grande and Santa Fe River. Ceramic dating indicates a sporadic occupation over a 1,000year period from the Rio Grande Early Developmental (AD 700 to 900) through to the late Historic period (AD 1700 to 1800). The modern vegetation is described as a Plains-Mesa grassland with scattered Juniperus along the terrace margins and containing similar species to that of LA 249.

LA 6169 is a multicomponent site containing occupations from both the Early (AD 700 to 900) and Late (AD 1100 to 1200) Rio Grande Developmental period through the Coalition (AD 1200 to 1325) and perhaps continuing into the Historic period. The site is located just north of the confluence between the Rio Grande and Santa Fe Rivers at an elevation of 5,275 ft. The modern vegetation consists of a Plains-Mesa grassland with scattered *Juniperus* on the rocky slopes. *Salsola kali* (Russian thistle) is present in addition to those taxa previously described.

LA 6170 dates to both the Early (AD 700 to 900) and Late Developmental period (AD 1100 to1200). The site is located on the edge of the first Pleistocene terrace above the Rio Grande floodplain at an elevation of 5,226 ft. The modern vegetation is essentially a Great Basin Desert Scrub community.

LA 6171 is dated to the Early Developmental period. It is located on the first Pleistocene terraced south and east of the confluence of the Rio Grande and Santa Fe River at an elevation of 5,280 ft. The modern vegetation is essentially a Plains-Mesa grassland whose species composition has been covered elsewhere.

LA 115862 is described as a small sherd and lithic scatter located just south of LA 265 at an elevation of 5,280 ft. It is located on a narrow gravel terrace approximately 100 m east of the Rio Grande floodplain. The site dated to the Early Developmental period, AD 700 to 900. The modern vegetation is essentially a Plains-Mesa grassland whose species composition has been covered elsewhere.

METHODS AND MATERIALS

Palynological Extraction Methods

Chemical extraction of pollen samples was conducted at the Palynology Laboratory at Texas A&M University, using a procedure designed for semi-arid Southwestern sediments. The method, detailed below, specifically avoids use of such reagents as nitric acid and bleach, which have been demonstrated experimentally to be destructive to pollen grains (Holloway 1981).

From each pollen sample submitted, 25 g of soil were subsampled. Prior to chemical extraction, three tablets of concentrated Lycopodium spores (batch #307862, Department of Quaternary Geology, Lund, Sweden; 13,500 ± 500 marker grains per tablet) were added to each subsample. The addition of marker grains permits calculation of pollen concentration values and provides an indicator for accidental destruction of pollen during the laboratory procedure. Several samples submitted for analysis consisted of pollen washes of artifacts. The actual washing and collection of the residues was conducted by personnel of the Museum of New Mexico. The loose dirt adhering to the interior surface of the artifact was lightly brushed off. The interior surface was initially washed with distilled water. This was followed by a wash with a 10 percent solution of hydrochloric acid (HCI), followed by a second wash with distilled water. The liquid portions of all three washes were combined in a single container and sent to Texas A&M University for extraction. The pollen wash samples were centifuged to consolidate the particulate fraction and the supernatant liquid was discarded. These samples were then processed according to the protocol described below.

The samples were treated with 35 percent HCl overnight to remove carbonates and to release the Lycopodium spores from their matrix. After neutralizing the acid with distilled water, the samples were allowed to settle for a period of at least 3 hours before the supernatant liquid was removed. Additional distilled water was added to the supernatant, and the mixture was swirled and then allowed to settle for five seconds. The suspended fine fraction was decanted through 150-micron mesh screen into a second beaker. This procedure, repeated at least three times, removed lighter materials, including pollen grains, from the heavier fractions. The fine material was concentrated by centrifugation at 2,000 revolutions per minute (RPM).

The fine fraction was treated with concentrated hydrofluoric acid (HF) overnight to remove silicates. After completely neutralizing the acid with distilled water, the samples were treated with a solution of darvan, and sonicated in a Delta D-9 Sonicator for 30 seconds. The Darvan solution was removed by repeated washing with distilled water and centrifuged (2,000 RPM) until the supernatant liquid was clear and neutral. This procedure removed fine charcoal and other associated organic matter and effectively deflocculated the sample.

The samples were dehydrated in glacial acetic acid in preparation for acetolyis. Acetolysis solution (acetic anhydride: concentrated sulfuric acid in 9:1 ratio) following Erdtman (1960) was added to each sample. Centrifuge tubes containing the solution were heated in a boiling water bath for approximately 8 minutes and then cooled for an additional 8 minutes before centrifugation and removal of the acetolysis solution with glacial acetic acid followed by distilled water. Centrifugation at 2,000 rpm for 90 seconds dramatically reduced the size of the sample, yet from periodic examination of the residue, did not remove fossil palynomorphs.

Heavy density separation ensued using zinc bromide (ZnBr₂), with a specific gravity of 2.00 to remove much of the remaining detritus from the pollen. The light fraction was diluted with distilled water (10:1) and concentrated by centrifugation. The samples were washed repeatedly in distilled water until neutral. The residues were rinsed in a 1 percent solution of potassium hydroxide (KOH) for less than one minute which was effective in removing the majority of the unwanted alkaline soluable humates.

The material was rinsed in ethanol (ETOH) stained with safranin-O, rinsed twice with ETOH, and transferred to 1-dram vials with tertiary butyl alcohol (TBA). The samples were mixed with a small quantity of glycerine and allowed to stand overnight for evaporation of the TBA. The storage vials were capped and were returned to the Museum of New Mexico at the completion of the project.

A drop of the polliniferous residue was

mounted on a microscope slide for examination under an 18-by-18 mm cover slip sealed with fingernail polish. The slide was examined using 200x or 100x magnification under an aus-Jena Laboval 4 compound microscope. Occasionally, pollen grains were examined using either 400x or 1,000x oil immersion to obtain a positive identification to either the family or genus level.

Abbreviated microscopy was performed on each sample in which either 20 percent of the slide (approximately four transects at 200x magnification) or a minimum of 50 marker grains were counted. If warranted, full counts were conducted by counting to a minimum of 200 fossil grains. Regardless of which method was used, the uncounted portion of each slide was completely scanned at a magnification of 100x for larger grains of cultivated plants such as *Zea mays* and *Cucurbita*, two types of cactus (Platyopuntia and Cylindropuntia), and other large pollen types such as members of the Malvaceae or Nyctaginaceae families.

For those samples warranting full microscopy, a minimum of 200 pollen grains per sample were counted as suggested by Barkley (1934), which allows the analyst to inventory the most common taxa present in the sample. All transects were counted completely (Brookes and Thomas 1967), resulting in various numbers of grains counted beyond 200. Pollen taxa encountered on the uncounted portion of the slide during the low magnification scan are tabulated separately.

Total pollen concentration values were computed for all taxa. In addition, the percentage of indeterminate pollen was also computed. Statistically, pollen concentration values provide a more reliable estimate of species composition within the assemblage. Traditionally, results have been presented by relative frequencies (percentages) where the abundance of each taxon is expressed in relation to the total pollen sum (200+ grains) per sample. With this method, rare pollen types tend to constitute less than 1 percent of the total assemblage. Pollen concentration values, provide a more precise measurement of the abundance of even these rare types. The pollen data are reported here as pollen concentration values using the following formula:

$$PC = \frac{K^* \Sigma_p}{\Sigma_L * S}$$

where:	PC	=	pollen concentration
	K	=	Lycopodium spores added
	Σ_{p}	=	fossil pollen counted
	Σ_L	=	Lycopodium spores counted
	S	=	sediment weight

The following example should clarify this approach. Taxon X may be represented by a total of 10 grains (1 percent) in a sample consisting of 1,000 grains, and by 100 grains (1 percent) in a second sample consisting of 10,000 grains. Taxon X is 1 percent of each sample, but the difference in actual occurrence of the taxon is obscured when pollen frequencies are used. The use of "pollen concentration values" are preferred because it accentuates the variability between samples in the occurrence of the taxon. The variability, therefore, is more readily interpretable when comparing cultural activity to non-cultural distribution of the pollen rain.

The pollen concentration values for pollen wash samples were calculated using a modification of the above formula. This modification involved the substitution of the area washed (in square centimeters) for the sediment weight (S) variable in the denominator from the above equation because the sample was in liquid form. The resulting concentration value is thus expressed as estimated grains per square centimeter. The resulting pollen concentration values from pollen wash samples are treated independently of those from soil samples in the results and discussion sections, although the data are presented with the other samples in the tables. The use of pollen concentration values from these particular samples are preferred, as explained above, in order to accentuate the variability between pollen wash samples. The use of the area washed also provides a mechanism for the comparison of calculated pollen concentration values between artifacts.

Variability in pollen concentration values can also be attributed to deterioration of the

259

grains through natural processes. In his study of sediment samples collected from a rockshelter, Hall (1981) developed the "1,000 grains/g" rule to assess the degree of pollen destruction. This approach has been used by many palynologists working in other contexts as a guide to determine the degree of preservation of a pollen assemblage and, ultimately, to aid in the selection of samples to be examined in greater detail. According to Hall (1981), a pollen concentration value below 1,000 grains/g indicates that forces of degradation may have severely altered the original assemblage. However, a pollen concentration value of fewer than 1,000 grains/g can indicate the restriction of the natural pollen rain. Samples from pit structures or floors within enclosed rooms, for example, often yield pollen concentration values below 1,000 grains/g.

Pollen degradation also modifies the pollen assemblage because pollen grains of different taxa degrade at variable rates (Holloway 1981, 1989; Bryant and Holloway 1983). Some taxa are more resistant to deterioration than others and remain in assemblages after other types have deteriorated completely. Many commonly occurring taxa degrade beyond recognition in only a short time. For example, most (about 70 percent) angiosperm pollen has either tricolpate (three furrows) or tricolporate (three furrows each with pores) morphology. Because surfaces erode rather easily, once deteriorated, these grains tend to resemble each other and are not readily distinguishable. Other pollen types (e.g., Cheno-am) are so distinctive that they remain identifiable even when almost completely degraded.

Pollen grains were identified to the lowest taxonomic level whenever possible. The majority of these identifications conformed to existing levels of taxonomy with a few exceptions. For example, Cheno-am is an artificial, pollen morphological category which includes pollen of the family Chenopodiaceae (goosefoot) and the genus *Amaranthus* (pigweed), which are indistinguishable from each other (Martin 1963). All members are wind pollinated (anemophilous) and produce very large quantities of pollen. In many sediment samples from the American Southwest, this taxon often dominates the assemblage.

Pollen of the Asteraceae (Sunflower) family was divided into four groups. The high spine and low spine groups were identified on the basis of spine length. High spine Asteraceae contains those grains with spine length greater than or equal to 2.5 microns while the low spine group have spines less than 2.5 microns in length (Bryant 1969; Martin 1963). Artemisia pollen is identifiable to the genus level because of its unique morphology of a double tectum in the mesocopial (between furrows) region of the pollen grain. Pollen grains of the Liguliflorae are also distinguished by their fenestrate morphology. Grains of this type are restricted to the tribe Cichoreae, which includes such genera as Taraxacum (dandelion) and Lactuca (lettuce).

Pollen of the Poaceae (Grass) family are generally indistinguishable below the family level, with the single exception of *Zea mays*, identifiable by its large size (about 80 microns), relatively large pore annulus, and the internal morphology of the exine. All members of the family contain a single pore, are spherical, and have simple wall architecture. Identification of non-corn pollen is dependent on the presence of the single pore. Only complete or fragmented grains containing this pore were tabulated as members of the Poaceae family.

Clumps of four or more pollen grains (anther fragments) were tabulated as single grains to avoid skewing the counts. Clumps of pollen grains (anther fragments) from archaeological contexts are interpreted as evidence for the presence of flowers at the sampling locale (Bohrer 1981). This enables the analyst to infer possible human behavior.

Finally, pollen grains in the final stages of disintegration but retaining identifiable features, such as furrows, pores, complex wall architecture, or a combination of these attributes, were assigned to the indeterminate category. The potential exists to miss counting pollen grains without identifiable characteristics. For example, a grain that is so severely deteriorated that no distinguishing features exist, closely resembles many spores. Pollen grains and spores are similar both in size and are composed of the same material (Sporopollenin). So that spores are not counted as deteriorated pollen, only those grains containing identifiable pollen characteristics are assigned to the indeterminate category. Thus, the indeterminate category contains a minimum estimate of degradation for any assemblage. If the percentage of indeterminate pollen is between 10 and 20 percent, relatively poor preservation of the assemblage is indicated, whereas indeterminate pollen in excess of 20 percent indicates severe deterioration to the assemblage.

In those samples where the total pollen concentration values are approximately at or below 1,000 grains/g, and the percentage of indeterminate pollen is 20 percent or greater, counting was terminated at the completion of the abbreviated microscopy phase. In some cases, the assemblage was so deteriorated that only a small number of taxa remained. Statistically, the concentration values may have exceeded 1,000 grains/g. If the species diversity was low (generally these samples contained only pine, Cheno-am, members of the Asteraceae (sunflower) family and indeterminate category, counting was also terminated after abbreviated microscopy even if the pollen concentration values slightly exceeded 1,000 grains/g.

RESULTS

For convenient reference, Table 24.1 contains a list of the scientific and common names of plant taxa used in this report. Tables 24.2 to 24.6 present the results of the pollen analysis by site, each table containing both the raw counts and the calculated pollen concentration values. The individual results are discussed below by site, structure, and feature.

LA 249

LA 249 is a multicomponent site from which pollen samples were recovered from a Late Developmental component dating between AD 1100 and 1200. A total of seven pollen samples were submitted for analysis from this component.

FS 189 was taken from the 0 to100 cm level, but no further provenience was provided. The pollen sample provided a full count of 518 grains and had a total pollen concentration value of 7,361 grains/g. The total *Pinus* pollen consisted of 3,794 grains/g, with Pinus ponderosa (739 grains/g) and Pinus edulis (3,055 grains/g). Juniperus (398 grains/g) was high with small amounts of *Picea* (28 grains/g), Salix, Ulmus, and Prosopis (14 grains/g each), and Quercus (71 grains/g). Poaceae (199 grains/g) was high with moderate amounts of Cheno-am (1,364 grains/g) and high amounts of both high (583 grains/g) and low spine (554 grains/g) Asteraceae. Artemisia (85 grains/g) was high. Along with a moderate amount of *Ephedra* (28 grains/g) pollen. A number of additional taxa were present as single grains and included Fabaceae, Solanaceae, Shepherdia, *Eriogonum,* and Brassicaceae (14 grains/g each).

Feature 3. FS 267 was taken from this extramural cobble concentration and associated ash stain feature. This feature was from an unknown occupation date. The total pollen concentration values were 1,238 grains/g. *Pinus* (368 grains/g) values were very low with a small amount of (23 grains/g) pollen. Poaceae (23 grains/g) and Cheno-am (675 grains/g) pollen were both very low with moderate amounts of high and low spine Asteraceae (45 grains/g each). Cactaceae (3.75 grains/g) pollen was observed in the low magnification scan of the slide.

Feature 6. The remainder of the samples were all taken from this oval pit structure. FS 308 was taken from Stratum 50 with 2,060 grains/g total pollen concentration values. This was based on a full count of 487 grains. *Pinus* (440 grains/g) was very low with small amounts of *Juniperus* (8 grains/g) and Quercus (13 grains/g) pollen. Poaceae (38 grains/g) was low with moderate amounts of Cheno-am (1,129 grains/g), and fairly high amounts of high (110 grains/g) and low spine (203 grains/g) Asteraceae. *Artemisia* (21 grains/g) was present and a small number of Cheno-am pollen clumps (4 grains/g). Cactaceae (4 grains/g) and *Cylindropuntia* (34 grains/g) were both present.

FS 329, 338, and 360 were all taken from Stratum 60. FS 329 had 1,510 grains/g total pollen concentration values. Pinus (522 grains/g) pollen was very low, with low amounts of Cheno-am (741 grains/g), and high spine Asteraceae (27 grains/g). Low spine Asteraceae (82 grains/g) and Artemisia (55 grains/g) were moderate. Cactaceae (27 grains/g) was moderate and a small amount of Cylindropuntia (6.86 grains/g) was present in the low magnification scan of the slide. FS 338 had 1,100 grains/g total pollen concentration values. Pinus (253 grains/g) was very low, with a trace of *Quercus* (15 grains/g) pollen. Cheno-am (565 grains/g) pollen was very low, with low amounts of high spine Asteraceae (30 grains/g) and high quantities of low spine Asteraceae (119 grains/g). Artemisia (30 grains/g) was present in moderate amounts. FS 360 had 1,652 grains/g total concentration values. *Pinus* (508 grains/g) pollen was very low, with low amounts of Poaceae (32 grains/g) and Cheno-am (731 grains/g). Both high (159 grains/g) and low spine (127 grains/g)grains/g) Asteraceae were high, with a high amount (32 grains/g) of Cactaceae pollen. A small amount (4.89 grains/g) of Zea mays pollen was observed in the low magnification scan of the slide.

FS 378 was taken from Stratum 3 and had only 52 grains/g total pollen concentration values. This was based on a pollen sum of only 4 grains. *Pinus, Quercus,* Cheno-am, and low spine Asteraceae were the only taxa present.

LA 265

This site was dated to the Early Developmental period (AD 750 to 900). The results of the pollen analysis are presented in **Table 24.3**. The results of the individual samples are presented below by period, structure, and feature.

Structure 1

Ten samples were taken from the pit structure in unit 455N/495E. The samples ranged from 100.39 to 100.29 to 98.99 to 98.89 cm and are arranged stratigraphically from Stratum 1 through Stratum 3.1.

Stratum 1. FS 852 was the uppermost sample with 2,109 grains/g total pollen concentration values, which was based on a full count of 513 grains. Pinus edulis and P. ponderosa together were present in moderate amounts with traces of *Juniperus* (4 grains/g), *Salix* (8 grains/g), and Quercus (12 grains/g) pollen. Cheno-am (572 grains/g) and Poaceae (16 grains/g) were both low. High (70 grains/g) and low spine (95 grains/g) Asteraceae were high, with low amounts of Artemisia and a trace of Cylindropuntia (4 grains/g). Zea mays (8 grains/g) pollen was present in small amounts. *Picea* and Onagraceae (3.05 grains/g)pollen were present in the low magnification scan of the slide. FS 854 was from Stratum 1 and contained 593 grains/g total pollen concentration values. Pinus edulis was present in trace amounts only with a fairly high amount of Salix (23 grains/g) pollen. Cheno-am (297 grains/g) was low, with moderate to high amounts of high and low spine Asteraceae. Sphaeralcea (23 grains/g) was fairly high. Cactaceae (31.59 grains/g), Cylindropuntia (10.53 grains/g), and Zea mays (63.19 grains/g)were all present from the low magnification scan of the slide. FS 856 had 357 grains/g total pollen concentration values. Pinus edulis, Cheno-am, Cactaceae, indeterminate, and Zea *mays* (48 grains/g) were present.

Stratum 2.1. FS 858 was taken from this stratum unit and contained only 49 grains/g total pollen concentration values. Cheno-am was the only taxon present.

Stratum 2.2. FS 859 had 1110 grains/g total pollen concentration values. *Pinus edulis* (60 grains/g) was very low, with low Poaceae (30 grains/g) and Cheno-am (360 grains/g). High and low spine Asteraceae and *Artemisia* (30 grains/g each) were low to moderate with high amounts of Cactaceae (210 grains/g) and

moderate *Cylindropuntia* (30 grains/g). *Zea mays* (300 grains/g) was very high.

Stratum 2.3. FS 860 had 432 grains/g total pollen concentration values. *Pinus edulis* was present in trace amounts only with low Chenoam, and low high and low spine Asteraceae (31 grains/g each), and *Artemisia* (15 grains/g). Cactaceae (31 grains/g) and *Cylindropuntia* (46 grains/g) were moderate with a small amount of *Zea mays* (15 grains/g). The adjusted value for corn increased to 37.98 grains/g in the low magnification scan of the slide.

Stratum 2.4. FS 861 had 1,112 grains/g total pollen concentration values. *Pinus edulis* was very low, with low amounts of Cheno-am (467 grains/g). Low spine Asteraceae, Cactaceae, and *Cylindropuntia* (62 grains/g each) were high. *Zea mays* (218 grains/g) was present in very high amounts.

Stratum 2.5. FS 862 had 778 grains/g total pollen concentration values. *Pinus edulis* was present in trace amounts only with low amounts of Cheno-am (432 grains/g), low spine Asteraceae, Cactaceae (65 grains/g each), and *Cylindropuntia* (22 grains/g). *Zea mays* (108 grains/g) was very high.

Stratum 3. FS 864 had 408 grains/g total pollen concentration values. *Pinus edulis* was present in trace amounts with a trace of *Salix* (10 grains/g) pollen. Poaceae and Cheno-am were both low, with moderate low spine Asteraceae (52 grains/g) and low *Artemisia* (10 grains/g).

Stratum 3.1. FS 866 had 1,045 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were present in very low amounts. *Salix* (26 grains/g) was moderate. Poaceae (78 grains/g) was moderate to high, with low Cheno-am (627 grains/g), and high low spine Asteraceae (78 grains/g).

Feature 107. FS 1536 was taken from the linear pit that may have been a foot drum. The assemblage contained only 370 grains/g total pollen concentration values. *Pinus ponderosa,*

Cheno-am, high and low spine Asteraceae, *Artemisia, Cylindropuntia,* and indeterminate were the only taxa present.

Feature 191. FS 1600 was taken from the unidentified feature and contained 1,789 grains/g total pollen concentration values. *Pinus edulis* was very low. Cheno-am (1,185 grains/g) was moderate with low Poaceae (24 grains/g). Cheno-am pollen clumps (24.g) were high, along with high spine Asteraceae (121 grains/g), but low amounts of low spine (24 grains/g) Asteraceae.

Feature 125. FS 1678 was taken from the bellshaped vent shaft that had 3,063 grains/g total pollen concentration values. *Pinus edulis* was very low, with low Poaceae and high (2,474 grains/g) Cheno-am pollen. High (88 grains/g) and low spine (118 grains/g) Asteraceae were high, with high *Cylindropuntia* (88 grains/g) and *Zea mays* (59 grains/g).

Structure 4

FS 1028 was taken from the floor of the structure which had 1,170 grains/g total pollen concentration values. Cheno-am (690 grains/g) was low, with a high number of pollen clumps (30/g). High (120 grains/g) and low spine (180 grains/g) Asteraceae were high with high amounts of *Cylindropuntia* (60 grains/g) pollen. *Zea mays* (30 grains/g) was also present in moderate amounts.

Feature 76. FS 1339 was taken from the floor of the sealed pit within Structure 4 which had 1,375 grains/g total pollen concentration. *Pinus edulis* (221 grains/g) was very low. Cheno-am and Poaceae were low to moderate, with high amounts of low spine Asteraceae and *Artemisia* (49 grains/g).

Feature 22. FS 1480 was a pollen wash from a ceramic pitcher associated with the human burial of a 50+ year-old female in Structure 4. The assemblage had 60.31 grains/sq cm total pollen concentration values. *Pinus* (7.96 grains/sq cm) was present and included both

Pinus edulis and P. ponderosa pollen. Traces of both Picea and Quercus (0.11 grains/sq cm) were present. Poaceae (0.98 grains/sq cm) was low with high amounts of Cheno-am (25.41 grains/sq cm). A small amount of Cheno-am pollen clumps (0.11 grains/sq cm) were present. High (1.96 grains/sq cm) and low spine (2.4 grains/sq cm) Asteraceae and Artemisia (1.75 grains/sq cm) were present. Cactaceae (0.87 grains/sq cm), Cylindropuntia (5.56 grains/sq cm), and *Platyopuntia* (0.22 grains/sq cm) were present in small amounts. Both Zea mays (2.62 grains/sq cm) and Cucurbita (0.22 grains/sq cm) were also recovered. Eriogonum (0.11 grains/sq cm) was present in the low magnification scan of the slide.

Structure 13

Feature 141. FS 1344 was taken from the bellshaped feature, which had only 393 grains/g total pollen concentration values. A trace of *Juniperus* (26 grains/g) was present with low Cheno-am (230 grains/g), low to moderate high and low spine Asteraceae, moderate to high *Cylindropuntia* and a small amount of *Zea mays* (16 grains/g).

Feature 207. FS 1612 was taken from the slabcovered niche in Structure 13. *Pinus edulis* was very low. Cheno-am was low with a small to moderate number of pollen clumps (27/g). High spine (127 grains/g) was high with low amounts of low spine (27 grains/g) Asteraceae. *Cylindropuntia* (54 grains/g) and *Platyopuntia* (27 grains/g) were both present. *Zea mays* (6.23 grains/g) is present in small amounts.

Feature 27. FS 1256 was taken from the keyhole shaped, shallow structure, which had 1,340 grains/g total pollen concentration values. *Pinus edulis* was present in trace amounts only. Cheno-am (623 grains/g) and Poaceae (31 grains/g) were low with high amounts of high spine (218 grains/g) and moderate low spine Asteraceae (62 grains/g). Cactaceae (31 grains/g) and *Cylindropuntia* (156 grains/g) were both present.

Feature 41. FS 1223 was taken from this bellshaped pit on the floor of Feature 27. The assemblage contained 2,227 grains/g total pollen concentration values and was based on a full count of 510 grains. Pinus edulis and P. ponderosa were present in very low amounts with only a trace of Juniperus. Poaceae (61 grains/g) was moderate to high with Chenoam (1,022 grains/g) with low to moderate amounts. High (105 grains/g) and low spine (140 grains/g) Asteraceae were both high, along with Artemisia (48 grains/g). Cactaceae (4 grains/g) and *Cylindropuntia* (44 grains/g) were present along with Eriogonum (9 grains/g), Sphaeralcea (17 grains/g) and Zea mays (44 grains/g).

Feature 33. FS 1228 was taken from the keyhole-shaped, shallow structure that had 1,684 grains/g total pollen concentration values. *Pinus edulis* was present in very low amounts. Poaceae (32 grains/g) and Cheno-am (953 grains/g) were low with high (95 grains/g) and low spine (32 grains/g) Asteraceae ranging from high to low concentration values. Cactaceae (32 grains/g) and *Cylindropuntia* (64 grains/g) were both high.

Extramural Features

Feature 14. A total of nine samples were taken from the large, irregular-shaped, extramural pit. The nine samples were essentially a column through this feature. The samples were from Stratum 1 through Stratum 8.

Stratum 1. FS 892 had 1429 grains/g total pollen concentration values. *Pinus edulis, P. ponderosa,* and *Juniperus* were present in trace amounts. Poaceae (32 grains/g) was low with moderate Cheno-am (1,144 grains/g). Low spine Asteraceae (95 grains/g) and Cactaceae (64 grains/g) were both high.

Stratum 2. FS 893 contained 1,487 grains/g total pollen concentration values. *Pinus edulis* pollen was very low, with moderate Cheno-am (1,115 grains/g). High spine Asteraceae and Cactaceae (80 grains/g each) were both high, with a moderate amount of *Zea mays* (27 grains/g) pollen.

Stratum A. FS 894 had 5,139 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were very low, with a moderate amount of *Quercus* (56 grains/g). Low spine Asteraceae and *Zea mays* (279 grains/g each) were both very high.

Stratum 3. FS 895 had 1,559 grains/g total pollen concentration values. *Pinus edulis* was very low, with moderate Cheno-am (1,100 grains/g). High (153 grains/g) and low spine (92 grains/g) Asteraceae were both high.

Stratum 4. FS 896 had 9,676 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were very low. Poaceae (197 grains/g) and Cheno-am (6,743 grains/g) were both high, along with high (88 grains/g) and low spine (854 grains/g), and *Artemisia* (263 grains/g). Cactaceae and Cylindropuntia (44 grains/g each) were high with high *Ephedra* (153 grains/g) and very high *Zea mays* (854 grains/g).

Stratum 5. FS 897 had only 470 grains/g total pollen concentration values. *Pinus edulis* pollen was present in trace amounts only with low Cheno-am, moderate to low high and low spine Asteraceae (49 grains/g). Cactaceae (32 grains/g) and Cylindropuntia (16 grains/g) were moderate to low with a small amount of *Zea mays* (16 grains/g).

Stratum 6. FS 898 had 1596 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were both present in trace amounts. Cheno-am (967 grains/g) and Poaceae were very low, but with a high number of Cheno-am pollen clumps (24 g). High (48 grains/g) and low spine (121 grains/g) Asteraceae were moderate to high with high amounts of Cactaceae (121 grains/g)as present in trace amounts only. Poaceae (67 grains/g) and Cheno-am (599 grains/g) pollen were moderate to low, with high amounts of both high (133 grains/g) and low spine (488 grains/g) Asteraceae. Cactaceae (22 grains/g) was moderate.

Stratum 7. FS 899 had 930 grains/g total pollen concentration values. *Pinus edulis* was present in trace amounts only. Poaceae (80 grains/g) was high, as was Cheno-am (611 grains/g). Low spine Asteraceae and

Cylindropuntia (53 grains/g) were moderate to high, with high amounts of *Zea mays* (53 grains/g).

Stratum 8. FS 900 had 1,376 grains/g total pollen concentration values. Pinus edulis was present in trace amounts only. Poaceae (67 grains/g) and Cheno-am (599 grains/g) pollen were moderate to low, with high amounts of both high (133 grains/g) and low spine (488 grains/g) Asteraceae. Cactaceae (22 grains/g) was moderate.

Feature 15. FS 952 was taken from the large irregular-shaped feature, which had 3,063 grains/g total pollen concentration values. *Pinus edulis* (29 grains/g) was present in trace amounts only, with a trace of *Juniperus* pollen (29 grains/g). Cheno-am (2,651 grains/g) was high, with high amounts of both high (118 grains/g) and low spine (88 grains/g) Asteraceae. Cactaceae (118 grains/g) was very high.

Feature 17. FS 995 was taken from the large, ovalshaped pit, which had 1,134 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were present in trace amounts. Poaceae (54 grains/g) was moderate with low Cheno-am (738 grains/g). High and low spine Asteraceae were moderate to high, with high amounts of *Artemisia* (90 grains/g). Nyctaginaceae (36 grains/g) was present along with a small amount of *Zea mays* (18 grains/g) pollen.

Feature 127. FS 1713 was taken from this bellshaped storage feature and contained 4,730 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were very low. Cheno-am (2,268 grains/g) pollen was high. High (32 grains/g) and low spine (95 grains/g) Asteraceae were present along with very high values for Cactaceae (130 grains/g) and Cylindropuntia (486 grains/g). *Zea mays* (259 grains/g) was also present in very high amounts.

Feature 229. FS 1731 was taken from this bellshaped bit and contained 3,762 grains/g total pollen concentration values. *Pinus edulis* and P. ponderosa were present in low amounts. Poaceae (82 grains/g) and Cheno-am (2,197 grains/g) were both high, and there was a large number of Cheno-am pollen clumps (27/g) in the assemblage. High (82 grains/g) and low spine (549 grains/g) Asteraceae were high with a small amount of Nyctaginaceae (27 grains/g) pollen.

Animal Burials

Feature 19. FS 1016 was taken from the turkey burial in Feature 15. The assemblage had 5,139 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were both present in low amounts, along with a trace (28 grains/g) of *Juniperus* pollen. Poaceae (112 grains/g) and Cheno-am (3,519 grains/g) were both high. High (196 grains/g) and low spine (614 grains/g) Asteraceae were high, with moderate *Artemisia* (28 grains/g). Cylindropuntia (84 grains/g) was high, along with high *Zea mays* (56 grains/g).

Feature 26. FS 1100 was taken from the bellshaped storage pit with a dog burial. The assemblage had 1,838 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were present in trace amounts. Poaceae (48 grains/g) and Cheno-am (1,161 grains/g) were present in moderate amounts, high spine (24 grains/g) was low, and low spine (97 grains/g) Asteraceae was high. *Artemisia* and Cactaceae (24 grains/g) were moderate, with high amounts of Cylindropuntia (145 grains/g).

Feature 60. FS 1405 was taken from this bellshaped storage pit with a dog burial. The assemblage had 3,144 grains/g total pollen concentration values and was based on a full count of 489 grains. Pinus edulis and P. ponderosa were present in small amounts along with traces of Juniperus and Prosopis (19 grains/g each). Poaceae (135 grains/g) was high with Cheno-am (926 grains/g) low. High (51 grains/g) and low spine (167 grains/g) Asteraceae were moderate to high, with moderate amounts of Artemisia (26 grains/g). Cactaceae (45 grains/g)and Cylindropuntia (489 grains/g) were both high along with *Sphaeralcea* (26 grains/g) and *Zea mays* (630 grains/g). A trace of Solanaceae (6.43 grains/g) pollen was present in the low magnification scan of the slide.

Human Burials

Feature 23. FS 1077 was taken from this bellshaped pit with an infant burial, which had 4,368 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa* were present in small amounts, along with a trace of *Picea* (29 grains/g). Poaceae (174 grains/g) and Cheno-am (2719 grains/g) were both high, along with high (203 grains/g) and low spine (289 grains/g). Cactaceae, and *Artemisia* (87 grains/g). Cactaceae (29 grains/g) and Cylindropuntia (58 grains/g) were present in high amounts.

Feature 24. FS 1084 was taken from the bellshaped storage pit with an adult burial of a $45 \pm$ 5-year-old female, which had 1,063 grains/g total pollen concentration values. *Pinus edulis* was present in trace amounts only. Poaceae (25 grains/g) and Cheno-am (734 grains/g) were both low, with low amounts of high and low spine Asteraceae and *Artemisia* (25 grains/g each). Cylindropuntia and *Zea mays* (51 grains/g each) were both present in high amounts.

Two pollen wash samples were also taken from this adult female burial. FS 1486 came from a Tallahogan Red seed jar, which had 13.31 grains/sq cm total pollen concentration values. Solanaceae (0.83 grains/sq cm) was present along with Cactaceae and Cylindropuntia (0.42 grains/sq cm each), *Artemisia* (1.66 grains/sq cm), high and low spine Asteraceae (0.83 grains/sq cm each), and Cheno-am (6.65 grains/sq cm).

FS 1488 was taken from a ceramic pot, located in a bell-shaped storage pit with an adult female burial. The assemblage had 33.05 grains/sq cm total pollen concentration values. Cheno-am (24.79 grains/sq cm) and high spine Asteraceae (2.75 grains/sq cm) were high, with no economic pollen.

Feature 244. FS 1698 was taken from a ceramic mug, recovered from a large oval pit with a

secondary burial pit encompassing a 30 ± 5 year-old female. The assemblage had 2.26 grains/sq cm total pollen concentration values. The assemblage included *Pinus edulis*, Chenoam, and high spine Asteraceae pollen.

FS 1699 was taken from a ceramic jar, which came from a large oval pit with a secondary burial pit and a 30 ± 5 -year-old female. The assemblage had 1.9 grains/sq cm total pollen concentration values. Taxa recovered included *Pinus edulis*, Poaceae, Cheno-am, high and low spine Asteraceae, and Cactaceae. *Zea mays* and Cylindropuntia (0.01 grains/sq cm) were present on the low magnification scan of the slide.

LA 6169

LA 6169 is a multicomponent site dating from the Early Developmental period (AD 700 to 900) through the Late Developmental (AD 1100 to 1200) and Coalition period (AD 1200 to 1375). The raw pollen counts and calculated pollen concentration values are presented in Table 24.4. The individual results are discussed below by period, structure, and feature.

Early Developmental Period Structures

Structure 4. FS 499 was taken from the floor of the structure. The assemblage included 3,166 grains/g total pollen concentration values and was based on a full count of 510 grains. Pinus pollen (751 grains/g) was very low, but was dominated by pollen of Pinus edulis (670 grains/g). A trace of *Picea* pollen (6 grains/g) was present. Poaceae (43 grains/g) pollen was moderate with high amounts of Cheno-am (1,558 grains/g) pollen, high (93 grains/g) and low spine Asteraceae (329 grains/g), and Artemisia (192 grains/g) pollen. Cylindropuntia pollen (37 grains/g) was high, with small amounts of Cactaceae (6 grains/g). Eriogonum (25 grains/g) was high with a trace of *Polygonum* (6 grains/g) and a moderate to low amount of Zea mays and Sphaeralcea (12 grains/g each) pollen. The adjusted pollen concentration values for Zea mays (23.4 grains/g)and Cactaceae (10.03 grains/g) increased the

values for these taxa when additional grains from the low magnification scan of the slide were tabulated.

Feature 41: wall niche. FS 992 was taken from the wall niche in Structure 4. The assemblage contained 6,446 grains/g total pollen concentration values and was based on a full count of 764 grains. *Pinus* pollen (1,055 grains/g) was low to moderate, but higher than from the floors and was still dominated by Pinus edulis (894 grains/g) pollen. Cheno-am pollen (4,658 grains/g) dominated the assemblage, with a significant number of Cheno-am pollen clumps (17 grains/g). High (76 grains/g) and low spine (278 grains/g) Asteraceae pollen was high, along with high amounts of Artemisia (76 grains/g) pollen. Poaceae (25 grains/g) was low, with a trace of *Polygonum* (8 grains/g) pollen. Zea mays (110 grains/g) and Sphaeralcea (34 grains/g) were both high. Small amounts of Cactaceae (4.66 grains/g), Cylindropuntia, Platyopuntia, and Onagraceae (2.33 grains/g each) were also observed on the low magnification scan of the slide.

Structure 47. A total of four pollen samples were submitted from this pit structure and associated features. FS 1853 was taken from the floor of this structure and contained 1,290 grains/g total pollen concentration values. A trace of *Pinus edulis* (60 grains/g) pollen was present. Cheno-am (1,020 grains/g) pollen was low with moderate amounts of Poaceae (60 grains/g). High amounts of low spine Asteraceae (90 grains/g) and *Zea mays* (30 grains/g) were present.

Feature 163:wall niche. FS 1997 was taken from a wall niche from this pit structure. The assemblage contained only 131 grains/g total pollen concentration values. Onagraceae, Cheno-am, and *Cylindropuntia* pollen were the only taxa present from this feature.

Feature 121: storage bin. FS 2042 was taken from this storage bin feature within Structure 47. The assemblage contained 1,490 grains/g total pollen concentration values. *Pinus* (324 grains/g) pollen was very low but was domi-

267

nated by *Pinus edulis* (281 grains/g) pollen. Cheno-am (842 grains/g) was low along with Poaceae (22 grains/g). High (108 grains/g) and low spine (43 grains/g) Asteraceae were high to moderate with high amounts of *Zea mays* and Cactaceae (22 grains/g each). Cylindropuntia pollen (4.8 grains/g) was present in the low magnification scan of the slide.

Feature 152: ash dump. FS 1796 was taken from this interior ash dump feature within Structure 47. The assemblage contained 1,320 grains/g total pollen concentration values. *Pinus* (150 grains/g) was very low and consisted entirely of *P. edulis* pollen. A small amount (30 grains/g) of *Ulmus* pollen was present but this was based on only a single grain. Chenoam (930 grains/g) pollen was very low with high amounts of low spine Asteraceae pollen (210 grains/g).

Early Developmental Period Human Burials

Feature 2: burial. FS 375 was a pollen wash sample from a ceramic utility ware associated with the burial of a 45+ year-old female. The assemblage contained 22.45 grains/sq cm total pollen concentration. *Pinus edulis* and low spine Asteraceae were the only taxa tabulated but only 3 grains were counted.

FS 387 was a pollen wash sample from a ceramic bowl associated with the burial of a 45+ year-old female. The assemblage contained 7.06 grains/sq cm total pollen concentration and was based on a pollen sum of only 6 grains. *Pinus edulis, P. ponderosa, Quercus,* Cheno-am, and high spine Asteraceae were present. *Zea mays* was present in very small amounts in the low magnification scan of the slide.

FS 396 was a pollen wash sample from a ceramic red pitcher associated with the burial of a 45+ year-old female. The assemblage contained 15.63 grains/sq cm total pollen concentration and was based on a pollen sum of only 7 grains. *Pinus edulis, Ulmus,* Rosaceae, and Cheno-am were present in the assemblage. *Picea* pollen was observed in the low magnification scan of the slide.

FS 398 was a pollen wash sample from a ceramic jar associated with the burial of a 45+ year-old female. The assemblage contained 15.63 grains/sq cm total pollen concentration and was based on a pollen sum of only 8 grains. *Pinus edulis, Quercus,* Cheno-am, and low spine Asteraceae were present.

Late Developmental Period

Pollen samples were collected from the floor of the structure and washes taken from vessels within features. Samples were also extracted from extramural features associated with this Late Developmental structure.

Structure 76. FS 1526 was taken from the floor of this pit structure which was located within Structure 47. The assemblage had 5,100 grains/g total pollen concentration values. Pinus (1,230 grains/g was low to moderate and consisted entirely of P. edulis pollen. Poaceae (60 grains/g) was moderate, with a small amount of Sarcobatus (30 grains/g) pollen. Cheno-am (2760 grains/g) was very high, with high amounts of high (120 grains/g) and low spine (150 grains/g) Asteraceae, and Artemisia (60 grains/g). Cactaceae (270 grains/g) was very high along with high amounts of Cylindropuntia (60 grains/g), Ephedra (180 grains/g), and Zea mays (60 grains/g). Zea mays concentration values increased to 84 grains/g in the adjusted concentration values.

Feature 49. Two pollen wash samples were collected from Feature 49, a human burial interred in the wall of Structure 76. FS 1046 was a pollen wash of ceramic sherds associated with the child burial. The assemblage contained 107.75 grains/sq cm total pollen concentration values, which were based on a full count of 497 grains. *Pinus edulis* and *P. ponderosa* were both present, along with traces of *Picea, Abies, Alnus,* and *Quercus* pollen. Cheno-am (62.65 grains/sq cm) was present along with Poaceae, low spine Asteraceae and traces of high spine Asteraceae and Cheno-am pollen clumps (0.22/sq cm), *Artemisia, Polygonum,* Cylindropuntia, and *Zea mays* were all present in low amounts.

Cactaceae pollen was also present on the low magnification scan of the slide.

FS 1047 was taken from a ceramic jar associated with the child burial. The assemblage had 279.92 grains/sq cm total pollen concentration values and was based on a full count of 606 grains. *Pinus edulis* and *P. ponderosa* were both present along with traces of *Juniperus* and *Prosopis* pollen. Cheno-am (100.24 grains/sq cm) Poaceae and *Sarcobatus* pollen were present, in addition to high and low spine Asteraceae, and *Artemisia*. Traces of Rosaceae, Cactaceae, Nyctaginaceae, and *Zea mays* (1.49 grains/sq cm) were also present. *Picea* and *Polygonum* were also present on the low magnification scan of the slide.

Feature 81. FS 1210 was a pollen wash sample taken from a vessel that was associated with the burial of an 18 to19-year-old human. The assemblage contained 44.26 grains/sq cm total pollen concentration values. *Pinus edulis* and *P. ponderosa* were both present. Cheno-am, Poaceae, high and low spine Asteraceae and *Artemisia* were present in low amounts. Traces of Platyopuntia, *Sphaeralcea* (0.27 grains/sq cm) and *Zea mays* (0.81 grains/sq cm) were also present.

Feature 126: storage pit. FS 1732 was taken from an extramural storage pit located to the north of Structure 76. The sample had 1,021 grains/g total pollen concentration values. *Pinus edulis* (211 grains/g) was very low. Cheno-am (599 grains/g) pollen was very low although a large number of Cheno-am pollen clumps (18 grains/g) were present in the assemblage. High (123 grains/g) and low spine (70 grains/g) Asteraceae were both high. A small amount of *Zea mays* (2.71 grains/g) was present on the low magnification scan of the slide.

Coalition Period (AD 1200-1325)

Pollen samples were taken from the floors of Rooms 10, 15, 16 and 70 (LA 6169). Several samples from mealing bins inside Room 16 were also processed. **Room 10.** FS 632 was taken from the floor contact of this pit room, which had 986 grains/g total pollen concentration values. *Pinus edulis* (117 grains/g) was very low. Cheno-am (822 grains/g) was also very low. Indeterminate pollen was the only other taxon recovered from the assemblage.

Room 15. FS 1061 was taken from the floor of this pit room, which had 1,915 grains/g total pollen concentration values. *Pinus* (172 grains/g) was very low, but *P. edulis* (147 grains/g) was the dominant type. Cheno-am (1,448 grains/g) was low to moderate, with high amounts of high spine Asteraceae (172 grains/g).

Room 16. FS 1881 was taken from the floor of this pit room, which had1,282 grains/g total pollen concentration values. *Pinus edulis* (282 grains/g) was very low, as was Cheno-am (662 grains/g), and moderate amounts of Poaceae (60 grains/g). High (28 grains/g) spine and low spine (169 grains/g) were both present. *Zea mays* (2.17 grains/g) was also present on the low magnification scan of the slide.

Feature 102: mealing bin. FS 1571 was taken from mealing bin, which had 1,842 grains/g total pollen concentration values. *Pinus* (444 grains/g) was very low, although both species were present. Cheno-am (1,198 grains/g) was low with moderate amounts of Poaceae (44 grains/g). Both high and low spine (22 grains/g each) Asteraceae were low. Cactaceae and *Zea mays* (22 grains/g each) were present, but in low amounts. Cylindropuntia (10.24 grains/g) were present on the low magnification scan of the slide.

Feature 103: mealing bin. FS 1674 was taken from a mealing bin inside Structure 16. The assemblage had 1,317 grains/g total pollen concentration values. *Pinus* (374 grains/g) was very low, but contained both *P. edulis* (267 grains/g) and *P. ponderosa* (107 grains/g) types. Cheno-am (730 grains/g) was very low, but had a high number of pollen clumps (36/g). Poaceae (36 grains/g) was moderate with low amounts of both high (18 grains/g) and low spine (36 grains/g) Asteraceae. *Eriogonum* (18 grains/g) and *Zea mays* (53 grains/g) were also present. Cactaceae (8.55 grains/g) pollen was present on the low magnification scan of the slide.

Feature 104: mealing bin. FS 1598 was taken from the mealing bin, which had 1578 grains/g total pollen concentration values. Pinus (668 grains/g) was very low, but was dominated by *P. edulis* (623 grains/g) pollen. A trace of *Ulmus* (3 grains/g) pollen was also present. Chenoam (674 grains/g) was very low, but had a high number of pollen clumps (30/g). Poaceae (3 grains/g) was present in trace amounts along with low amounts of high spine (24 grains/g) and moderate to high amounts of low spine Asteraceae (70 grains/g). Cactaceae (6 grains/g) and Cylindropuntia (3 grains/g) were present but in very low amounts. Onagraceae (3 grains/g) and Zea mays (30 grains/g) were also present.

Room 70. FS 1707 was taken from this feature, which had only 130 grains/g total pollen concentration values. *Pinus edulis* and *P. ponderosa*, Cheno-am, and Cheno-am pollen clumps were the only taxa present. A small amount of *Zea mays* (3.34 grains/g) was present on the low magnification scan of the slide.

LA 6170

LA 6170 is dated to both the Early Developmental period (AD 700–900) with a few samples collected from Late Developmental period (AD 1100–1200) contexts. The results of the pollen analysis are presented in Table 24.4. Individual results are presented below by period, structure, and feature.

Early Developmental Period

Structure 2. FS 1189 was taken from the floor of the structure, which has 3,604 grains/g total pollen concentration values based on a full count of 554 grains. *Pinus* (579 grains/g) was very low, with only a trace of *Juniperus* (7 grains/g) pollen. Cheno-am (2349 grains/g) pollen was high with a small number of pollen clumps (7 grains/g). High (78 grains/g) and

low spine (59 grains/g) Asteraceae were high to moderate, with low amounts of Poaceae and *Artemisia* (7 grains/g each). *Ephedra* (351 grains/g) was very high with moderate Cactaceae (13 grains/g) and high amounts of Cylindropuntia (85 grains/g). *Zea mays* (26 grains/g) was also high. The adjusted pollen concentration values of *Zea mays* and Cactaceae both increased to 33.03 and 38.54 grains/g, respectively. *Eriogonum* (5.51 grains/g) was present on the low magnification scan of the slide.

FS 1203 had 1,804 grains/g total pollen concentration values and was based on a full count of 511 grains. *Pinus* (572 grains/g) was very low with traces of *Juniperus, Picea* (4 grains/g each), and *Quercus* (7 grains/g). Cheno-am (935 grains/g) was low, but contained a small number of pollen clumps (4/g). Poaceae (32 grains/g) was moderate, with moderate to high, high (53 grains/g) and low spine (71 grains/g) Asteraceae. *Artemisia* (18 grains/g) was moderate. *Zea mays* (35 grains/g) was high with small amounts of Cactaceae (4 grains/g) and Cylindropuntia (7 grains/g).

Structure 5. Two samples were submitted from the floor of the structure. FS 1768 had 3,088 grains/g total pollen concentration values. *Pinus* (633 grains/g) was very low. Cheno-am (1,443 grains/g) was moderate to high, with low Poaceae and high spine (25 grains/g each), and high amounts of low spine Asteraceae (177 grains/g). Cylindropuntia (25 grains/g) was also present. *Zea mays* (32.54 grains/g) and Cactaceae (21.7 grains/g) were present on the low magnification scan of the slide.

FS 1823 had 2,700 grains/g total pollen concentration values. *Pinus* (413 grains/g) was very low, with a small amount of *Quercus* (32 grains/g). Cheno-am (1461 grains/g) was moderate with a high amount of pollen clumps (32/g). High (32 grains/g) and low spine (95 grains/g) Asteraceae were present. *Zea mays* (39.1 grains/g) was present on the low magnification scan of the slide.

Feature 14: posthole. FS 1898 was taken from a posthole in Structure 5 that had 2,523

grains/g total pollen concentration values. *Pinus* (156 grains/g) was very low, but Poaceae (125 grains/g) was extremely high. Cheno-am (1402 grains/g) and high spine Asteraceae (31 grains/g) were moderate, while low spine (218 grains/g) Asteraceae and *Artemisia* (249 grains/g) were very high.

Feature 39: posthole sealed by floor. FS 1942 was taken from Structure 5, but contained only 366 grains/g total pollen concentration values. *Pinus edulis,* Poaceae, Cheno-am, *Artemisia,* and indeterminate were the only taxa present. Onagraceae (2.68 grains/g) was present on the low magnification scan of the slide.

Structure 50. FS 2119 was taken from the floor of structure, with only 470 grains/g total pollen concentration values. *Pinus edulis,* Cheno-am, Cylindropuntia, and *Zea mays* (78 grains/g) were the only taxa present. FS 2156 was also taken from the floor, but contained only 216 grains/g total pollen concentration values. Poaceae, Cheno-am, and *Ephedra* were the only taxa present.

Feature 160: posthole for main roof support. FS 2280 was taken from a posthole in Structure 50. The assemblage had 1,080 grains/g total pollen concentration values. *Pinus* (62 grains/g) was only present in trace amounts. Cheno-am (644 grains/g) was very low, with moderate to high amounts of high (62 grains/g) and low spine (83 grains/g) Asteraceae and *Artemisia* (83 grains/g). *Zea mays* (42 grains/g) was present in high amounts.

Feature 173: posthole for main roof support. FS 2286 was taken from a posthole in Structure 50. The assemblage had 5,716 grains/g total pollen concentration values. *Pinus* (336 grains/g) was very low. Cheno-am (4615 grains/g) was high along with Poaceae (61 grains/g) and low spine Asteraceae (367 grains/g).

Feature 156: storage pit with plastered opening. FS 2304 was taken from a storage pit in Structure 50. The assemblage had only 218 grains/g total pollen concentration values. *Pinus edulis,* Cheno-am, high spine Asteraceae, *Artemisia,* and indeterminate pollen were the only taxa present. Cactaceae (3.45 grains/g) pollen was present on the low magnification scan of the slide.

Feature 171: *storage pit with plastered opening.* FS 2319 was taken from the storage pit in Structure 50. The assemblage had 1,617 grains/g total pollen concentration values based on a full count of 513 grains. *Pinus* (378 grains/g) pollen was low, with a trace (6 grains/g) of *Juniperus*. Cheno-am (769 grains/g) was low, with moderate to high amounts of high and low spine Asteraceae and *Artemisia*. *Polygonum* (3 grains/g) and Cylindropuntia (6 grains/g) were also present. *Zea mays* (3.15 grains/g) was present in the low magnification scan of the slide.

Feature 184: storage pit with plastered opening. FS 2322 was taken from a storage pit in Structure 50. The assemblage had only 447 grains/g total pollen concentration values. *Pinus edulis, Polygonum,* Poaceae, Cheno-am, high and low spine Asteraceae, *Artemisia,* indeterminate, and *Zea mays* (18 grains/g) were the only taxa present.

Feature 166: storage pit with plastered opening. FS 2368 was taken from a storage pit in Structure 50. The assemblage had only 312 grains/g total pollen concentration values. *Pinus edulis, P. ponderosa,* Poaceae, Cheno-am, low spine Asteraceae, and *Zea mays* (25 grains/g) were the only taxa present. *Abies* (1.92 grains/g) was present on the low magnification scan of the slide.

Feature 183: storage pit with plastered opening. FS 2375 was taken from a storage pit in Structure 50. The assemblage had only 847 grains/g total pollen concentration values. *Pinus ponderosa,* Solanaceae, Cheno-am, high and low spine Asteraceae, Artemisia, and indeterminate pollen were the only taxa present. Onagraceae (2.2 grains/g) was also present on the low magnification scan of the slide.

Feature 182: sipapu. FS 2498 was taken from a sipapu in Structure 50. The assemblage had only 701 grains/g total pollen concentration values. *Pinus edulis, P. ponderosa,* Poaceae, Cheno-am, high and low spine Asteraceae, Cylindropuntia, *Ephedra,* and *Zea mays* (39 grains/g) were the only taxa present. A small amount of Solanaceae pollen (2.97 grains/g) was present on the low magnification scan of the slide.

Early Developmental Period

Feature 69: storage pit with subfloor pit. FS 2407 was taken from storage pit, which had 1,863 grains/g total pollen concentration values. *Pinus* (773 grains/g) was very low, with small amounts of *Juniperus* (7 grains/g) and *Picea* (15 grains/g). Cheno-am (608 grains/g) was low with moderate Poaceae (44 grains/g). A moderate number of Cheno-am pollen clumps (11/g) was present. High (70 grains/g) and low spine (122 grains/g) Asteraceae were high with low to moderate *Artemisia* (18 grains/g). *Eriogonum* (7 grains/g), Cylindropuntia (18 grains/g), *Sphaeralcea* (4 grains/g) and *Zea mays* (74 grains/g) were also present. *Abies* (1.36 grains/g) and Onagraceae (2.73 grains/g) were also present on the low magnification scan of the slide.

Feature 92: pit with rodent damage. FS 2415 was taken from the pit, which had 759 grains/g total pollen concentration values. *Pinus edulis,* Poaceae, Cheno-am, high and low spine Asteraceae, Cylindropuntia, Indeterminate, and *Zea mays* (41 grains/g) were the only taxa present.

Late Developmental Period

Structure 5A. Two samples, FS 1464 and FS 1484, were taken from the floor of Structure 5A, which superimposes Structure 5. FS 1464 had 1,881 grains/g total pollen concentration values. *Pinus ponderosa* (174 grains/g) was very low, with low amounts of Cheno-am (1097 grains/g). Poaceae (53 grains/g) was moderate, with high amounts of low spine Asteraceae (174 grains/g) and *Artemisia* (52 grains/g). Cylindropuntia and *Zea mays* (17 grains/g each) were present in moderate amounts. Small amounts of Cheno-am pollen clumps were observed on the low magnification scan of the slide.

FS 1484 had 3,468 grains/g total pollen concentration values based on a full count of 501 grains. *Pinus* (533 grains/g) was very low with traces of *Juniperus* and *Shepherdia* (7 grains/g each). Poaceae (42 grains/g) were moderate, with high amounts of Cheno-am (2506 grains/g) and Cheno-am pollen clumps (21/g). High (48 grains/g) and low spine (166 grains/g) were moderate to high with moderate amounts of *Artemisia* (28 grains/g). Fabaceae, Cactaceae, *Sphaeralcea*, and *Zea mays* (7 grains/g each) were present in small amounts.

Feature 6: adobe-lined mealing bin. FS 1505 was extracted from an adobe-lined mealing bin located in Room 5. The assemblage had 1,966 grains/g total pollen concentration values. *Pinus* (302 grains/g) was very low. Cheno-am (1,145 grains/g) was moderate, with moderate amounts of high (43 grains/g) and low spine (22 grains/g) Asteraceae. *Eriogonum* and Poaceae (22 grains/g each) were low to moderate. *Zea mays* (9.26 grains/g), *Sphaeralcea* (4.63 grains/g), and Cactaceae and Cylindropuntia (9.26 grains/g) were present on the low magnification scan of the slide.

Feature 5. FS 1310 was taken from extramural activity area (Feature 5) overlying Structure 5A. The assemblage had 3,559 grains/g total pollen concentration values. *Pinus* (186 grains/g) was very low. Cheno-am (2,364 grains/g) was high, with high amounts of both high and low spine (239 grains/g each) Asteraceae. Poaceae (27 grains/g) was moderate, with high amounts of *Artemisia* (80 grains/g). Cylindropuntia (53 grains/g) was high along with *Sphaeralcea* and *Eriogonum* (27 grains/g each). *Zea mays, Prosopis, Polygonum,* and Cactaceae (5.69 grains/g each) were present on the low magnification scan of the slide.

LA 6171

LA 6171 is a multicomponent site with pit features dating to the earliest Developmental period (AD 500 to 700), pit structures and pits dating to the Early Developmental period (AD 700 to 900), and a possible Coalition period structure and refuse (AD 1200 to 1325). The results of the pollen analysis from this site are provided in Table 24.6. Individual samples are discussed below by structure and feature.

Earliest Developmental Period Features

Feature 53. FS 942 was taken from a large, steepsided, unburned pit, with undulating walls and base. The pit had only 712 grains/g total pollen concentration values. *Pinus edulis,* Poaceae, Cheno-am, high spine Asteraceae, *Ephedra*, indeterminate, and an unknown type were all present.

Feature 56. FS 613 was taken from a bellshaped roasting pit, which contained three subfloor pits. The assemblage had 1,350 grains/g total pollen concentration values. *Pinus* (120 grains/g) was very low. Cheno-am (1,110 grains/g) was low, with low amounts of Poaceae (30 grains/g). High and low spine Asteraceae (30 grains/g each) were also low.

Feature 59. FS 621 was one of the subfloor pits, but had 13,890 grains/g total pollen concentration values. *Pinus* (797 grains/g) was low, with a small amount of *Juniperus* (27 grains/g) pollen. Poaceae (398 grains/g) and Cheno-am (11,393 grains/g) were very high. *Sarcobatus* (53 grains/g) was high along with both high (398 grains/g) and low spine (372 grains/g) Asteraceae. *Artemisia* (53 grains/g) was also high.

Feature 104 in 83. FS 580 was taken from a subfloor pit within Feature 83, a thermal pit. It had 297 grains/g total pollen concentration values. *Pinus ponderosa,* Poaceae, Cheno-am, high and low spine Asteraceae, and indeterminate pollen were the only taxa present.

Feature 93 in 92. This sample came from the Early Developmental period, but dated to AD 500 to 650, making it the earliest sample in the project. The sample came from an extramural feature and no contemporaneous structures are present within the excavated site limits. FS 866 was taken from a subcist (Feature 93) in a bell-shaped pit (Feature 92), which had 3,860 grains/g total pollen concentration values. *Pinus edulis* (207 grains/g) was very low, along with a trace (34 grains/g) of *Quercus* pollen. Poaceae (34 grains/g) was low, with high Cheno-am (3206 grains/g) pollen. High (103 grains/g) and low spine (172 grains/g) Asteraceae pollen was high.

Early Developmental Period Components

Structure 9. FS 629 was taken from the southeastern section of the floor of Structure 9, which had only 359 grains/g total pollen concentration values. *Pinus edulis, P. ponderosa,* Poaceae, Cheno-am, high and low spine Asteraceae, and *Ephedra* pollen were the only taxa present.

FS 630 was taken from the southwestern section of the floor of Structure 9 and had 978 grains/g total pollen concentration values. *Pinus edulis,* Poaceae, Cheno-am, low spine Asteraceae, *Ephedra, Zea mays* (31 grains/g), and indeterminate pollen were the only taxa present.

Structure 18. *Feature 24.* FS 919 was taken from a storage pit in Structure 18. The assemblage had 573 grains/g total pollen concentration values. *Pinus edulis, P. ponderosa,* Solanaceae (40 grains/g), Poaceae, Cheno-am, high and low spine Asteraceae, Cactaceae, *Ephedra,* Indeterminate, and *Zea mays* (89 grains/g) were present.

Structure 26. *Feature 26.* FS 881 was taken from the floor of Structure 26 with only 767 grains/g total pollen concentration values. *Pinus edulis,* Poaceae, Cheno-am, high and low spine Asteraceae, and indeterminate pollen were the only taxa present.

Feature 31. FS 949 was taken from a double posthole, which had only 118 grains/g total pollen concentration values. *Pinus edulis,* Cheno-am, high spine Asteraceae, *Zea mays* (12 grains/g), and indeterminate were the only taxa present.

FS 950 was taken from a double posthole and had only 354 grains/g total pollen concentration values. *Pinus edulis,* Cheno-am, high and low spine Asteraceae, and indeterminate pollen were the only taxa present.

Structure 60. FS 687 was taken from the floor of Structure 60, which had 3,677 grains/g total pollen concentration values. *Pinus* (334 grains/g) was very low with small amounts of *Juniperus* (51 grains/g) and *Salix* (77 grains/g). Poaceae (180 grains/g) was very high along with Cheno-am (2186 grains/g) and a large number of Cheno-am pollen clumps (26/g). High (77 grains/g) and low spine (283 grains/g) Asteraceae were high along with a moderate amount of Cactaceae (26 grains/g).

Zea mays (23.74 grains/g) was present on the low magnification scan of the slide.

FS 659 was taken from the floor and under a pallet in Structure 60. The assemblage had 665 grains/g total pollen concentration values. *Pinus edulis, P. ponderosa,* Poaceae, Cheno-am, high and low spine Asteraceae, *Artemisia,* and *Zea mays* (14 grains/g) were the only taxa present.

FS 665 was taken from the floor and under a metate in Structure 60. The assemblage had 2,053 grains/g total pollen concentration values. *Pinus* (220 grains/g) was very low, with a small amount of *Juniperus* (21 grains/g). Poaceae (71 grains/g) was high, with low Cheno-am (1258 grains/g). High (57 grains/g) and low spine (227 grains/g) were high, along with *Artemisia* (63 grains/g). Brassicaceae (28 grains/g) was high for this taxon.

Feature 63. FS 699 was taken from a pit in Structure 60. The assemblage had 1,671 grains/g total pollen concentration values. *Pinus edulis* (129 grains/g) was very low with a trace of *Carya* (26 grains/g) pollen. Poaceae (51 grains/g) was high with moderate Cheno-am (1157 grains/g). High (103 grains/g) and low spine (77 grains/g) Asteraceae were moderate. *Sphaeralcea* (26 grains/g) and *Zea mays* (51 grains/g) were also present.

Early Developmental Features

Feature 47. FS 754 was taken from a small pit and had 2,678 grains/g total pollen concentration values. *Pinus edulis* (203 grains/g) was very low, with small amounts of *Juniperus* and Poaceae (23 grains/g each) and a high amount of Cheno-am (2228 grains/g). High and low spine Asteraceae were low along with *Artemisia*.

Feature 85. FS 810 was taken from a human burial. The assemblage had 731 grains/g total pollen concentration values. *Pinus edulis, Sarcobatus,* Poaceae, Cheno-am, high and low spine Asteraceae, *Artemisia, Ephedra,* and indeterminate pollen were all present in small amounts.

Coalition Period Structure

Structure 1. FS 523 was taken from the floor in the northwest quadrangle of Structure 1. The assem-

blage had only 212 grains/g total pollen concentration values. Only Cheno-am, low spine Asteraceae, and indeterminate pollen were present.

Feature 19. FS 892 was taken from a remodeled posthole within Structure 1. The assemblage had 5,545 grains/g total pollen concentration values. *Pinus edulis* (592 grains/g) was very low with high Poaceae (187 grains/g) and Cheno-am (3,458 grains/g). A high number of Cheno-am pollen clumps (93/g) were also present. High (249 grains/g) and low spine (218 grains/g) Asteraceae was high along with *Artemisia* (125 grains/g). *Ephedra* (125 grains/g) pollen was high as well as *Zea mays* (187 grains/g), and Cylindropuntia (31 grains/g).

Feature 25. FS 935 was taken from a storage pit within Structure 1, which had only 646 grains/g total pollen concentration values. *Pinus edulis,* Cheno-am and Cheno-am pollen clumps, high and low spine Asteraceae, and indeterminate pollen were the only taxa present.

LA 115862

LA 115862 dated to the Early Developmental period (AD 700 to 900). The results of the pollen analysis are presented in Table 24.7. The results of the individual samples are presented below by structure and feature.

Structure 1

Feature 16. FS 221 was taken from a posthole in the southwest quadrant of Structure 1. The assemblage had 1,719 grains/g total pollen concentration values. *Pinus* (324 grains/g) was very low, with moderate Poaceae (42 grains/g) and low Cheno-am (1,000 grains/g) pollen. High (42 grains/g) and low spine (70 grains/g) Asteraceae pollen was moderate to high, with high amounts of *Ephedra* (127 grains/g) pollen. Cactaceae (28 grains/g) and Cylindropuntia (14 grains/g) were both present. *Zea mays* (6.26 grains/g) and *Sphaeralcea* (3.13 grains/g) were present on the low magnification scan of the slide.

Feature 17. FS 223 was taken from a posthole in the northwest quadrant of Structure 1. The assemblage had only 90 grains/g total pollen concentration

values. *Pinus* was absent from the assemblage, although it was present on the low magnification scan of the slide (11.43 grains/g). Poaceae, Chenoam, and *Ephedra* were the only taxa present. Low spine Asteraceae (3.81 grains/g) was also observed on the low magnification scan of the slide.

Feature 20. FS 234 was taken from an ash pit. The assemblage had 752 grains/g total pollen concentration values. *Pinus edulis* (29 grains/g) was only present in trace amounts. Poaceae (58 grains/g) and Cheno-am (405 grains/g) were moderate to low, with moderate amounts of both high (58 grains/g) and low spine (29 grains/g) Asteraceae.

Early Developmental Extramural Features

Feature 6. FS 181 was taken from a hanging ceramic seed jar, associated with a human fetus burial in a shallow pit. The assemblage had only 6.67 grains/ sq cm total pollen concentration values. *Pinus edulis,* Cheno-am, high and low spine Asteraceae was present, along with a small amount of *Zea mays.*

Feature 7. Four pollen wash samples were taken in association with the human burial of an 18to19-year-old female in a shallow pit. FS 158 came from a ceramic jar that had 4.19 grains/sq cm total pollen concentration values. *Pinus edulis* and *Quercus* were present, along with small amounts of Cheno-am and both high and low spine Asteraceae pollen. *Eriogonum* and *Zea mays* pollen were also present.

FS 159 was taken from a ceramic bowl associated with the female burial. The assemblage had 25.64 grains/sq cm total pollen concentration values. *Pinus edulis,* Cheno-am, and both high and low spine Asteraceae, were present in low amounts. *Zea mays* (1.03 grains/sq cm) was also present and Cactaceae pollen was present on the low magnification scan of the slide.

FS 160 was taken from a Lino Gray ceamic jar associated with the female burial. The assemblage had 42.96 grains/sq cm total pollen concentration values. *Pinus edulis, Picea,* Poaceae, Cheno-am, high and low spine Asteraceae were present in moderate to low amounts. *Zea mays* (4.77 grains/sq cm) was present along with a trace of Liliaceae pollen.

FS 161 was taken from a ceramic seed jar associated with the female burial, which had 33.43 grains/sq cm total pollen concentration values. *Pinus edulis* and *P. ponderosa* were both present in small amounts. Poaceae, Cheno-am, high and low spine Asteraceae and *Sphaeralcea* were also present.

Feature 9. FS 192 was taken from a roasting pit, which had 731 grains/g total pollen concentration values. *Pinus* was absent from the assemblage. Cheno-am, low spine Asteraceae, *Ephedra*, and Indeterminate were the only taxa present.

Feature 11. FS 197 was taken from a roasting pit, with 508 grains/g total pollen concentration values. *Pinus edulis* (95 grains/g) was present in trace amounts only. Cheno-am and indeterminate were the only other taxa present.

DISCUSSION

In order to examine the large amount of data available from these samples, some consolidation of the data is in order. The first logical step is to examine the background pollen rain, consisting primarily of the local arboreal and nonarboreal pollen taxa within the assemblages. The tables compare the mean pollen concentration values of selected background types with the elevation. The sites are ordered from north to south, although these are not provided. The data reveals that most of the distribution of the natural pollen rain appears to be controlled by elevation, and secondarily by north to south topography. While both *Pinus* ponderosa and P. edulis pollen are present in low to very low amounts throughout the data set, Pinus ponderosa pollen increases above the 5,300 ft level, which includes LA 249, the most northerly site within the project area. Pinus *edulis* pollen, on the other hand is generally low, but with increased values throughout the range of elevations. Juniperus, Quercus, and Salix are found sporadically throughout the elevation range. These taxa are also common

understory components of both ponderosa pine and piñon-juniper forests. *Salix*, however, is a more riparian component requiring a constant moisture source.

While *Picea* pollen is present in several elevation zones, it is never very high. This taxon is generally restricted to higher elevations in the mountains. Its presence within these sites, regardless of elevation, is undoubtedly due to long-distance wind transportation from higher elevation sources and represents a form of modern contamination or human introduction through the use of spruce boughs as a covering layer or in ceremonies.

A small amount of *Ulmus* pollen was present throughout the assemblages. However, this taxon occurred only in the 5,275 ft and 5,330 ft elevation and was available in very low average amounts. *Ulmus* is not native to New Mexico, but rather was introduced historically as an ornamental. The low pollen concentration values probably reflect this historic introduction. *Carya* pollen, likewise, is not native to New Mexico. This taxon was present only at the 5,233 ft level. *Carya* was introduced historically to the areas of southern New Mexico as a commercial crop tree and again, this probably reflects historical introduction, and likely recent contamination.

The nonarboreal pollen taxa revealed the opposite trends. While both high and low spine Asteraceae were present in all elevation levels, low spine Asteraceae was moderate to high throughout the area, with the higher levels recorded in the higher elevations. High spine Asteraceae ranged from low to high, with the lower elevations recording significantly lower mean concentration values than did the upper levels. Cheno-am pollen was low to high, but the higher concentration values generally were present in the lower elevations while Poaceae showed the same trend.

Before proceeding any further, one problem in pollen analysis must always be addressed. Based on the pollen taxa recovered, the question always arises whether economic taxa are absent from these assemblages because they truly are not present, or, they are present in such small amounts, they have been missed during sampling. In order to assess the likelihood of their being missed, the estimated maximum potential concentration values (Dean 1999) of target taxa was computed. Since the entire slide was examined (either by count or low magnification scan on the slide) the estimated number of marker grains per slide was computed by averaging the number of marker grains per transect and multiplying this by the total number of transects examined. Assuming the first grain observed on an hypothetical second slide was one of the target taxa, then the maximum potential concentration value can be computed. Therefore, the number of fossil grains is one, and the number of marker grains per slide is substituted for the number of marker grains counted in the pollen concentration formula. The data is presented in Tables 24.2 to 24.8 with their respective sites. Without examining the total pollen residues we can never be absolutely sure the target taxa is absent from the assemblage. Given the low estimated potential pollen concentration values, I conclude it is more likely the missing taxa are absent from the assemblages.

PRINCIPAL COMPONENTS ANALYSIS

The pollen wash samples and soil samples were analyzed using PCA separately. Due to the extremely large size of the ceramic vessels washed, the pollen concentration values were fairly low, ranging from less than 100 grains/sq cm to less than 1 grains/sq cm. If the entire database from Peña Blanca had been examined together, the main separation would have been between soil samples and the pollen wash samples. This would have provided no information not already available through visual inspection. This provided sufficient justification to separate the two components of the database.

Soil Pollen Samples

The results of the Principal Components Analysis (PCA) of the soil samples are provided in Table 24.8. Additionally, the table includes the results of Simpson's Diversity Index calculations based on a transformation of the data to the log e. The results of the eigenvalue analysis (Table 24.8, part A) revealed that each individual axis accounted for only a small portion of the total variation. The first 2 axes extracted (30.4 percent and 11.3 percent, respectively) accounted for a total of only 41.7 percent of the total variation. The next 13 axes accounted for only 5 percent or less each of the total variation. Axis 1 was dominated by Pinus edulis, Poaceae, Cheno-am, and both high and low Asteraceae in addition to the indeterminate pollen type, essentially the background pollen rain, whereas Axis 2 was dominated primarily by Juniperus, Fabaceae, and Shepherdia pollen. An initial comparison of the first and second principal component by age of the samples revealed the vast majority of all pollen soil samples were overlapped so tightly that the PCA could not effectively separate the samples by any criteria. This might have been anticipated given that the total observed variation in the assemblage was being controlled by the age of the occupation, structure function, and feature function of the various sampling locales. Because of the large amount of overlap, no further analysis of the principal components was attempted.

Pollen Wash Samples

The PCA results of the pollen wash samples are provided in Table 24.9. Additionally, the table includes results of Simpson's Diversity Index calculations based on a transformation of data to the log of base 10. The results of the eigenvalue analysis (Table 24.9, part A) were somewhat less than desired. A total of 27 axes were extracted, although 100 percent of the observed variation was explained by the first 17 axes. The first axis accounted for 31.6 percent of the variation. The second and third axes accounted for an additional 15.3 and 11.1 percent, respectively, but it took the first eight axes to account for 90 percent of the variation.

The first two axes extracted are somewhat interesting in that they seem to separate the background taxa and the economic taxa. The dominant taxa in Axis 1, determined by loadings in excess of 0.2500, all had positive loadings for *Pinus ponderosa, Pinus edulis,* Chenoam, low-spine Asteraceae, *Artemisia,* and *Ephedra.* This effectively represents the majority of the arboreal pollen taxa with the inclusion of woody grassland elements. The second axis is dominated by *Zea mays,* Cucurbitaceae, Cactaceae, Cylindropuntia, Platyopuntia, Liliaceae, and indeterminate pollen. This is effectively the bulk of the economically important taxa, although the inclusion of Liliaceae and indeterminate pollen is surprising. The loadings for these two taxa are the smallest within the axes and perhaps these should not be included after all.

Axis 8 includes the size of the area washed with a fairly high negative loading. This would suggest an inverse relationship between the size of the ceramic vessel and the pollen concentration values, which is not totally unexpected. Comparison of the first and second principal component by age of the sample provided no clear distinctions. There was a hint that the younger (Pueblo II to III) period could be separated, but the ranges of the earlier periods (Developmental) overlapped. Also, the Pueblo II to III period was represented by only a single sample. Likewise, comparison of the first and second principal component by vessel type was similarly overlapping. There appeared to be some separation of bowls, mug, pitchers, and jars, but these were not very clear and the degree of overlap was fairly large. The many interacting factors related to pollen deposition probably precluded clear separations.

STRUCTURE TYPES

Pivot Table 24.11 shows a breakdown of selected pollen taxa by a gross structure type. This table essentially separates the data by extramural locations and two main types of structures: pit structures and pit rooms. The prior expectations of this distribution would have been for extramural features to have higher pollen concentration values than those from within structures. The effect of structure walls is to block normal ambient pollen deposition. Entrances such as doorways, top hatches, etc., are usually small and cause a precipitous drop in the wind velocity. When this occurs, the pollen load of the wind is dropped and there is a large increase in pollen concentration values in the immediate vicinity of the opening (Tauber 1965; Birks and Birks 1980). However, in the samples from Peña Blanca, the extramural features contain primarily low to very low mean concentration values of the arboreal pollen taxa. The average pollen concentration values for *Pinus edulis* from the entire project is only 255 grains/g and the extramural samples are only 196 grains/g. During AD 500 to 650 and 700 to 900, when the concentration values were slightly elevated, arboreal concentration values are still in the very low category. The nonarboreal pollen types, particularly Cheno-am and grasses, show a slight increase in values from extramural features, but the difference is insignificant. The distribution indicates a lack of well-developed forested areas in the immediate vicinity of the archaeological sites, and places them within a more grassland habitat during occupation. Ephedra pollen is also slightly higher from the extramural samples than from within structures. Again, this is consistent with a desert scrub grassland in the vicinity of the site. Artemisia, on the other hand, while individually variable, appears to occur in slightly lower concentration values from extramural features than from structures, etc. Artemisia, as part of the natural pollen rain, is often masked by other taxa, therefore reducing or minimizing its pollen concentration values. When the plant is intentionally brought into a structure (cultural vector), the opposite occurs. Relatively large amounts of Artemisia pollen are brought into the structures, possibly for ceremonial purposes, but the structure itself blocks normal pollen deposition, giving Artemisia the appearance of increased pollen concentration values. Two samples that were not dated and both fell within the category of extramural features from LA 249 had slightly elevated concentration values for the arboreal and nonarboreal background pollen taxa. These samples actually were closer to the expected means than the dated samples.

The extramural features (to be examined

individually later) had only relatively small amounts of economic pollen with the exception of AD 700 to 900. The extramural samples from this period had fairly high mean concentration values of Cylindropuntia, Cactaceae, and *Zea mays* pollen. Traces of *Sphaeralcea*, Platyopuntia, Solanaceae, and *Eriogonum* were also present.

In all types of structures the arboreal component was very low and appeared slightly lower than the mean concentration values from the extramural samples. Structures were present from both the Early (AD 700 to 900) and Late Developmental periods (AD 1100 to1200). Structures from the project area contain moderate to high amounts of Zea mays pollen, which is slightly higher in the earlier period. Cylindropuntia and Cactaceae pollen are slightly higher in the later period, but this may be a function of the number of samples from these periods. Onagraceae, Solanaceae, Polygonum, and Eriogonum are present in trace amounts, but Fabaceae pollen is present only from this structure type and from the undated extramural features. While not obligate economic taxa, the structures also had generally high amounts of Artemisia pollen.

The rooms that were associated with the Late Developmental period (AD 1100 to 1200) and the Coalition period (AD 1200–1325) had the lowest levels of economic pollen. Only traces of *Artemisia* were present in the later occupations with a slightly elevated mean concentration value from the earlier occupation. Cactaceae and Cylindropuntia were present is small amounts, with only traces of Onagraceae and *Eriogonum*, but *Eriogonum* dramatically increases with the earlier occupation. Inside the rooms, *Zea mays* shows an opposite trend with smaller values in the earlier occupation rather than in the later.

The trend to decreasing economic taxa may correlate with room function or specialization. In earlier periods, multiple activities occurred within structures. However, in later periods, there appears to be more specialization. Plant processing activities may have been removed from habitation areas, therefore reducing the amount of pollen-bearing plants stored in the structures. However, at this stage, it is speculative.

STRUCTURES BY SITE

The next level of analysis examines the differences between structures within the same sites and similar temporal periods. This data is presented in Pivot Table 3, Table 24.12.

Coalition Period

The youngest dated samples from AD 1200 to 1325 were taken from LA 6169, which contained samples from four rooms. The arboreal pollen was either absent or in very small mean amounts. Pinus ponderosa averaged only 32.6 grains/g from the pit rooms while *Pinus edulis* averaged 276.6 grains/g. In both cases, these taxa are either present in trace or very low amounts. No other arboreal taxa were present in any of the pit rooms associated with the Coalition Period. This is probably due to the blocking effects of the structures themselves. Although, Pinus sp. produces large quantities of pollen, ambient deposition is often effectively blocked by the walls and roof of these structures (Tauber 1965). The absence of Juniperus pollen is not too surprising. Juniperus produces much lower quantities of pollen than other arboreal components and the pollen of Juniperus is very thin walled and susceptible to deterioration. In an earlier, experimental study, Holloway (1989) discovered after alternating only 25 cycles of either wet/dry conditions or freezing/thawing temperatures, over 80 percent of fresh Juniperus pollen was deteriorated to some degree. So, in addition to the blocking effect of the structure, it is reasonable to account for the absence of *Juniperus* pollen.

Room 16 had moderate to low mean concentration values for the nonarboreal pollen types. Room 15 had elevated averages for Cheno-am and high spine Asteraceae but in general the nonarboreal pollen was low. Economic pollen was fairly low to moderate from the contexts as well. Cactaceae, although in small amounts, was present in Rooms 10 and 16, which also had fairly high mean values for *Zea mays* in Room 10. Room 16 had traces of Onagraceae and *Eriogonum*, although *Zea mays* was completely absent from the assemblage. The Late Developmental period ranges from AD 1100 to 1200 with several structures at LA 249, LA 6169, and LA 6170 associated with this temporal period. Structure 6 (LA 249) was fairly typical with very low amounts of both *Pinus ponderosa* and *P. edulis* pollen, along with small amounts of *Juniperus* and *Quercus*. The NAP was also reduced, with mean values of Chenoam, Poaceae, and low levels of *Artemisia*. Very little economic pollen was present at this structure, except for low values of Cactaceae, Cylindropuntia, and *Zea mays*.

The sample from Structure 76 was located within Structure 47 at LA 6169 and had very high pollen concentration values. Moderate quantities of *Pinus edulis* pollen were present, but without any trace of *Pinus ponderosa*. The higher levels of *Pinus* pollen may be related to the rebuilding of Structure 47. Cactaceae, Cylindropuntia, and *Zea mays* were all high and may suggest either plant storage or processing of materials within this structure. Both LA 249 and LA 6169 are located in the northern portion of the project area and separated by an elevation of 55 ft. It is possible, but unlikely that the observed differences in pollen assemblages were caused by topographical changes.

Structure 5A was constructed over the remains of Structure 5 (LA 6170) during the Late Developmental period. Arboreal pollen was low, with very low amounts of *Pinus* and a trace of Juniperus pollen. Cheno-am pollen from Structure 5A was high (mean = 1,801 grains/g) with moderate amounts of grass pollen. A small amount of Cheno-am pollen clumps was present in Structure 5A. The presence of these pollen clumps are usually interpreted as reflecting the presence of flowers (Bohrer 1981).

Cheno-am and other members of Chenopodiaceae have an indeterminate growth habit. So, as the plant continues to grow apically during the growing season, flowering stalks are continually produced laterally. Later in the growing season, it is very common to find plants containing both immature and mature flower buds, opened flowers, immature, mature, and dehisced fruits. These plants are highly branched and an excellent source of kindling wood. The presence of higher pollen concentration values in Structure 5A suggest the gathering of these plants for firewood.

The NAP was also fairly high at this site, with particularly low spine Asteraceae and Artemisia pollen. Once again, the taxa suggest they were intentionally brought into the structure and possibly utilized as fuel. A mealing room in the structure had higher values of NAP and may be an indicator of seasonality. The NAP brought into the room could have adhered to clothing or sandals of the occupants. A late summer-early fall occupation of the mealing room generally coincides with peak harvest periods. The pollen assemblages could reflect numerous trips into the room by transporting the harvest prior to processing. Flotation and macrobotanical data should provide corroborative data for this hypothesis.

The number of economic taxa recovered from the mealing room is somewhat high. Fabaceae pollen was only recovered from the context of Structure 5A. The pollen grain was too deteriorated to permit a genus level identification, but the presence is suggestive. While this particular grain could represent one of the myriad of naturally occurring wild taxa of this family, it is also possible it represents a cultivated member of the group. If the grain represents *Phaseolus* sp., its presence within the mealing room is quite natural. Small amounts of Eriogonum and Sphaeralcea pollen were present, in addition to larger amounts of Cactaceae, Cylindropuntia, and Zea mays. With the exception of Zea mays, all of these taxa are insect pollinated (entomophilous) and produce relatively little pollen. Given the context of a mealing room, the presence of all the economic taxa is undoubtedly via a cultural vector. The concentration values of any single taxon are not high. I suspect the pollen concentration values recovered were the product of bringing harvested plant materials into the room for processing. Given the range of pollen types, it is likely inhabitants of the mealing room processed both cultivated and gathered plant materials.

Structure 5A was sufficiently different,

palynologically, to be effectively separated from the other structures examined in the later occupational periods. The proposed function of the mealing room is supported by palynological evidence. Other structures and rooms did not contain pollen assemblages sufficient for effective separation of function on this level. The separations are based on mean pollen concentration values, and I suspect the determination of function for these structures will be based on the number and type of individual features found within each structure.

Early Developmental Period

The period from AD 700 to 900 had the largest number of structures. A total of 14 pit structures were sampled from five sites, LA 115862, LA 265, LA 6169, LA 6170, and LA 6171.

LA 115862. Structure 1 had very low arboreal and nonarboreal pollen averages. Economic pollen was also low, with very small amounts of Cactaceae, Cylindropuntia, *Sphaeralcea, and Zea mays*.

LA 265. At Structure 1, eight pollen samples were taken in a column. The pollen concentration values of selected taxa from the column are presented in Pivot Table 12. Figure 24.21 diagrams five economic taxa by level. Stratum 1 was an ashy upper fill, probably of colluvial deposition. This stratum contained low values for AP, although very small amounts of a larger number of taxa were present. These included Juniperus, Picea, Salix, and Quercus in addition to the more common Pinus ponderosa and P. edulis. NAP was generally low, with low amounts of Onagraceae, Cactaceae, Cylindropuntia, Sphaeralcea, and a moderate to high amount of Zea mays. Stratum 2.1 was structure fill and probably represents a trash dump. This assemblage contained no AP, and only Cheno-am (low) for NAP. No economic pollen was present from this sample.

Stratum 2.2 was a combination of alluvial deposition and cultural trash. This assemblage had trace amounts of AP, and very low amounts of NAP. Cylindropuntia was moderate with high amounts of Cactaceae and *Zea mays* pollen.

Stratum 2.3 was a dumping episode and consisted of trace amounts of AP and low NAP. Cactaceae and Cylindropuntia were moderate to high, with low to moderate *Zea mays* pollen. Stratum 2.4 was a combination of alluvial deposit and trash. This sample had low AP and NAP. Cactaceae, Cylindropuntia, and *Zea mays* were all very high. Stratum 2.5 was also a combination of alluvial deposition and cultural trash. The assemblage contained a trace of AP and low to moderate NAP. The economic taxa present were moderate amounts of Cylindropuntia and high amounts of both Cactaceae and *Zea mays*.

Stratum 3 was a sandy clay containing adobe. Traces of AP were present, but with Salix pollen, and the NAP was quite low. Only a small amount of Cactaceae pollen was present. Stratum 3.1 was defined as a loose, charcoal-stained sand. This was similar to Stratum 3, which contained traces of AP and *Salix*. NAP was generally low, with high amounts of Poaceae and low spine Asteraceae. No economic taxa were present. In general, Stratum 3, the underlying material had very little pollen. The trash dumping episode contained higher concentration values of members of the Cactaceae and corn families.

A similar column was taken through extramural Feature 14, a large irregular-shaped pit. A total of nine stratigraphic units were sampled and essentially reflected a series of trash dumping episodes. Figure 24.2 diagrams three economic taxa by level. Stratum 1 had low AP and moderate NAP. Cactaceae was the only economic taxon, which was present in fairly high levels. Stratum 2 had low AP and NAP. Cactaceae and Zea mays were both present. Stratum A was an ash layer containing low AP, fairly high NAP, along with very high amounts of Zea mays. Stratum 3 had low AP and moderate NAP. No economic pollen was present. Stratum 4 had low AP and high NAP along with high amounts of Cactaceae, Cylindropuntia, and very high values for Zea mays. Stratum 5 was characterized by only traces of AP and low NAP. Cactaceae, Cylindropuntia, and Zea mays were present. Stratum 6 had low AP, and moderate to low NAP. Cactaceae and Cylindropuntia were high with moderate amounts of corn pollen. Stratum 7 had traces of AP, and low to moderate NAP. Corn and Cylindropuntia were high. Stratum 8 also had traces of AP and moderate NAP, although members of Asteraceae were high. Cactaceae pollen was the only economic taxon recovered.

The dumping episodes between Structure 1 and Feature 14 are somewhat similar. These particular strata are characterized by elevated concentration values for Cactaceae, Cylindropuntia, and/or Zea mays. The levels from the storage pit are generally much higher, than those from Structure 1. While the strata from Feature 14 represent discrete dumping episodes, it is not possible to determine the precise origin of these assemblages. The dumps may represent activities related to cleaning out storage facilities. However, if this is the case, these dumps had higher levels of important economic taxa when compared with other sites or features. For example Feature 14, plant materials such as Zea mays, Cactaceae, and Cylindropuntia were possibly stored on top of the dumped materials. This could explain the high pollen concentration values obtained from Feature 14.

Structure 13 had extremely low AP and NAP pollen concentration values. Whereas, *Cylindropuntia, Platyopuntia,* and *Zea mays* pollen were present in either high or moderate mean amounts.

The average concentration values from Structure 4 seem to compare with different aspects of the other two structures. The arboreal component is very similar to Structure 13, whereas the NAP component has slightly higher values in comparison to Structure 1. The economic types include: Onagraceae, Cactaceae, *Cylindropuntia*, and *Zea mays*. This is more like Structure 1 than Structure 13. The variations in many of the pollen assemblages are thought to be due to variations within the feature functions. However, based on the average concentration values, there is some indication of specialization among the plants within these structures. While individual features may be more important than the structures, it might appear that a type of specialization was occurring with Cylindropuntia concentrated in Structures 4 and 13, and corn in Structures 1 and 4, but this is by no means an absolute.

LA 6169. The arboreal component is very low in

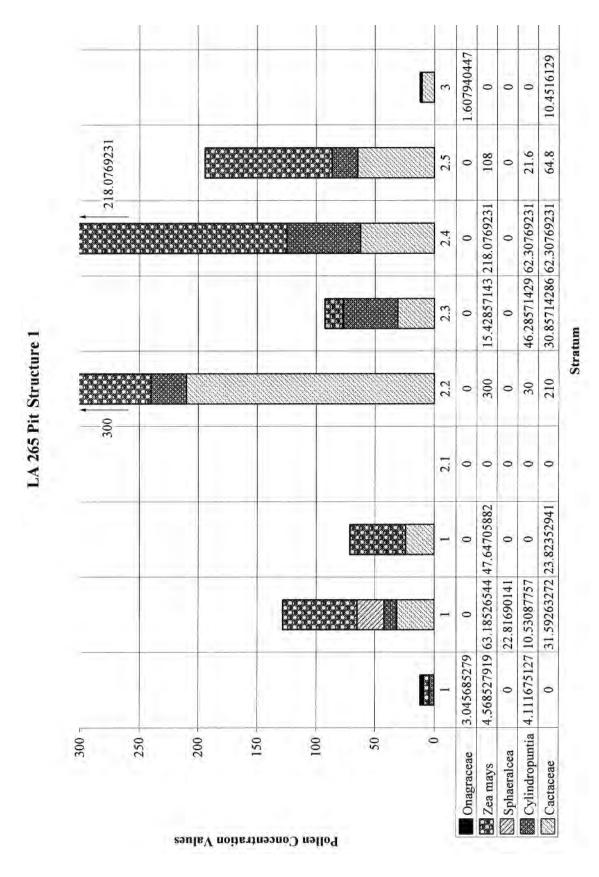


Figure 24.1. LA 265, Structure 1 economic taxa by level.

LA 265 Feature 14

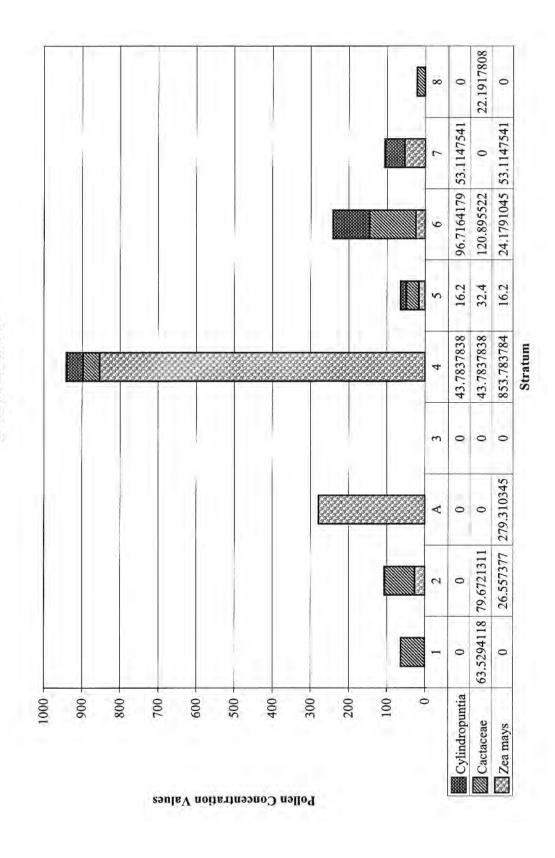


Figure 24.2. Feature 14 economic taxa by level.

both Structures 4 and 47, although somewhat higher than previous sites. In part, this may be due to the slightly higher elevation of the site (Pivot Table, Table 24.10). The NAP was significantly higher in Structure 4 than Structure 47 and the mean concentration values for *Artemisia* were extremely high (134 grains/g). The high amount of Artemisia pollen may suggest a ceremonial function, but this is speculative. Structure 4 also has a larger number of economic taxa (n = 8) present and in higher concentration values (n = 4) than Structure 47.

LA 6170. The overall average concentration values of the assemblages are lower in LA 6170 than other sites. Arboreal pollen is very low, but average concentrations of Poaceae and Cheno-am are somewhat elevated. While the number of Cheno-am pollen clumps is small, they are consistently present at all three structures, suggesting that plants containing flowers were brought into structures (Bohrer 1981). *Artemisia* is very high in Structure 50, which also contains small amounts of Solanaceae pollen. Evidence suggests ceremonial activities could have taken place in this structure.

Structure 5 contains the smallest amounts of Onagraceae, Cactaceae, Cylindropuntia, and Zea mays. This may be a function of preservation, but also suggests the structure was occupied for a shorter period of time before burning. There is a *slight* increase in the number of economic taxa present from LA 6170 structures when compared to the other sites. This could be caused by a number of factors. LA 6170 is located at the lowest elevation of all sites in the project area, although the differences are minor. The increase in number of taxa could represent nothing more than an increased availability of suspected economic taxa due to this topographical variable. Though possible, this is probably unlikely. Alternatively, the functions of the pit structures could be more focused on activities utilizing more economic taxa, thus indicating a type of specialization between pit structures.

LA 6171. Structure 60 contains a slightly larger number of arboreal pollen taxa, which may

reflect aspects of construction. The NAP, particularly Poaceae and Cheno-am, are moderate to high mean values. The structure contains small mean concentration values for *Polygonum*, *Eriogonum*, Brassicaceae, Cactaceae, and Cylindropuntia, along with moderate values for *Zea mays*. All of these values reflect cultural vectors for deposition, and the diversity of taxa suggests a reliance upon gathered plant materials.

The AP and NAP are very low from the remainder of the structures. LA 6171 was another lower elevation site examined, and the reduced AP may reflect this distribution. Structure 18 contains a small amount of Solanaceae pollen, but the mean values of *Artemisia* are decreased in amount. Given the rather small concentration values of *Artemisia*, I hesitate to ascribe a ceremonial function to this structure. *Zea mays* pollen is high, with Cactaceae, Cylindropuntia, Onagraceae, and Sphaeralcea pollen present, but in low mean amounts. The distribution of taxa may suggest a habitation structure, but this is by no means clear.

No economic taxa were present from either Structure 2 or 26 at LA 6171. The AP and NAP values are also extremely low, possibly a problem with preservation. The same characteristics appear to apply to Structure 9, with the exception of moderate quantities of *Zea mays* pollen, which was the only economic taxon present. The average pollen concentration value for this taxon was 15 grains/g, suggesting either a storage or processing activity occurred in this structure.

Structure Floor Samples

A number of samples were derived from floors or floor contact areas within several structures, pit structures, and pit rooms from the sites in this project area. Pivot Table 7, Table 24.16 contains the average concentration values of selected taxa organized by period, floor type, site structure, and feature.

Coalition Period (AD 1200 to 1325). The floor samples from this period were taken from LA 6169. The AP was very low from this period and none of the samples contained additional

taxa, other than Pinus. Rooms 15, 16, and 70 had very low NAP with two exceptions: high values of low spine Asteraceae from Room 16 and moderate values of Cheno-am and high values of high spine Asteraceae from Room 15. The only economic taxa present in Rooms 16 and 70 consisted of low concentration values of Zea mays, which was absent from Room 15. In fact, the average concentration values were quite close (2.17 and 3.34 grains/g, respectively), therefore, the functions of the three pit rooms appears to be quite similar. There is no evidence to suggest plant processing functions occurred in these pit rooms. The lack of evidence may suggest rooms were for habitation, rather than food preparation.

The floor contact sample was taken from Room 10. Again, AP and NAP were very low or absent. However, higher values of Cactaceae and *Zea mays* pollen were recovered. While the floor contact did appear slightly different than the floors, it is still inferred that Room 10 functioned as a habitation structure without a great deal of plant processing activity.

Late Developmental Period (AD 1100 to 1200).

Floor samples were taken from structures at LA 249, LA 6170, and LA 6169 from this period. AP was very low and consisted almost entirely of *Pinus edulis, Pinus ponderosa,* with small amounts of *Juniperus*. NAP was somewhat variable, with relatively low quantities from LA 249, moderate from LA 6170, and high values from LA 6169. Cactaceae, Cylindropuntia, and *Zea mays* pollen were present from the floors of Structure 6 at LA 249.

Structure 5A had low amounts of Fabaceae, Cactaceae, Cylindropuntia, and *Sphaeralcea*, along with more moderate values for *Zea mays*. This suggests Structure 5A functioned somewhat in plant processing activities. Some or all of these taxa were likely brought into the structure intentionally, via cultural vectors.

Structure 76 located within Feature 47 had very high amounts of Cactaceae, Cylindropuntia, and *Zea mays* pollen. Processing activities of these three taxa undoubtedly occurred within the structure. The main differences between the floors from this period and the Coalition period indicate more prevalent plant processing activities within structures from the Late Developmental period. Perhaps, the later Coalition period activities were more localized and/or specialized.

Early Developmental Period (AD 700 to 900). Floor samples were obtained from a total of nine structures at four sites dating to this period. Floor samples were taken from Structure 4 at LA 265. They were characterized by no AP or low NAP, but with high amounts of Asteraceae, and moderate to high amounts of economic pollen including Cactaceae, Cylindropuntia, and *Zea mays*.

Floor samples were collected from two keyhole structures at LA 265 (Features 27 and 33), both are from extramural locations. The AP was very low, as was the NAP, with the exception of Asteraceae pollen. Cactaceae the and Cylindropuntia were present in high amounts and Zea mays was low from Feature 33. The high concentration values for the Cactaceae suggest a storage function for these pits. These features are shallow, possibly seasonal structures with a few intramural features. They should be treated as structures, but can be differentiated from other structures due to their shallowness. These shallow structures are important in our interpretive framework, because they may represent different subsistence organization and occupations during the Early Developmental period. The pollen concentrations from these structures are particularly interesting because they suggest seasonality.

Floors samples at LA 6169 came from Structures 4 and 47. Structure 4 assemblage contained very low AP, moderate to high mean values of NAP, small amounts of *Polygonum*, Cactaceae, and moderate to high values of *Eriogonum*, Cylindropuntia, *Sphaeralcea*, and *Zea mays*. A single floor contact sample was taken from Structure 47. The assemblage had extremely low AP and low NAP pollen. The only economic taxon present was *Zea mays*, which was present in high amounts. Structure 47 assemblage is more similar to the structure samples from LA 6171, than from Structure 4 at this site.

The floors of three structures at LA 6170 were sampled. Structure 2 had very low AP,

but had traces of Juniperus, Picea, and Quercus in addition to the more common Pinus. NAP was low to moderate, but there was a low number of Cheno-am pollen clumps (5 grains/g) from the floors. Eriogonum and Cactaceae were low, with high amounts of Cylindropuntia and Zea mays. Structure 5 had very low AP, but a small amount of Quercus pollen. The NAP was low to moderate, with high mean values for low spine Asteraceae and Artemisia pollen. Cactaceae, Cylindropuntia, and Zea mays were moderate to high. Structure 50 had only a trace of AP with low to trace amounts of NAP. Cylindropuntia and Zea mays pollen were both very high. The relatively high values of Zea mays and members of the Cactaceae family suggest plant processing, preparation, and storage activities conducted in conjunction with other domestic activities.

LA 6171 floor samples came from four structures. Structure 60 had low amounts of AP, with fairly high amounts of both *Juniperus* and Salix pollen. This may reflect roofing material preferences. NAP was very high comprising 88 percent of the assemblage and Cylindropuntia and Zea mays were also high. Two additional floor samples were taken from this structure, but were taken from underneath specific artifacts. A floor sample taken from under a metate had low AP, but had both Pinus and Juniperus pollen. NAP was moderate to high, but the assemblage had small amounts of Polygonum, Eriogonum, and Brassicaceae. Given the provenience of this sample, it is likely the metate was used in the preparation of wild plant materials. A second floor sample was taken from below a pallet. AP was low, but included Pinus, Juniperus, Picea, Salix, and Quercus pollen. NAP was low and the only economic taxon present was Zea mays.

Structure 18 had no AP and the NAP was quite low. Also, no economic pollen was present. Therefore, inferences regarding the function of this structure are not possible. Structure 2 had very low AP and moderate to low NAP. Again, no economic pollen was present. Structure 9 had very low AP and low amounts of NAP. Only a small amount of *Zea mays* pollen was present. In general, these structures had very little pollen. Most had no economic pollen, or at best only minimal values of corn, suggesting limited plant processing activities in these structures. Based on this negative evidence, it is possible these were utilized as habitation structures.

MEALING BIN FEATURE

An adobe-lined mealing bin was sampled from the Late Developmental period component at LA 6170. The mealing bin was located in Structure 5A. Arboreal pollen was low, with a small amount of Poaceae, but with moderate concentration values of Cheno-am pollen. The assemblage had high values for *Eriogonum* pollen, and small to trace amounts of Cactaceae, Cylindropuntia, *Sphaeralcea*, and *Zea mays*. The pollen assemblage indicates a variety of plant materials were possibly processed within this feature.

VENTILATOR SHAFT

This particular feature (Feature 125) was associated with Structure 1 at LA 265. The pollen assemblage had a slightly higher than expected pollen concentration value. AP was very low, with low amounts of Poaceae. Cheno-am, Asteraceae, and Artemisia were moderate to high in values. The presence of a small amount of Cheno-am pollen clumps suggests that flowers were present. However, these could have been growing on the surface and simply fallen into the shaft without human intervention. Onagraceae, Cylindropuntia, and Zea mays are present in fairly high amounts. These are probably derived from the activities of the room connected to the ventilator shaft. As such, we can note their presence but an interpretation of function is beyond the scope of these data.

FEATURES

The third form of investigation centered on the similarity of feature type. The data for these are presented separately in Pivot Tables 4 to 11,

Tables 24.12 to 24.20. The feature types can be separated into those that occurred in intramural or extramural locations. Intramural features were below structure floors or in structure walls. Extramural features were in structure fill, attached to a structure exterior (ventilator shaft, for example), or from the general site area. Intramural features for which samples were processed include (the list of feature types). Extramural features for which samples were processed include (the list of extramural features). A third class of features is the large pit features, some of which had smaller interior features from the Earliest Developmental component at LA 6171.

LA 6171 Earliest Developmental Pit Features

All of these feature types were dated to the earliest Developmental period (AD 500 to 650). These features were associated with the earliest occupation of LA 6171. They appear to represent a different aspect of subsistence organization.

Feature 59, located in Feature 56, was defined as a subfloor pit. The assemblage contained low AP and high amounts of NAP, most notably Cheno-am, Asteraceae, Poaceae, and even *Sarcobatus*. The high amounts of NAP could be accounted for by their extramural position, but alternatively, high NAP counts may signify the subfloor pit was covered. Brassicaceae was high for this taxon and was the only economic taxon present.

An unburned, steep-sided pit (Feature 53) was located in an extramural area. The AP and NAP were very low, with no economic taxa present. No function for this feature could be inferred from the pollen.

A cist in a burned bell-shaped pit (Feature 93 in Feature 92) yielded no economic pollen. AP was low with high amounts of NAP, particularly Cheno-am and low spine Asteraceae.

A bell-shaped roasting pit (Feature 56) was sampled and contained no economic pollen taxa. The AP was present only in trace amounts and the NAP contained low or moderate (Cheno-am) amounts of pollen. No feature function could be inferred from these results.

Feature 104, located within Feature 83 (LA 6171), was a subfloor cist or pit. AP was present in trace amounts only. NAP was very low and no economic taxa were present.

Intramural Pit Features

Mealing Basin Features. This feature type was present only during the Coalition period (AD 1200 to 1325). Samples were taken from three mealing basins (Features 102, 103, and 104) in Room 16 (LA 6169). Arboreal pollen consisted entirely of Pinus ponderosa and Pinus edulis, which was present in very small to trace amounts. Cheno-am pollen was moderate to low in all three features and Poaceae was moderate in Features 102 and 103, but present in trace amounts only in Feature 104. No Chenoam pollen clumps were present at Feature 102, but present in fairly high amounts (35.6 and 30.2/g) in the other two features. The high number of clumps suggest Cheno-am plants were brought into the basin features. However, the sample from Feature 102, which had the highest pollen concentration values for Chenoam pollen, had no pollen clumps.

Cactaceae pollen was present from all three mealing basin features, with similar pollen concentration values. Cylindropuntia pollen was highest from Feature 102, with smaller amounts in Feature 104. Zea mays pollen was also present in all three features, but exhibited higher values (53.4 and 30.2 grains/g) from Features 103 and 104. Although there is some overlap of pollen taxa from these features, some degree of specialization may be indicated. Feature 102 seems to be used primarily for processing Cylindropuntia, with perhaps a little Zea mays. Feature 103 shows high concentration values for Zea mays, Eriogonum, and some Cactaceae. Feature 104 contains high amounts of Zea mays pollen and traces of Onagraceae, Cylindropuntia, and Cactaceae. Since all three mealing basins were located in Room 16, some degree of specialization within each feature may be expected and pollen could easily be mixed between the features. At the least, processing of both cultivated and wild, gathered plant material occurred within Room 16.

287

Ash Pit or Area. Pollen samples were submitted from one ash pit and one ash area. Both features were from Early Developmental period structures.

Feature 20 from within Structure 1 at LA 115862 yielded only traces of AP, and low amounts of NAP and no economic taxa were recovered. The characteristics of the ash pit are a very low pollen concentration value consisting primarily of NAP and a trace of AP. Much of the pollen assemblage from this feature could have been destroyed by the heat.

Feature 152 from within Structure 47 at LA 6169 was an ash area. Both the AP and NAP were very low and no economic pollen was recovered. The assemblage contained 1,320 grains/g total pollen concentration values which consisted of *Pinus edulis, Carya,* Cheno-am, and low spine Asteraceae. *Carya* was undoubtedly contamination.

Bell-Shaped Storage Pits. Fifteen bell-shaped or vertical-walled storage pits were sampled from the project. Features 41, 141, 191, and 229 came from structures at LA 265; Feature 121 came from LA 6169; and Features 24, 25, 61, 63,121, 156, 166, 171,183, and 184 came from LA 6171. Five pits from LA 6171 had adobe-plastered openings.

Three samples were submitted from LA 265. One sample came from a bell-shaped pit (Feature 141) within Structure 13, and two (Features 41 and 229) came from extramural locations. AP was very low, although Feature 141 and one extramural feature had small amounts of Juniperus pollen. As expected, NAP was slightly higher from the extramural features than from the structure. Only Feature 229 had Cheno-am pollen clumps. Asteraceae was particularly high in the extramural samples. Feature 141 had high Cylindropuntia, and a small amount of Zea mays. The extramural features had a trace of Eriogonum, high Cylindropuntia, and a trace of Cactaceae. Both Sphaeralcea and Zea mays were high from Feature 41, located within Feature 27, also an extramural feature. Although the indications are slight, it is possible these features served as storage units.

Feature 191 (from Structure 1) was at LA 265. AP was very low with moderate to high amounts of NAP. Cactaceae pollen was present in small amounts and may suggest a storage function for this taxon.

Small Storage Pit. This type of pit (Feature 63) was present at LA 6171, within Structure 50. The assemblage had very low AP and moderate to high NAP. The pit contained moderate to high amounts of both *Sphaeralcea* and *Zea mays. Sphaeralcea* is an insect-pollinated taxon, and the concentration values recovered suggest flowers were being stored. *Zea mays* produced fairly high concentration values (51.43 grains/g) and was probably present in the form of corn cobs rather than pollen bearing structures of the plant. This feature was most likely a storage unit.

The storage bin (Feature 121) at LA 6169 had higher than anticipated values for *Zea mays*, which probably reflects some of the plant material stored. Although wind pollinated (anemophilous), *Zea mays* pollen is released by mid-summer, but much of it is trapped in the husks and at the base of the peduncle where the ear is attached to the stalk. The values of *Zea mays* indicate that more likely the fruits were being stored within the bin feature, probably with the husks attached, suggesting intramural storage of corn or corn products.

Storage Pits. Two storage pits (Feature 24 and 25) were inside Structure 18 at LA 6171. Feature 24 had low AP and very low NAP. Onagraceae, *Sphaeralcea*, and Cactaceae were present in low amounts, but *Zea mays* was very high, suggesting this pit was used primarily for the storage of corn materials and other plant taxa.

Feature 25 had very low AP and low NAP. Significant amounts of Cheno-am pollen clumps were present and it would be interesting to determine whether *Chenopodium* seeds were also numerous in this feature. The only economic taxon present was *Zea mays* in very low amounts. This evidence indicates a storage unit for harvested corn materials. **Small Storage Pit.** A sample was obtained from a small storage pit (Feature 61) that was within the wall of Feature 56 at LA 6171. AP was present in trace amounts only and NAP was quite low. Traces of Cylindropuntia were the only economic taxa present. Based on the low occurrence of this taxon, no function can be interpreted.

Samples from five storage pits with adobeplastered openings were submitted from Structure 50 at LA 6170. AP was very low and consisted almost entirely of Pinus ponderosa and Pinus edulis. NAP pollen was generally low, with the exception of low spine Asteraceae. Artemisia pollen was generally moderate to high in these features and economic pollen was quite variable. Feature 156 had only Cactaceae pollen and this taxon was absent from the remaining four features. Feature 166 had a small amount of Cylindropuntia and a moderate amount of corn pollen. Feature 171 had a small amount of Polygonum, Cylindropuntia, and Zea mays pollen. Feature 183 had Onagraceae and a large amount of Solanaceae, while Feature 184 had very high amounts of Polygonum, traces of Cylindropuntia, and a moderate amount of Zea mays. Since these pits all came from Structure 50, I suspect each pit served a unique purpose. The taxa seemed to have a degree of overlap between the pits, but each was unique in either the combination or concentration values of the taxa present. The exact purpose of these pits is unknown, but it is possible they were ceremonial in nature.

Intramural Posthole Features

All postholes are from the Early Developmental period (AD 700 to 900) structures. Samples were taken at LA 265, LA 6170, LA 6171, and LA 115862. Each of the posthole features will be discussed separately. The data for these features are found in Pivot Table 9.

LA 265. A sealed posthole (Feature 76) was in Structure 4 (LA 265). AP was low with low to moderate NAP. Onagraceae, Cylindropuntia, and *Zea mays* pollen were all present. These taxa were probably brought in via cultural vectors, considering the provenience is a sealed pit within a structure. The likelihood of this being a natural deposition is minimal.

LA 6170. Features 14 and 39 were sampled from Structure 5. Feature 14 yielded only *Pinus edulis* pollen as the arboreal component and pollen concentration values were extremely low. Poaceae pollen was high along with a moderate amount of Cheno-am pollen. Low spine Asteraceae and *Artemisia* pollen were very high. These taxa may represent the NAP natural deposition into the area. *Artemisia,* however, had significantly higher pollen concentration values (249 grains/g) from this feature and it is possible *Artemisia* pollen indicates a ritual use of this taxon. *Artemisia* has long been used as a ceremonial cleansing agent among Native American populations.

Feature 39 in Structure 5 was sealed by the floor. The pollen assemblage was similar to Feature 14 in the distribution of taxa if not in pollen concentration values. Pinus edulis pollen was the only arboreal component present and it was present in trace amounts. Poaceae and Cheno-am pollen were both low, Asteraceae were absent, but *Artemisia* was high (69.98 grains/g). Again, it is possible *Artemisia* pollen was used ceremonially. Onagraceae pollen (2.68 grains/g) was the only economic taxon present within the feature, based only on the presence of a single grain, so its presence may be accidental. Hopefully, the flotation and macrobotanical data will verify this interpretation.

Structure 50 had two postholes (Features 160 and 173) sampled. These were thought to be main roof supports. Feature 160 had only one-fifth the pollen concentration values obtained from Feature 173, although Feature 160 had a fairly large amount of economic pollen. Pinus values were quite low, although Cheno-am pollen was extremely high (4,615 grains/g) from Feature 173. While there was a small amount of Cylindropuntia pollen from Feature 160, the majority of the economic taxa consisted of corn. Since Feature 160 was a main

roof support, I suspect the corn pollen was used ceremonially. The other main support post had very high Cheno-am pollen and if it was located near the opening of the structure, the natural pollen rain may have masked the ritual use of corn pollen from the other feature, or perhaps it was not used.

LA 6171. Two samples from postholes (Features 19 and 31) were submitted from LA 6171. Feature 19 was a remodeled posthole in Structure 18, and Feature 31 was a double posthole in Structure 26. Feature 19 had very low values of Pinus edulis pollen, high amounts of Poaceae and Cheno-am pollen, along with high values for other NAP including Asteraceae, *Artemisia*, and *Ephedra*. Cylindropuntia, *Sphaeralcea*, and *Zea mays* pollen were all very high. This suggests some sort of ritual or ceremonial activity occurred during the placement of the posts, or the economic taxa was inserted during remodeling.

A double posthole (Feature 31) was in Structure 26. Arboreal and NAP taxa were very low and the total pollen concentration values were two of the lowest of this feature type. Only a small amount of *Zea mays* pollen was present in one of the structures. I suspect *Zea mays* pollen was used sparingly during a ritual in this posthole.

LA 115862. Two postholes in Structure 1 were sampled, one from the northwest quadrant (Feature 223) and the other from the southwest quadrant (Feature 221). Pinus pollen was low from both samples, although the southwest quadrant contained a trace of *Picea* pollen. This sample also had slightly larger values for Poaceae and Cheno-am than the other posthole. The northwest posthole had no economic pollen, while the southwest posthole had a small amount of Zea mays, in addition to Cactaceae, Cylindropuntia, and Sphaeralcea. This is very similar to the main roof supports from LA 6170 (Structure 50, Feature 160) where only one contained economic pollen taxa. This is extremely interesting and may indicate pollen was used only ceremonially in specific instances of roof supports. The archaeological and macrobotanical data may provide more insight into this situation.

In examining the pollen assemblages from these postholes, it is apparent some type of ritual behavior was conducted. Several of the individual postholes contain large amounts of Artemisia pollen, which is extremely high, and too high to have been deposited naturally. Zea mays pollen is the next most common pollen taxa and is known to have been widely used ceremonially in these structures. Cylindropuntia and Cactaceae pollen are also present in quantities too high to suggest natural deposition. While used to a lesser extent than other economic taxa, they were probably also used ceremonially. The main roof supports are very intriguing because only one posthole in each pair appears to have been ritually treated.

Ceremonial Features

Features included are sipapus, niches, and a possible foot drum. These features may indicate that structures served a ceremonial function, in addition to their use as residences. Niche features are also found in habitation structures. The grouping of the sipapu, foot drum, and wall niches were done to facilitate discussion of possible ritual features.

A single sipapu (Feature 182) was sampled from LA 6170 and it was the only one from the project. The feature was located in Structure 50. Pinus pollen was extremely low, with no other arboreal pollen types present. NAP was also extremely low and Artemisia was completely absent. Solanaceae and Cylindropuntia pollen were present in low amounts, whereas Zea mays pollen (38.5 grains/g) was fairly high. This is consistent with the known function of sipapus. Interestingly, when comparing previously analyzed sipapu features from New Mexico, Solanaceae pollen was a common constituent of the pollen flora from these features (Holloway, personal data files). Also, Zea mays pollen, although present, was normally present in small amounts. While the exact ceremonial function of the sipapu remains unknown, it is becoming increasingly apparent that corn and Solanaceae were included to some degree.

A sample from a slab-covered wall niche

from Feature 207 in Structure 13 was submitted from LA 265. This sample provenience was unique for the project. Both the AP and NAP had very low pollen concentration values. The feature yielded fairly high concentration values for Cylindropuntia (54 grains/g) and Platyopuntia (27 grains/g), but fairly low amounts of Zea mays (6.2 grains/g). All of these economic pollen taxa were likely deposited via a cultural vector. The pollen concentration values, particularly for Cylindropuntia and Platyopuntia suggest that the fruits of the various cacti may have been placed within the niche. The low concentration values for corn also suggest that the fruits were being left. Perhaps the macrobotanical and flotation data can support this idea. Also, a fairly high number of Cheno-am pollen clumps (27/g) were present. This is strong evidence that Chenopodium flowers were also placed within this niche. Since the sample was taken from within a niche, covered by a slab within a structure, there are sufficient avenues of blockage to effectively screen out most of the normal pollen rain that could have entered this structure. Given the total pollen concentration value of over 1,300 grains/g, I also suspect that this feature was used repeatedly.

Two wall niches were sampled from LA 6169; Feature 41 from Structure 4 and Feature 163 from Structure 47. The sample from Feature 41 in Structure 4 had a very large total pollen concentration value of 6,446 grains/g which was 49 times the amount of pollen recovered from the other feature. AP was low but there was a trace of Picea pollen. Cheno-am pollen was very high (4,657 grains/g) which accounted for 72 percent of the assemblage. Poaceae pollen was low, but Asteraceae, Artemisia, and Ephedra pollen were all very high. It may be unlikely that *Chenopodium* type plants were placed within the wall niche, although a fairly large number of Cheno-am pollen clumps (16.8/g) were recovered. However, Cheno-am pollen clumps were also found within the slab-covered wall niche (above). The two similar occurrences indicating the presence of flowers (Bohrer 1981) cannot be a coincidence. While the wall niche may

have been located in close proximity to the door or roof opening, giving the possibility that Cheno-am pollen was accidentally deposited, I strongly suspect that the high Cheno-am values are best interpreted as an intentional offering. Alternatively, it appears as if the economic taxa were deposited ritually (see below). At a later time, it is possible that this structure was re-used, and perhaps the wall niche was used to store *Chenopodium* type plants. Thus the enormous quantities of Cheno-am pollen may have been added later to this assemblage. This interpretation does not refute any of the above data, but I believe it would be harder to verify. Also, this might indicate that the same occurrence occurred in the slab-covered niche from LA 265. While reuse is certainly possible, I believe the simplest explanation is that *Chenopodium*, on occasion, has been used in either a ritual or ceremonial capacity. Perhaps these suggestions can be verified by other archaeological data.

A rather large number of economic taxa were present within this assemblage. Onagraceae, Polygonum, Cactaceae, Cylindropuntia, and Platyopuntia were present in small amounts along with very high amounts of both Sphaeralcea and Zea mays. The presence of Platyopuntia is interesting because Platyopuntia is not often found in these samples, most often Cylindropuntia pollen is recovered. The fact that Platyopuntia pollen was consistently recovered from niche samples suggests that these plants were routinely left within these features. The pollen concentration values for Cylindropuntia, Cactaceae, and Platyopuntia are low enough to suggest that fruits of these plants were left within the feature. Onagraceae, Polygonum, and Sphaeralcea pollen likely indicate that flowers were being left. Onagraceae and *Polygonum* produce relatively little pollen but Sphaeralcea has an indeterminate growth habit, producing flowers continually throughout the growing season. Thus, a plant of Sphaeralcea, in the middle to later portion of the growing season, would have large numbers of flowers still on the plant. The very high amounts of Zea mays, on the other hand, suggest that corn pollen was being added to the assemblage. This would suggest that the niche feature was used ceremonially.

The second wall niche, Feature 163, was from Structure 47, but the sample contained only 131 grains/g total pollen concentration values. Cylindropuntia and Onagraceae pollen were the only economic taxa present. I suspect that both cholla fruits and Onagraceae flowers were placed within this feature. However, a concentration value of only 131 grains/g is suspicious. No Indeterminate pollen was recovered from this sample, but I suspect that this assemblage has been severely altered by weathering. Perhaps other economic indicators had been destroyed completely.

Feature 107 was a linear foot drum excavated into the floor of Structure 1 at LA 265. The AP was present in trace amounts only and the NAP was very low. Cylindropuntia was the only economic taxon present and it had low amounts.

Extramural Features

Bell-Shaped Storage Pits. A number of bellshaped or vertical-walled storage pits were sampled from the project: Features 41, 141, 229 from LA 265; Feature126 at LA 6169; Feature 69 at LA 6170; and Feature 47 at LA 6171.

A bell-shaped pit (Feature 127) at LA 265 came from an extramural area. AP was low, with low to moderate NAP and high Chenoam pollen. Cactaceae, Cylindropuntia, and *Zea mays* pollen were all very high, suggesting these taxa were stored in this pit.

A bell-shaped storage pit (Feature 69) was excavated at LA 6170. Arboreal pollen was low, but small amounts of *Juniperus* and *Picea* pollen, in addition to *Pinus* were present. NAP was low, with the exception of Asteraceae, but a significant number of Cheno-am pollen clumps were also recovered. Onagraceae, *Eriogonum*, and *Sphaeralcea* were present in low amounts, with moderate Cylindropuntia. High amounts of *Zea mays* suggest corn was the dominant taxon stored in the bell-shaped pit along with other plant materials.

Feature 126, a large storage pit from LA 6169, was sampled. The AP was very low and NAP was low, but it did contain a significant number of Cheno-am pollen clumps (17/g). The only economic taxon present was a small

amount of *Zea mays.* This particular storage pit could have been used to store harvested corn. The low pollen concentration values for *Zea mays* is consistent with the storage of the fruit. Extramural storage of corn appears to be consistent with the organization of the habitation structures for the Late Developmental and Coalition periods. This may be particularly true for Coalition period features, when plant processing activities appear to have shifted away from habitation structures to specialized areas. This storage pit may reflect elaboration of a more specialized use of space and facilities.

Small Storage Pit. A small pit (Feature 47) was located at LA 6171. It is included with the extramural bell-shaped storage pit group. AP was present in trace amounts only, NAP was low, and Cheno-am pollen was high. Cactaceae was present in small amounts and the only economic taxon present. The pollen assemblage suggests this small pit feature was used to store fruits of the Cactaceae family.

Miscellaneous Pit Features. Miscellaneous pit features include large irregular pits, large oval pits, and a roasting pit. These features were located at LA 265 (Features 14, 15, and 17) and LA 115862 (Features 9 and 11).

Large Irregular Pits. Two large irregular pits were present at LA 265 (Features 14 and 15), and both came from extramural locations. The AP was present in trace amounts with moderate to high values of NAP. Cactaceae and Cylindropuntia dominated Feature 15, while Zea mays dominated Feature 14. This undoubtedly demonstrates a storage function with a specialization as to storage content between the two samples. Feature 14 however, was represented by nine samples, while Feature 15 had only a single sample. While the average concentration values reflect this suspected specialization, the distribution of economic pollen taxa from Feature 14 reflects a much higher pollen concentration value for these economic taxa than might be suspected. In conclusion, these two irregular-shaped pits served entirely different and separate functions.

Large Oval Pit. This pit type (Feature 17) was located at LA 265. AP was very low, with low to moderate NAP. Only a small to moderate amount of *Zea mays* was present as the only economic taxon. Potentially this might indicate storage of corn cobs.

Roasting Pits. Two roasting pits identified at LA 115862 (Features 9 and 11) were from extramural locations. The AP was either absent or only in trace amounts. NAP was very low, with the exception of low spine Asteraceae from Feature 9. No economic pollen was present from either of the two features.

Bell-Shaped Pits Containing Human or Dog Burials. A number of bell-shaped pits associated with burials were also extramural features (Features 23, 24, 26 and 60) at LA 265.

Feature 24 contained an adult burial, which was only characterized by traces of AP and very low NAP. The pollen sample was taken from the floor of the feature, not from the burial matrix, and was intended to yield subsistence information relating to the storage function of the feature. Both Cylindropuntia and *Zea mays* were fairly high. The pollen concentration values might indicate a storage of flowers, corn remains, or possibly fruits. The extramural location of the feature would probably indicate storage of fruits rather than flowers.

Feature 23 was an infant burial pit at LA 265. According to the archaeologist, the pollen sample was taken from Stratum 3, below the burial and near the floor. This fill is different from the upper Strata 1 and 2, which appear to be eolian postoccupational fill that predates the burial. The burial was placed on top of this stratum and covered with upper strata, which contained more charcoal and cultural materials. No pollen sample was taken from the burial matrix. Again, the sample was designed for subsistence information relating to storage function. Arboreal pollen was low, but higher than in the adult burial. This assemblage contained small amounts of Picea pollen. NAP was high, particularly Cheno-am. The burial had high amounts of Cactaceae and Cylindropuntia, but no corn pollen. This may suggest storage of certain gathered plant materials.

Two of the features at LA 265 (Features 26 and 60) were from bell-shaped pits that contained dog burials. The sample was taken 8 cm above the floor, just under the dog bones to elicit information on the refuse. The AP from these features was low, although Feature 60 contained small amounts of Prosopis pollen. NAP was moderate to high, but the NAP appeared slightly higher from Feature 60, than Feature 26. Cactaceae and Cylindropuntia pollen was high in both features. Feature 60 had small amounts of Solanaceae and Platyopuntia pollen, which was absent from Feature 26. Zea mays pollen was moderate in Feature 26 and extremely high (630 grains/g)in Feature 60. Corn pollen, and guite likely flowers of several members of the Cactaceae, appeared to have been present, possibly accumulations from other storage facilities or habitation floor sweepings.

Burial Features. Two burial features were sampled in addition to pollen wash samples from ceramic vessels associated with burials. Both samples date to the Developmental period.

The sample from Feature 85 (LA 6171), a human burial, yielded no economic pollen and the total pollen concentration values were only 730 grains/g. There was no indication of where the samples were taken within the gravesite, but it is likely the low pollen concentration values were the result of preservation. Surprisingly, no indicators of graveside rituals were present.

A turkey burial (Feature 19) was excavated from within Feature 15 (LA 265). It was surprising the burial had a fairly large quantity of economic pollen types. Cylindropuntia (83 grains/g) and Cactaceae (12.4 grains/g) were high, with high amounts of *Sphaeralcea* (24.8) and *Zea mays* (55.86 grains/g). The sample was taken from an extramural location, but the concentration values are too high to interpret the presence of these economic taxa as being deposited via the natural pollen rain. Rather, these taxa appear to have been deposited via a cultural vector.

The pollen assemblage was collected from inside the gizzard stones, which were collected in the laboratory, therefore decreasing the pos-

293

sibility that the assemblage was either rodent or human introduced and probably reflects the turkey's diet just prior to death. The tibia exhibits a healed fracture, suggesting it did not roam freely later in its life.

The presence of Sphaeralcea, Cylindropuntia, Cactaceae, and Zea mays probably reflect different plant materials that may have been fed to the turkey. At least, in the case of Sphaeralcea, these may have been growing locally. Some corn materials may have been fed to the turkey and possibly cactus fruits, which were either fed to the turkey, or were growing in the vicinity for the bird to eat. The presence of fruits would therefore, infer a late summer or early fall time period. If flowers were eaten, the time period represented might be slightly earlier. If a large number of seeds were present in the flotation sample, this would suggest the ingestion of fruits rather than flowers and might be a way to infer the food being eaten.

Extramural Activity Areas

Two extramural activity areas were recovered at the project. A cobble concentration and ash stain in Feature 3 at LA 249, and a possible plant procuring area in Feature 5 at LA 6170.

Feature 3 from LA 249 was a cobble concentration associated with an ash stain, which had 1,237.5 grains/g total pollen concentration values. The occupation period is unknown. AP and NAP is very low, although a small amount of Salix pollen is present. The only economic taxa present was Cactaceae in very small amounts.

Feature 5, from LA 6170, is an activity area dating to the Late Developmental period (AD 1100 to 1200). The AP is very low, although there is a small amount of *Prosopis* pollen. Cheno-am, high and low spine Asteraceae, and *Artemisia* are high with small amounts of Poaceae and *Ephedra*. A total of six economic taxa are present including *Polygonum*, *Eriogonum*, Cactaceae, Cylindropuntia, *Sphaeralcea*, and *Zea mays*. *Sphaeralcea*, Cylindropuntia, and *Erigonum* are high. This probably suggests an outdoor plant preparation area that concentrated upon locally available naturally occurring plants with a lesser emphasis upon cultivated varieties such as corn.

POLLEN WASH DATA SET

All of the pollen wash samples were taken from ceramic artifacts found in conjunction with human burial features. Pivot Table 14 provides the mean pollen concentration values of selected taxa by the type of burial.

A single pollen wash was taken from a plain utility jar associated with this adult burial (LA 265, Feature 24). Interestingly, this sample had almost no background or arboreal pollen concentration values. While Cheno-am pollen was somewhat high, no economic pollen taxa were present either. This may suggest that either this adult was buried during the winter months, when ambient pollen deposition is at the lowest point, or perhaps, ceremonial activities associated with interment did not include the use of pollen or flowers

Two pollen wash samples were submitted from vessels associated with child burials from LA 6169 (Feature 49) and LA 115862 (Feature 6). The burial from LA 6169 had the highest values for *Pinus edulis*, *P. ponderosa*, and had the only occurrence of *Abies* pollen. This burial was placed within a structure limit, but along the upper wall with interment occurring after the structure was abandoned. The presence inside a structure may explain the higher concentration values for certain arboreal taxa, specifically *Picea*, *Abies*, *Alnus*, and *Quercus*.

The burial vessel from LA 115862 had very little pollen in the assemblage although *Zea mays* was present in amounts of 0.48 grains/sq cm. The *Zea mays* pollen from this context suggests that *Zea mays* pollen may have been used ceremonially, although somewhat sparingly.

The ceramics associated with the child burial (Feature 49) from LA 6169 included a partial vessel and a jar. As might be expected, the sherds produced a smaller pollen assemblage than did the jar. Overall the samples yielded a slightly large number of taxa than did the vessel from LA 115862. The samples yielded Cactaceae, Cylindropuntia, *Zea mays*, Rosaceae, and *Polygonum* pollen that may have certain ceremonial functions within the burial context. Based on the pollen taxa present, the variety of economic plant taxa recorded for these ceramics suggests a

mid-late summer period of burial.

A number of female burials (n = 5) were sampled from three sites: LA 265 (Features 22, 24, and 244), LA 6169 (Feature 2), and LA 115862 (Feature 7). The burial from LA 6169 (Feature 2) had four vessels that yielded ceramic pollen wash samples. The arboreal pollen concentration values were low, no Poaceae pollen was present and the Cheno-am concentration values were extremely low. The economic pollen concentration values were also low and these were restricted to the presence of *Zea mays* and Rosaceae pollen in single instances. The limited suite of pollen taxa precluded any determination of season of interment from this feature.

Nine additional pollen wash samples were associated with female burials from sites LA 115862 (Feature 7) and LA 265 (Features 22, 24, and 244). *Pinus* values were low, but these had the highest mean concentration values of economic taxa. *Zea mays* pollen was fairly common in these burials, but in lower values. Traces of Cactaceae and Cylindropuntia pollen were present, but these two taxa were present from three of the four burials. *Eriogonum* and Liliaceae pollen were intermittently present and only from single samples from LA 115862. This again precludes a determination of seasonality.

The single male burial for which pollen wash samples were submitted was from the Late Developmental period. The burial was interred in the lower post-abandonment trash fill of Structure 76. This is the same structure that had Feature 49 located along the upper wall. The male burial had slightly higher values of both Pinus ponderosa and P. edulis, but these were not significantly higher. The increased Pinus values could simply have been because the burial was within a structure, near an opening. Economic pollen was also slightly increased from other pollen wash samples and consisted of small amounts of Erigonum, Platyopuntia, Sphaeralcea, and Zea mays. These taxa indicate some type of graveside ritual that included the flowers of these taxa. This might place the time of interment in the late spring or early summer period.

Tables 24.15 and 24.16 categorize the data essentially by period although in Table 24.15 this is broken down further by ceramic vessel type. Several interesting correlations appear. Zea mays is present in all periods. The average concentration values within the Early Developmental period (AD 750 to 900) from both LA 265 and LA 6169 are virtually the same. However, they are slightly elevated from LA 115862 during this same period. Cucurbitaceae pollen is present only from LA 265 and Sphaeralcea pollen is present only from the Late Developmental period at LA 6169 and from the Early Developmental period at LA 115862. Artemisia, Solanaceae, Rosaceae, and Polygonum are all absent from LA 115862. Platyopuntia pollen is present only from the PII-III period components (LA 6169) and from the Early Developmental period at LA 6169. Solanaceae is present only at LA 265, whereas Rosaceae and *Polygonum* are present only at LA 6169. This suggests that many of the economic taxa utilized within these burials were used only when locally available.

Bowls were present in both major periods and all had corn pollen. Cactaceae pollen was present from the Early Developmental, but Platyopuntia and *Artemisia* were present only in the Late Developmental period. Jars were present from the Early Developmental period and had both *Zea mays* and Cactaceae pollen. This suggests that corn pollen and perhaps Cactaceae fruits were used as offerings.

Mugs and pitchers were present only from the Early Developmental period. The mug had no corn pollen, but small traces of Cylindropuntia pollen was present. The pitcher had corn, Cucurbitaceae, Cactaceae, Cylindropuntia, Platyopuntia, and *Artemisia* pollen. This suggests that either a variety of cultivated and gathered plants were present within this ceramic or perhaps more of a liquid offering may have been presented.

Seed jars were all from the Early Developmental period. These had *Zea mays, Sphaeralcea,* Cactaceae, Cylindropuntia, and Solanaceae. This also suggests that a variety of plant offerings were being presented.

There was no direct correlation between the

type of ceramic vessel and the total pollen concentration values obtained. There was also no correlation between the total pollen concentration values and the size of the area washed. The highest concentration values were obtained from jars, but this type also had some of the lowest values recovered. Likewise there was little correlation between specific taxa, vessel form, and the occupation period. This may be related to the relative size of the sample. Of the 17 pollen wash samples, 16 were taken from Early Developmental period samples and only one sample was from the Late Developmental period. Perhaps this would change with a larger sample from the later period.

REVIEW OF ECONOMIC TAXA RECOVERED

Arboreal

Juglandaceae.

Carya. Carya (hickory, pecan) is not native to New Mexico. Historically, this taxon was introduced into both southern New Mexico and Arizona commercially. It was present in only a few isolated locations. Interestingly, Gish (1993) noted the infrequent occurrence of this taxon from the Colorado Plateau and she interpreted this as representing long-distance transport from the southern areas of Arizona and New Mexico.

Ulmaceae.

Ulmus. Ulmus (elm) is not native to this portion of New Mexico. The American elm (Ulmus americana) is the most widespread ranging from the New England area and adjacent Canada to Florida and west to the western border of North and South Dakota in the north and to approximately central Kansas, Oklahoma, and Texas in the southern portion of its range (Fowells 1965). Several other species are more restricted to either the upper Midwest or the southeastern U.S. Ulmus currently is present on the Colorado Plateau, but this is a recent historic introduction. Given the limited archaeological occurrence of this taxon it is fairly evident that a modern source is likely. As such, this taxon was excluded from the tables.

Salicaceae.

Salix sp. Among the Navajo, willow sticks and ash are used ceremonially (Elmore 1943, 1944). It was also used as ties or cordage. Among the Tewa, this wood was used in roof construction, prayer sticks, and in basket construction and the charcoal was used as a body paint (Robbins et al. 1916).

Both the Jemez (Cook 1930) and Isleta (Jones 1931) Pueblos used willow stems and branches for roofing material. Isleta also had medicinal uses for this plant. The Zuni also used it in construction (Stevenson 1915).

Fabaceae.

Prosopis. This taxon was present in only a limited number of samples. Prosopis pollen is distinguishable from other members of the Fabaceae, however, the surface ornamentation is easily degraded from this pollen grain and very little deterioration to the grain removes all identifying features. Thus, once degraded, it would be placed in the indeterminate category. I suspect that Prosopis was much more extensive in these sediments than the numbers indicate but that the vast majority of these grains are within the indeterminate category. Prosopis seeds are used by the Kawaiisu as a food source (Zigmond 1981). The seeds are removed from the pods, pounded, and made into cakes. Other informants indicated that the pods were utilized but not the seeds. McCown (1929) suggested that both the pods and seeds were ground into meal and then mixed with water and allowed to dry. Castetter and Bell (1937) also indicated that there were differences in uses among several groups throughout the Southwest.

Prosopis glandulosa was utilized as a food or beverage among both the southern Tiwa (Sandia and Isleta) and among the Western Keres (Acoma, Isleta) Pueblos (Dunmire and Tierney 1995). This was based on references by Castetter (1935). The plant was also used medicinally and in the construction of implements (Jones 1931).

Prosopis julifera or *P. velutina* is present in the Sonoran Desert area of central and southern Arizona and was used by the Pima and Papago groups. The Papago used the plant primarily as a dermatological aid in which the pulverized or chewed leaves were applied topically to sores or red ant bites (Moerman 1986; Castetter and Underhill 1935a, 1935b). The Pima used this taxon in a variety of ways. A cold infusion of leaves was used for headache and stomach problems while a decoction of the gum was applied topically for sores or open wounds, or as an eye wash or placed in the mouth for painful gums. An infusion of the roots was taken for diarrhea while a decoction of the beans were used for severe sunburn (Moerman 1986; Curtin 1949; Russell 1908).

Castetter and Bell (1937) noted that mesquite beans were a principal article of Pima and Papago food. The beans were ground by the Papago in rock mortars called *perchita* holes. Screwbean (*P. pubescens*) was widely used by the Pima as food. This taxon was common along the Gila River although rarely used by the Papago (Castetter and Bell 1951). Mesquite was used as fencing around fields, as agricultural implements and in dam construction. Mesquite pods were pounded with a wooden mortar, seeds removed, and the flour mixed with parched cotton seed flour. These two flours were mixed and molded into a cakelike tortilla (Castetter and Bell 1951).

The Pima also used *Prosopis pubescens* as a dermatological aid (Curtin 1949) and the pods were twisted into the ear to cure an earache by the Tewa (Robbins et al. 1916).

Herbaceous Taxa

Onagraceae. This plant is normally used either medicinally or ceremonially. Castetter (1935), Wyman and Harris (1951), Elmore (1944), and Moerman (1986) all report these various uses. Oenothera caespitosa pollen was used by the Kayenta Navajo singers in sand paintings (Wyman and Harris 1951). *Oenothera pallida* was also used with other medicinal plants as an infusion for kidney disease (Wyman and Harris 1951). *Oenothera albicaulis* fruits were used as food by the Mescalero Apache (Castetter 1935). *Oenothera trichocalyx* was eaten by the Papago and was prepared by boiling the plant (Castetter and Bell 1951).

Onagraceae (Evening Primrose Family) pollen was present in nine samples. This is a very large pollen grain, is entomophilous, and produces very small quantities of pollen. Thus, its presence is usually indicative of a cultural behavioral pattern. This taxon appeared to be primarily associated with pit features or wall niche features. In addition, a fairly large concentration value was obtained from the vent shaft in an extramural feature from LA 265.

Fabaceae. Pollen of this family (Bean Family) was recovered from only two samples. None of the pollen was attributed to the cultivated genus *Phaeseolus*, but rather is probably from one of the many wild members of this family common in the area. One of the samples containing this taxon was from the floor of Structure 5A, dating to the Late Developmental period. The other sample, which had the higher concentration value, was from an unknown feature from this same time period.

Solanaceae. Several genera of the Solanaceae Family (Nightshade Family) are native to New Mexico, and notably, Nicotiana and Datura were extensively utilized prehistorically. Lycium is also commonly associated with archaeological sites in the Four Corners area of New Mexico. Several genera or at least groups of genera (Holloway and Dean 2000) can be distinguished by morphological characteristics of the pollen grain. Datura and Nicotiana pollen can both be identified at least to genus based upon several characteristics. Although several species of Nicotiana are known from this area and were domesticated prehistorically (Winter 1974), the Solanaceae pollen recovered from this project belonged to neither Nicotiana nor Datura.

The grains were generally small and fell within the size range of the *Solanum/Physalis* group of this family. Both of these genera are common in the area and probably were exploited prehistorically. Winter (1974) has listed the wild potato (*Solanum jamesii*) and the wild tomato (*Solanum triflorum*) as probable encouraged plants, the latter being used cere-

monially. Species of both genera are used medicinally (Moermann 1986) as well as for food by the Navajo and other populations of this area. Several important subsistence genera including *Lycium* sp. (wolfberry), *Nicotiana* sp. (tobacco), and *Physalis* sp. (groundcherry) are common in the local flora and would have been available for exploitation.

Solanaceae pollen was present in five samples. It was present from one of the dog burials (bell-shaped pit at LA 265), a storage pit with plastered opening (Feature 183, Structure 50, LA 6170), and a storage pit from Structure 18 at LA 6171. The latter two occurrences had very high concentration values. It was also present in small amounts from the sipapu sample (Feature 182) from Structure 50 at LA 6170.

Polygonaceae.

Polygonum. This pollen type was present in only six samples. It is also entomophilous and is generally extremely rare in archaeological samples. It was present from the floor and wall niche samples from Structure 4 (LA 6169): from two pits with plastered openings (Features 171 and 184) from Structure 50 (LA 6170); Feature 5, a mano and metate cache from LA 6170; and from a floor sample under a metate in Structure 60, LA 6171. Wild dock was semicultivated by the Hopi and the Kayenta Navajo for food and medicine (Winter 1974).

Eriogonum. This taxon, a member of the Polygonaceae Family, was slightly more common than Polygonum, occurring in nine samples. The highest values occurred in the turkey burial (LA 265), floor of Structure 4 (LA 6169), mealing basin from Room 16 (LA 6169), and the activity area and adobe-lined mealing bin from LA 6170. It was present in smaller amounts from a bell-shaped storage pit, Feature 127, LA 265); floor of Structure 2 and bell-shaped subfloor storage pit from LA 6170; and the floor under a metate from Structure 60 in LA 6171. Winter (1974) has reported that the Hopi cultivated this plant as a tobacco substitute. The presence of this pollen type from the pits and from the floor samples may indicate an economic or perhaps food usage for this taxon.

Brassicaceae. The pollen of the Brassicaceae Family (Mustard Family) was rare (n = 3 samples). This family is entomophilous, the flowers are small and produce very little pollen. Thus, their occurrence, even in small amounts, is important. This taxon occurred in a subfloor pit and a floor from LA 6171, as well as from the unidentified extramural feature from LA 265. Given the dispersion mechanism for this taxon, I suspect they were used economically but it is equally possible that they reflect simply the background pollen rain. Members of this family were widely used historically for spice and greens (Castetter and Bell 1951; Felger and Moser 1985).

Descurainia sp. (tansy mustard). The seeds and greens of this early spring plant are often used as food items (Dunmire and Tierney 1995). These plants are classified as weeds growing in disturbed habitats and along roadsides. It is very common within the ruins of Kuaua Pueblo (Coronado State Monument) and on the talus slopes beneath cliff dwellings at Frijoles Canyon and Tsankawi Pueblo. Dunmire and Tierney (1995) suggest that it may be an indicator of prehistoric fields when found in abundance on bottomlands.

It is used in making a black pottery paint. According to Dunmire and Tierney (1995:181) "the seeds . . . are ground in a mortar until an oily liquid forms. This liquid is then mixed with iron pigment and used to paint patterns on the pottery."

Descurainia pinnata was a source of spring greens among the Navajo (Reed 1999; Allen and Nelson 1982:678). Among the Pueblo (Reed 1999; Allen and Nelson 1982:671), the seeds were made into flour or mush. This was often mixed with other foods because of a "peppery" taste. The Hopi also used this plant as spring greens and in making pottery paste (Reed 1999; Whiting 1939:77).

In a summary of flotation data from the WCRM Project in McKinley County, New Mexico, Reed (1999) noted the abundance of this seed type from several temporal periods. *Descurainia* was slightly less than 20 percent in Archaic period samples. It was approximately 18 percent in the Middle Archaic and slightly above 20 percent from the Late Archaic. It was approximately 15 percent from Basketmaker II

samples, increasing to approximately 22 percent in early Basketmaker III, but decreasing to about 18 percent in Late Basketmaker III. Pueblo I period samples contained about 19 percent, dropping to just above 10 percent in Early Pueblo II and 5 percent in Late Pueblo II and Pueblo III. In summary, this taxon is present in just below 20 percent of the samples from the Archaic through Pueblo I, with a decline in abundance in the following periods.

Two species were associated with the Kawaiisu (Zigmond 1981) from Southeastern California, *Descurainia pinnata* and *D. sophia* (a native of Europe). The plant was an important food source for this desert group. "When the plant is turning brown early in June, the seeds are beaten out with a seed-beater into a gathering basket, parched with hot coals on a flat tray, pounded in a bedrock mortar-hole, sifted for fineness on the flat tray, and mixed with cold water. The end result is a nourishing beverage. The seeds may be stored as gathered or after pounding" (Zigmond 1981:26).

Castetter and Bell (1951) noted that the Papago utilized tansy mustard along with other small seeds. No indication of preparation was given, however. Fish et al. (1992) reported that *Descurainia* seeds were present from the early Pioneer and early Colonial periods from the Dairy site (AZ AA:12:285). This taxon was less ubiquitous from the late Pioneer period at the same site however.

Cactaceae Family. The fruits of all cacti, young pads and flower buds of prickly pear, and flower buds of cholla cactus were important historic Indian resources (Castetter and Bell 1951; Crosswhite 1982; Curtin 1949; Felger and Moser 1985). The Hohokam (Gasser and Kwiatkowski 1991a) emphasized a subsistence use of various cacti and there is increasing evidence for the cultivation of cholla and other cacti (Bohrer 1991; Fish 1984) as well as agave (Fish et al. 1992).

Cylindropuntia. Tunas were cooked and prepared for consumption. A large amount of Cylindropuntia pollen was obtained from a prehistoric pueblo near the Petroglyph National Monument at Albuquerque, New Mexico. This site dated between AD 1 and 500 and had grinding stones, but no evidence of pottery or corn. It was interpreted that the people were subsisting on wild plant foods, including Cylindropuntia. Cholla contains few calories but a 2-tablespoon serving contains as much calcium as a glass of milk (Dunmire and Tierney 1995).

This taxon was present in 35 features. The highest concentration values appeared associated with bell-shaped or keyhole structures that occurred at LA 265. It was also present in significant numbers from floors and other pit features.

Platyopuntia. The pollen of Platyopuntia is extremely large and thus is not easily naturally dispersed, especially into sealed archaeological sediments. Its presence generally indicates its intentional deposition into the sediments (Bohrer 1972). This plant is used medicinally (Moerman 1986), as well as a food source (Cushing 1920).

Surprisingly, this was present from three features, which is slightly more than normal. The presence of the taxon was correlated with wall niche features but it was also present from the dog burial at LA 265.

Non-Opuntia Cactaceae. Various components of these plants have routinely been used as food. A combination of cactus and cleome have been used as a dye on thread or weaving fiber at Zuni (Dunmire and Tierney 1995).

Non-Opuntia Cactaceae pollen was recovered in 32 of the features. These pollen types are very similar and probably represent taxa such as *Echinocerus* and *Mammalaria*. As with other members of the Cactaceae family, these plants are entomophilous and produce relatively little pollen. Thus, their presence in these types of deposits are illustrative. There is no correlation with time period for this taxon. It was commonly found within the pit features, on floors, and within other storage features.

Malvaceae.

Sphaeralcea. Sphaeralcea is distinguishable from the other members of this family on the basis of surface morphology and aperturation and was the only genus of this family recovered. The pollen of this genera is fairly large and its presence is normally associated with human behavior. The plant was used medicinally (Whiting 1939; Castetter 1935; Moerman 1986).

Sphaeralcea pollen was fairly rare in these assemblages, occurring in a total of 10 feature types. The majority of occurrences of this taxon are again from floors, non-human burials, and storage pit features.

This taxon was also reported to have been smoked among the Navajo (Mayes and Bayless Lacy 1989). This plant is very common in disturbed habitats in northern and central New Mexico. The fruits of all species are edible and both pollen and seeds have been previously recovered from Chaco Canyon, Pecos, Zia, and Santa Ana pueblos from archaeological contexts. Santo Domingo residents have boiled the plant, adding it to gypsum as a glue for calcimine house paint. The pulp of Sphaeralcea has been mixed with mud at Taos pueblo to make very hard floors and the root was pounded and mixed with saltwater as a poultice for sores and boils. At Santa Clara, the leaves were rubbed on sore muscles. The peltate trichomes probably irritate the skin, thus bringing blood to the infected area (Dunmire and Tierney 1995).

Cucurbitaceae.

Cucurbita. Cucurbita pollen is one of the few obligate economic type pollen grains. The grains of this taxon are very fragile and often are present only in a broken condition. These plants are entomophilous and produce very little pollen. The taxon is monoecious meaning that separate male and female flowers are produced on the same plant but at different times. Thus, a very small amount of this pollen is usually indicative of much wider usage.

Cucurbita has been long used by Southwestern Native populations. The flowers were eaten as a soup among the Hopis (Beaglehole 1937) and Navajo (Bailey 1940; Vestal 1952) and as a seasoning among several of the Rio Grande Pueblos (Bailey 1940; Hughes 1972). The blossoms were also utilized medicinally by the Zuni (Stevenson 1915). The wild relatives of cultivated squash, such as *Cucurbita foetidissima* (buffalo gourd) were also utilized. The gourd was crushed and mixed with water at Cochiti and then sprinkled on plants as an insect repellent. The compound cucurbitacin is a known effective insecticide. At Isleta, the roots were boiled to extract a compound used in treating chest pains and ground root was also used by the Tewa as a laxative (Dunmire and Tierney 1995). The Hopi used the flowers as baking containers (Cutler and Whitaker 1961).

This taxon, while rare in most archaeological deposits, has been recovered from the Navajo Reservoir Project (Schoenwetter 1962), the Chuska Valley (Schoenwetter 1964), and from Arroyo Hondo (Bohrer 1986), and more recently by Gish (1993) from the transwestern pipeline project.

Cucurbita pollen was present only from pollen wash samples, which is very surprising. It was likely present in features from this site but did not preserve sufficiently to be picked up by the analysis.

Poaceae.

Zea mays. The ubiquitous presence of corn pollen is probably a reflection of the utilization of other parts of the corn plant with the introduction of pollen-bearing materials as a byproduct (Bohrer 1972, 1981). Corn pollen played an important role among the Anasazi and was certainly used ceremonially and ritually (Lange 1959; Stevenson 1904; Cushing 1920). Corn was prepared and stored a variety of ways by different populations. For example, ethnographically, much of the corn may have been roasted and stored (Cushing 1920), stored in specialized rooms such as among the Zuni and Hopi (Cushing 1920; Whiting 1939). White (1945) notes that several of the Keresan pueblos stored and roasted the corn while still in the husk. Hill (1938) observed the Navajo practice of placing six complete corn stalks where the harvested corn was to be stacked. Each of these particular practices would have caused differing amounts of pollen to be deposited within a site.

CONCLUSIONS

In general, the arboreal pollen was present in very low to trace amounts only. This suggests that forest cover was some distance removed from the site areas. The preponderance of the arboreal pollen consists of *Pinus edulis* and *Pinus ponderosa*, which are both found locally in the area today. While other higher elevation taxa such as *Picea* were undoubtedly used by the inhabitants, these stands were likely no closer to the project area than today and signify a substantial energy expenditure to procure these woods. The macrobotanical and flotation data should provide additional data for the types of wood recovered.

The presence of *Salix* pollen indicates that a well developed riparian habitat was also located nearby. Salix appeared to have been used substantially in the construction of the structures. While no pollen of *Populus* (cottonwood) was recovered, it is likely that this taxon was also available. Evidence also suggests that Prosopis (mesquite) was present at least within the local area. Taken together, this indicates an area that supported at least three or perhaps four distinct vegetational communities. This area would have been an ideal habitation area in order to maximize the food procurement strategy. I believe that this intermixing of habitats is reflected in the principal components analysis' failure to effectively separate much of the data.

Coalition Period, AD 1200 to 1325

Coalition period samples were obtained from LA 6169 only. All of the structures dating from this time period were identified as pit rooms. Sampled feature types consisted of prepared floors, basin mealing features, and a storage pit that spanned the Rio Grande Late Developmental and Coalition periods (AD 1100 to 1325). This feature inventory stands in marked contrast to features from earlier occupations. There is sufficient data to infer that plant processing activities became much more specialized during this later period. Much of the plant processing activities appeared to have been moved out of habitation structures and into structures specifically designed for this purpose. The implications of this trend may shed light on the social organization and cultural complexity of the population, but I leave these interpretations to the archaeologist.

Late Developmental Period, AD 1100 to 1200

Samples from this period were present from LA 249, LA 6169, and LA 6170. Sampled contexts from LA 249 were a structure, an unidentified feature type, and a cobble concentration associated with an ash stain. LA 6169 had a structure and extramural storage pit associated with this temporal period. Sampled contexts from LA 6170 included an activity and a structure that also had an adobe-lined mealing bin. Again, this seems to confirm a movement away from plant processing activities within the habitation zone and into more specialized areas. The trend, more pronounced in the Coalition period, may thus have actually started within this temporal period.

Early Developmental Period, AD 700 to 900

This period had the largest number of sites and features. Samples submitted from this period were present at LA 265, LA 6169, LA 6170, LA 6171, and from LA 115862.

LA 265. The sampled contexts at this site included Structures 4 and 13, each containing samples taken from floors as well as from pits. Structure 13 had a bell-shaped pit and a wall niche, while Structure 4 had a sealed floor pit. This site had the largest variety of feature types from the project area.

The remainder of the samples were all taken from extramural locations. The individual features consisted of several types of pits. A total of eight extramural bell-shaped pits were present from this site, and interestingly, four of these contained burials. The burials consisted of one adult, one infant, and two dog burials. The human burials, although containing evidence of ritual use of plants, had lower concentration values for several of these economic taxa than did the dog burials. Since the samples containing the dog burials were actually taken from the pit strata not in association with the burials, this probably reflects the higher concentration values normally associated with storage features. A separate turkey burial also

had relatively high pollen concentration values. This sample was taken from the area containing the gizzard stones and likely reflects evidence of diet shortly before death.

The remainder of the pits provided good evidence for storage functions. Primarily, Cactaceae, Cylindropuntia, and *Zea mays* materials were stored and there is good evidence for storage of separate materials as well as mixtures within types of pits. The keyhole structures appeared to function primarily as storage with corn being the dominant taxon.

LA 6169. Two structures were sampled from this site from this occupation period. Wall niches were present and sampled in both structures. Structure 47 also had a storage bin and a dump area. The wall niches were interesting in that both had Platyopuntia pollen. Platyopuntia pollen is rare elsewhere, thus suggesting an intentional deposition. The pollen evidence also indicates that Cheno-am plants were also being deposited within these features. The ash dump had no economic pollen and was likely deposited after the structure had been abandoned.

LA 6170. Samples were submitted from two extramural features and two structures from this site. Structure 50 had five storage pits that had their openings plastered over. These pits appeared to have been used to store various combinations of plant materials and no two had the same combination of taxa. However, the specific function of these pits remains undetermined. Structure 50 also had a sipapu feature. Interestingly, the sipapu had Solanaceae pollen, which appears similar to other sipapu features recovered from the Colorado Plateau. In fact, the presence of Solanaceae pollen appears to be a distinguishing feature for sipapu features.

LA 6171. This site provided samples from five structures in addition to several extramural features. The features sampled were from pits of several types, floor samples, and postholes. The pits primarily functioned in storage. A floor sample taken from beneath a metate revealed evidence of plant processing activities but surprisingly, the sample under a palette had very little diagnostic material.

This site also had a single feature from an earlier AD 500 to 650 occupation and consisted of a burned, bell-shaped subcist. Unfortunately, no economic pollen was present.

LA 115862. The site contexts sampled included a single structure and an extramural roasting pit feature. The roasting pits had no diagnostic taxa. Basically, the features from the structure included postholes and an ash pit that also had very little diagnostic taxa.

Pollen Wash Samples

The pollen wash samples were all taken from ceramic vessels associated with human burials. All but one of these was from the Early Developmental period; a single sample was from the Late Developmental period. There did not appear to be any correlation between vessel type and age or gender of the deceased. Likewise, there were no correlations between the pollen recovered and the vessel type nor between the pollen types and the area washed. The vessels did appear to mainly contain mixtures of plant taxa.

Family	Scientific Name	Common Name
Agavaceae		Yucca Family
	<i>Agave</i> sp.	Agave
	Dasylirion sp.	Sotol
	<i>Nolina</i> sp.	Bear grass
	<i>Yucca</i> sp.	Yucca
Amaranthaceae	Amaranthus	Pigweed
Apiaceae		Carrot Family
Asteraceae		Composite Family
	Ambrosia	bursage
	Artemisia	sagebrush
	<i>Chrysothamnus</i> sp.	Rabbit brush
	<i>Guterrizia</i> sp.	Snakeweed
	Helianthus	sunflower
	Lactuca	Lettuce
	Taraxacum	dandelion
	Chichoreae	Tribe of Asteraceae, heads comprised entirely of
		ligulate flowers
	Liguliflorae	Pollen morphological group, Fenestrate type pollen
	Low Spine	Pollen morphological group, spines <2.5 height
	High Spine	Pollen morphological group, spines >2.5 height
Betulaceae	0	Birch Family
	Alnus	Alder
Brassicaceae		Mustard Family
	<i>Descurainia</i> sp.	Tansy Mustard
	Descurainia pinnata	Tansy Mustard
	, Descurainia sophia	Tansy Mustard, European Native
Cactaceae		Cactus Family
	Echinocereus sp	none given
	<i>Mammilaria</i> sp [′]	Pincushion/Fishhook Cactus
	Opuntia '	Prickly Pear or Cholla Cactus
	, Cylindropuntia	Sub-genus of Opuntia, Cholla Cactus
	Platyopuntia	Sub-genus of Opuntia, Prickly Pear Cactus
Campanulaceae		Bluebell Family
	Campanula	Blue Bells
Caryophyllaceae		Pink Family
Chenopodiaceae		Goosefoot Family
	Atriplex canescens	Saltbush
	Chenopodium	Goosefoot, Lambs quarters
	Eunotia sp.	Winterfat
	Salsola kali	Russian Thistle
	Sarcobatus vermiculatus	greasewood
	Cheno-am	Pollen morphological group, members of the family
		Chenopodiaceae and the genus <i>Amaranthus</i>
		chenopodiaceae and the genus /indianthas
Cucurbitaceae		Gourd Family
	Cucurbita	Squash, gourd
	Cucurbita foetidissima	Buffalo Gourd
	Juniperus	Juniper
Cupressaceae		
Cupressaceae Eleagnaceae	samperae	Russian Olive Family
Cupressaceae Eleagnaceae		Russian Olive Family Buffaloberry, Soapberry
	Shepherdia	Russian Olive Family Buffaloberry, Soapberry Joint Fir Family

Table 24.1. Scientific and Common Names of Plant Taxa Used in this Report

Family	Scientific Name	Common Name
Fabaceae		Bean Family
	Phaseolus sp.	bean
	Prosopis	Mesquite
	Prosopis glandulosa	Mesquite
	Prosopis julifera	Mesquite
	Prosopis pubescens	Screwbean Mesquite
	Prosopis velutina	Mesquite
Fagaceae		Oak Family
	Quercus sp.	Oak
Juglandaceae		Walnut Family
	Carya	Hickory, Pecan
Lycopodiaceae		Club-Moss Family
	Lycopodium	Club-moss
Malvaceae		Cotton Family
	Sphaeralcea	Globe mallow
Nyctaginaceae		Desert Four O''Clock Family
Onagraceae		Evening Primrose Family
	Oenothera albicaulis	
	Oenothera caespitosa	
	Oenothera pallida	
	Oenothera trichocalyx	
Pinaceae	-	Pine Family
	Abies	fir
	Picea	spruce
	Pinus	pine
	Pinus edulis	Colorado Piñon
	Pinus ponderosa	Ponderosa Pine
Poaceae	·	Grass Family
	Bouteloua gracilis	Blue grama
	Bouteloua curtipendula	sideoats grama
	Hilaria sp.	galleta grass
	<i>Muhlenbergia</i> sp.	Ring Muhly
	Oryzopsis hymenoides	Indian Rice Grass
	Sporobolus sp.	Sacaton/dropseed
	Zea mays	corn
Polygalaceae	2	Milkwort Family
,,,	Polygala	Milkwort
Polygonaceae	<i>,</i> ,,	Buckwheat Family
,,,	Eriogonum	Wild Buckwheat
	Polygonum	smart weed, knotweed
Rhamnaceae	,,,	Buckthorn Family
Salicaceae		Willow Family
	Populus sp.	cottonwood
	Salix sp.	willow
Solanaceae	1.5	Nightshade Family
	Datura sp.	Jimson weed
	Lycium	Wolfberry
	Nicotiana	Tobacco
	Physalis sp.	groundcherry
	Solanum sp.	none given
	Solanum jamesii	wild potato
	Solanum triflorum	wild tomato
Ulmaceae	Solandin timordin	Elm Family

Table 24.1. Continued.

3ag #	Bag # Provenience	Locus/ Unit	/ Structure	Stratum Level	Level	Feature Type	Type	Period Age	<u>0</u>
189	N114/E116	-			0-100.5	0			
267	N111/E110	-	extramural	29	100.52-100.44	ი	cobble		
							concentration		
							associated		
							ash stain		
308	N106/E115	-	pit structure 6	50	99.42-99.38	9	floor	Pueblo II-III AD 1000-1200	0 1000-1200
329	N106/E115	-	pit structure 6	60	99.27-99.15	9	floor	Pueblo II-III AD	AD 1000-1200
338	N105/E115	-	pit structure 6	60	99.27-99.23	9	floor	Pueblo II-III AD	AD 1000-1200
360	N104.1/E115.1	-	pit structure 6	60	99.3	9	floor	Pueblo II-III AD	AD 1000-1200
378	N107/E114	~	pit structure 6	ო	0-99.7	0	floor	Pueblo II-III AD	AD 1000-1200

					F	Table 24.2. Continued.	ntinued.						
Bag #	<i>Pinus</i> all	P. ponderosa	P. edulis	Juniperus	Picea	Salix	Ulmus	Quercus	Prosopis	Fabaceae	Solanaceae	Shepherdia	Shepherdia Eriogonum
Raw Counts	nts												,
189	267	52	215	28	0	-	-	ъ	-	-	-	-	-
267	17	ო	4 4			-						'	
308	104	13	91	ы				ო	·				
329	19	œ	11	,		·	,	ı	·	,	,	ı	,
338	17	ო	4 4	,		,	,	-	·	,	,	ı	,
360	16		16	,		ı	,	,	·	ı	·	ı	,
378	.	,	-	,	,	ı	ı	-	ı	ı	ı	ı	,
Concenti	Concentration Values												
189	3794	739	3055	398	28	4	4 4	71	1 4	1 4	4	14 4	4
267	383	68	315	0	0	23	0	0	0	0	0	0	0
308 308	440	55	385	00	0	0	0	13	0	0	0	0	0
329	522	220	302	0	0	0	0	0	0	0	0	0	0
338	253	5	208	0	0	0	0	15	0	0	0	0	0
360	508	0	508	0	0	0	0	0	0	0	0	0	0
378	13	0	13	0	0	0	0	13	0	0	0	0	0
Bad #	Brassicaceae	e Poaceae	Cheno-am	Cheno-am Cheno-am af	Asteraceae hs.	Asteraceae Is	Artemisia	Cactaceae	Cvlindropuntia	Enhedra	Indeterminate		
Raw Counts	nts									-			
189	-	14	96		41	39	9			ы	თ		
267		-	0e M		2	0					0		
308		ი	267		26	8	ŋ	-	ø	0	11		
329	•		27	•	-	ო	0	-			0		
338			38 38		7	ø	0				9		
360		-	23		ъ	4		-			0		
378			-			-							
Concenti	Concentration Values												
189	41	199	1364	0	583	554	85 85	0	0	28	128		
267	0	23	675	0	8	8	0	0	0	0	₽ 15		
308	0	38	1129	4	110	203	21	4	34 34	ø	47		
329	0	0	741	0	27	82	<u>8</u>	27	0	0	55		
338	0	0	565	0	30	119	8	0	0	0	80		
360	0	32	731	0	159	127	0	32	0	0	64		
378	0	0	13	0	0	13	0	0	0	0	0		

					Table 24.2. Continued.	tinued.				
					%				Lycopodium	
Bag #	Zea mays	Sum	Total	marker	Indeterminate	trans	tot trans	mark/slide	added	Wt/area
Raw Counts	unts									
189	-	518	7361	114	1.74	œ	22	313.5	40500	25
267		55	1238	72	3.64	4	24	432	40500	25
308		487	2060	383	2.26	27	27	383	40500	25
329		55	1510	59	3.64	9	24	236	40500	25
338		74	1100	109	8.11	4	26	708.5	40500	25
360		52	1652	51	3.85	4	26	331.5	40500	25
378		4	52	124	0	10	26	322.4	40500	25
Concent	Concentration Values									
189	14	518	7361	114	1.74	œ	22	313.5	40500	25
267	0	55	1238	72	3.64	4	24	432	40500	25
308	0	487	2060	383	2.26	27	27	383	40500	25
329	0	55	1510	59	3.64	9	24	236	40500	25
338	0	74	1100	109	8.11	4	26	708.5	40500	25
360	0	52	1652	51	3.85	4	26	331.5	40500	25
378	0	4	52	124	0	10	26	322.4	40500	25

Contin
24.2.
Table

					Tab	Table 24.2. Continued.	ed.					
Bad #	Picea	P. ponderosa	Quercus	Ba Zea mavs	sed on Cou l Cactaceae	Based on Counts and Low Magnification Scan of Slide vs Cactaceae Cvlindropuntia Solanaceae Prosopis Fi	agnification Scan of Sli Solanaceae <i>Prosopis</i>	i can of Sl i <i>Prosopis</i>	de Fabaceae	Shepherdia	ie Fabaceae S <i>hepherdia Eriodonum Ulmus</i>	Ulmus
Raw Counts	ints										5	
189	4	4	5	ო	ı	ı	-	-	-	-	-	-
267	I	ı	ı	ı	-	ı	ı	ı	ı	ı	ı	ı
308	I	ı	I	I	0	ო	ı	ı	ı	ı	ı	ı
329	I		ı	ı	4	-	·	ı	ı	ı	I	ı
338	I	ı	ı	I	ı	ı	ı	ı	ı	ı	I	ı
360	ı	I	ı	-	ı	I	ı	ı	ı	ı	ı	ı
378	I	·	ı	ı	ı	I	ı	ı	ı	ı	ı	ı
Concentration Values	ration V	alues										
189	20.7	20.67	25.84	15.5	0	0	5.17	5.17	5.17	5.17	5.17	5.17
267	0	0	0	0	3.75	0	0	0	0	0	0	0
308	0	0	0	0	8.46	12.69	0	0	0	0	0	0
329	0	0	0	0	27.46	6.86	0	0	0	0	0	0
338	0	0	0	0	0	0	0	0	0	0	0	0
360	0	0	0	4.89	0	0	0	0	0	0	0	0
378	0	0	0	0	0	0	0	0	0	0	0	0
Bad #			_									
Max. Pot	ential C	Max. Potential Concentration										
189	5.17		_									
267	3.75											
308	4.23											
329	6.86											
338	2.29											
360	4.89											
378	5.02		_									

Bag #	Frov	Area	Locus/Unit	Structure	Stratum	Level	Feature	Type
	N455/E495	-	+	pit structure 1	-	100.39-100.29	0	floor
	N455/E495	-	-	pit structure 1	-	100.19-100.09	0	floor
	N455/E495	-	-	pit structure 1	-	99.99-99.89	0	floor
	N455/E495	-	-	pit structure 1	2.1	99.79-99.69	0	floor
	N455/E495	-	-	pit structure 1	2.2	99.69-99.59	0	floor
	N455/E495	-	-	pit structure 1	2.3	99.59-99.49	0	floor
	N455/E495	-	-	pit structure 1	2.4	99.49-99.39	0	floor
	N455/E495	-	-	pit structure 1	2.5	99.39-99.29	0	floor
	N455/E495	-	-	pit structure 1	З	99.19-99.09	0	floor
	N455/E495	-	-	pit structure 1	3.1	98.99-98.89	0	floor
	N486/E497	-	ю	pit structure 6	-	99.65	14	pit:lg:irregular
	N486/E497	-	ю	pit structure 6	7	99.48	4	pit:lg:irregular
	N486/E497	-	ю	pit structure 6	A	99.31	4	pit:lg:irregular
	N486/E497	.	ю	pit structure 6	З	99.47	4	pit:lg:irregular
	N486/E497	.	ю	pit structure 6	4	99.38	4	pit:lg:irregular
	N486/E497	.	ю	pit structure 6	5	99.31	4	pit:lg:irregular
	N486/E497	-	ю	pit structure 6	9	99.13	14	pit:lg:irregular
	N486/E497	-	с	pit structure 6	7	99.03	14	pit:lg:irregular
	N486/E497	-	ю	pit structure 6	8	98.85	14	pit:lg:irregular
	N483/E497	-	ю	pit structure 6	4	99.15	15	pit:lg:irregular
	N448.7/E491.8	-	6	extramural		99.75-99.71	17	pit:oval:lg
	N483.5/E497.65	-	ю	pit structure 6	4	98.2	19	burial:turkey
	N445.05/E491.4	-	4	pit structure 4	SF	99.15	0	
	N464.95/E492.65	-	2	extramural:SU1	3	99.42	23	pit:bell shaped:storage w/ infant burial
	N466.88/E490.15	-	2	extramural:SU1	В	99.36-99.33	24	pit:bell shaped:storage w/ adult burial
	N467.74/E500.71	-	7	extramural:SU1	-	9.66	26	pit:bell shaped:storage w/ dog burial
	N467.7/E494.7	.	2	extramural:SU1		99.45	41	pit:bell shaped:in feat 27
1228	N466.35/E502.4	-	7	extramural:SU1		99.88	33	pit:keyhole
	N467.4/E494.02	-	7	extramural:SU1		99.93	27	pit:keyhole
	N444.85/E493.6	-	4	pit structure 4	SO	98.62	76	pit:floor:sealed
	N460.5/E539.05	2	13	pit structure 13	-	97.95	141	pit:bell shaped
1405	N470/E488.05		2	extramural:SU1	6	98.9	60	pit:bell shaped:storage w/ dog burial
	N432.1/E503.34	-	14	extramural		100.25	156	pit:cist:wall of f56
1536	N455.95/E495.53	.		pit structure 1	SO	98.74	107	pit:linear:floor:?foot drum
	N456.55/E497.5	-	-	pit structure 1	SO	98.32	191	
	N464.4/E539.44	2	13	pit structure 13	SO	99.01	207	niche:slab covered
1678	N453.85/E501	÷		pit structure 1	4	98.84	125	vent shaft:bell shaped
1713	N471.6/E493.64	-	7	extramural:SU1		99.5	127	pit:bell shaped:storage
	NA6A 45/E5A2 38	0	12	extramural	٩	96.66	229	pit:bell shaped

Bag #	Period	Age	Pinus	P. pond.	P. edulis	Juniperus	Picea	Abies	Alnus	Salix	Ulmus	Quercus
2	Early Rio Grande Developmental	de	289	31	258	1		•	•	2		Э
854	Early Rio Grande Developmental	AD 700-900	2		0	•				-		•
	Early Rio Grande Developmental	A	-		-							
858	Early Rio Grande Developmental	Ą	0									
	Early Rio Grande Developmental	Ą	0		0		,	,	,			'
	Early Rio Grande Developmental	Ą	0		ы		,		,	,		,
	Early Rio Grande Developmental	Ą	7		7							
	Early Rio Grande Developmental	AD	-		-		,	,	,	,		'
	Early Rio Grande Developmental	Ą	ი	,	6	,	,	,	,	-		,
	Early Rio Grande Developmental	AD 700-900	7	-	9	,	,	,	,	-		,
892	Early Rio Grande Developmental	AD 700-900	0	-	-	-	,		,	,		'
	Early Rio Grande Developmental	AD 700-900	ß		ъ С		,		,	,		'
894	Early Rio Grande Developmental	AD 700-900	9	-	5		,	,	,	,		-
895	Early Rio Grande Developmental	AD	ß		5 D		,	,	,	,	,	,
896	Early Rio Grande Developmental	AD 700-900	11	ы	6	,	,	,	,	,		,
897	Early Rio Grande Developmental	AD	-		-		,		,	,		'
898	Early Rio Grande Developmental	A	4	ы	ы	·	,		•	,		'
899	Early Rio Grande Developmental	A	0		ы		,	,	,	,		'
006	Early Rio Grande Developmental	AD 700-900	0		Ю		ı	,	,	,	,	,
952	Early Rio Grande Developmental	Ą	-		-	-	,	,	,			'
995	Early Rio Grande Developmental	AD	9	-	S							•
I 016	Early Rio Grande Developmental	Ą	12	0	10	-		•		•	•	•
1028	Early Rio Grande Developmental	Ą	0	,	,	,	•		•	•		•
	Early Rio Grande Developmental	AD	19	5	14	,	-			•		•
I 084	Early Rio Grande Developmental	Ą	0		0							•
1100	Early Rio Grande Developmental	AD	6	9	ო	,		•		•	•	•
223	Early Rio Grande Developmental	AD 700-900	149	13	136	-	,		•	'		•
228	Early Rio Grande Developmental	AD	9	·	9	ı	•					•
	Early Rio Grande Developmental	Ą	0		ы							•
	Early Rio Grande Developmental	Ą	ი		6	ı	,		,	,	,	'
1344	Early Rio Grande Developmental	AD 700-900	0		,	-	•		•	•	•	•
1405	Early Rio Grande Developmental	AD	39	0	37	ო		•		•	•	•
1420	Early Rio Grande Developmental	Ą	-		-						•	•
1536	Early Rio Grande Developmental	Ą	-	-	,	,		•		•		•
1600	Early Rio Grande Developmental	AD 700-900	œ		ø							•
1612	Early Rio Grande Developmental	AD 700-900	ß		5							•
1678	Early Rio Grande Developmental	AD 700-900	2		S	•						•
1713	Early Rio Grande Developmental		22	9	16	,	•		•	•		•
731	Early Din Granda Davalonmental		5	σ	-	,		ľ	•			

					Table	Table 24.3. Continued.	led.				
Bag #	Carya	Prosopis	Onagraceae	Fabaceae	Solanaceae	Rosaceae	Shepherdia	Polygonum	Eriogonum	Brassicaceae	Liliaceae
852											
854											
856											
858											
859											
860											
861											
862											
864		,		,							,
866											
892											
893											
894											
895											
896											
897				,			,				
898		,		,			,	,			,
899	ı	ı	ı	ı	ı	ı	ı	·	ı	,	
006		·									
952											
995											
1016	ı	,									
1028						·					
1077							•			•	
1084											ı
1100	,	ı	ı	ı	ı	ı	,	,	ı		ı
1223		·	·	·		·			2		ı
1228											ı
1256						ı					
1339		·	·	·		·					·
1344	·	ı	ı	ı	ı	ı	ı	ı	ı	,	ı
1405	,	ю	ı	ı	·	ı	·	·	·		·
1420		ı	ı	ı	ı	ı	ı	ı	ı		·
1536		ı	ı	·		ı	·	·			
1600											
1612						·					
1678										•	
1713											
1731	•					ı		•			

Table 24.3. Continued.

	Day # Jarconatus	Poaceae	Cheno-am	Cheno-am Cheno-am af.	Aster. hs.	Aster. Is	Artemisia	Cactaceae	Cylindropuntia	Platyopuntia	Ephedra
852		4	139		17	23	3		1		14
854			13		e	4	•				-
856		•	6			•	•	-			•
858			2			•	•				•
859		-	12		-	-	-	7	-		,
860			14		2	2	-	2	e		•
861		'	15		'	2	•	2	2		•
862		•	20		e	e	•	ę	-		•
864		С	16			5	•	-			•
866		e	24			e	'				
892		-	36			З	•	2			•
893			42		e	'	•	e			'
894	,	-	20		'	5	,	,			•
895		,	36	,	5	e	•	·		·	,
896		6	308		4	39	12	2	2		7
897		•	18		e	e	•	2	-		•
898		-	40	-	2	5	•	5	4		•
899		e	23		•	2	•		2		•
006		e	27		9	22	•	-			•
952			06		4	e	•	4			•
995	,	ю	41	,	2	ю	5	,		,	•
1016	,	4	126	•	7	22	-		3		•
1028		'	23	-	4	9	•		2		•
1077		9	94		7	10	3	-	2		•
1084		-	29		-	-	-	,	2		0
1100		0	48		-	4	-	-	9		•
1223	,	14	234	,	24	32	1	-	10	,	7
1228	,	-	30	,	e	-	•	-	2	,	e
1256	,	-	20		7	2	,	-	5		•
1339		7	34		'	e	2				-
1344	•	•	15		-	e	•	•	e		•
1405		21	144		8	26	4	7	76	-	-
1420		-	25		-	7	-	,			•
1536			10		7	ю	-	,	-		•
1600	,	-	49	-	5	-	•	,		,	
1612	,	,	31	-	5	-	•	,	2	-	•
1678	,	-	84	•	e	4	•		3		'
1713	,		20		-	ю	,	4	15		•
1731		c	00	•	c						

	Sum	513	26	15	0	37	28	36	36	90 30	40	45	56	92	51	442	29	99	35	62	104	63	184	90 90	151	42	76	510	53	43	56	25	489	35	21	74	49	104	146	137
	Cucurbitaceae		ı														ı		ı		ı	ı	ı	ı		ı		ı	ı	ı	ı	,	ı	,						
	Zea mays	0		0		10	-	7	5	,	,	,	-	Ð		39	-	-	0	•	ı	-	ы	-		0	ı	10	ı	ı	ı	-	98			ı		2	ω	
ued.	Sphaeralcea																ı		ı		ı	ı	ı	ı		ı	ı	4	ı	ı	ı		4							
Table 24.3. Continued.	unk sm tricolpate	• ,	'			,	,		,	,	'	'	'	'	,	'	ı	,	ı		ı	ı	~	ı	~	ı	ı	ı	ı	ı	ı	'	ı	'		,				2
Tabl	unk triporate					,			,	,	,	,	,	,		,	ı		ı		ı	ı	ı	ı	,	ı	ı	ı	ı	ı	ı	,	ı	,		,				ı
	Indeterminate unk triporate	15	-	0		-	-	-		4	0		0	4	0	თ	ı	ო	-	~	-	ı	ъ	0	7	-	4	11	9	ъ	Q	-	15	4	ო	თ	ო	2	-	7
	Nyctaginaceae																ı		ı		ı	0	ı	ı		·	·	ı	ı	ı	·		·							1
	Bag #	852	854	856	858	859	860	861	862	864	866	892	893	894	895	896	897	808	899	006	952	<u> 9</u> 95	1016	1028	1077	1084	1100	1223	1228	1256	1339	1344	1405	1420	1536	1600	1612	1678	1713	1731

Bag #	Total	Marker	% Indeterminate	Trans	Tot Trans	Mark/Slide	Total Marker	Lycopodium added	Wt/area
				7	ľ	1001	1004	40500	55
708	2109	394	2.92	01	17	1064	1064	4000	G 7
854	593	71	3.85	9	26	308	308	40500	25
856	357	68	13.33	4	26	442	442	40500	25
858	49	99	0	9	26	286	286	40500	25
859	1110	54	2.7	16	26	88	88	40500	25
860	432	105	3.57	4	26	683	683	40500	25
861	1122	52	2.78	10	23	120	120	40500	25
862	778	75	0	9	28	350	350	40500	25
864	408	155	10.26	4	26	1008	1008	40500	25
866	1045	62	£	80	26	202	202	40500	25
892	1429	51	0	10	26	133	133	40500	25
893	1487	61	3.57	18	29	98	86 08	40500	25
894	5139	29	4.35	26	26	29	29	40500	25
895	1559	53	3.92	4	25	331	331	40500	25
896	9676	74	2.04	28	28	74	74	40500	25
897	470	100	0	4	26	650	650	40500	25
898	1596	67	4.55	9	26	290	290	40500	25
899	930	61	2.86	10	25	153	153	40500	25
006	1376	73	1.61	4	26	475	475	40500	25
952	3063	55	0.96	10	26	143	143	40500	25
995	1134	06	0	4	24	450	450	40500	25
1016	5139	58	2.72	12	27	131	131	40500	25
1028	1170	54	5.13	9	27	243	243	40500	25
1077	4368	56	4.64	20	27	76	76	40500	25
1084	1063	64	2.38	9	22	235	235	40500	25
1100	1838	67	5.26	80	26	218	218	40500	25
1223	2227	371	2.16	16	26	603	603	40500	25
1228	1684	51	11.32	9	28	238	238	40500	25
1256	1340	52	11.63	10	27	140	140	40500	25
1339	1375	99	8.93	4	23	380	380	40500	25
1344	393	103	4	4	26	670	670	40500	25
1405	3144	252	3.07	27	27	252	252	40500	25
1420	915	62	11.43	9	28	289	289	40500	25
1536	370	92	14.29	4	28	644	644	40500	25
1600	1789	67	12.16	9	26	290	290	40500	25
1612	1323	60	6.12	9	26	260	260	40500	25
1678	3063	55	1.92	12	26	119	119	40500	25
1713	4730	50	0.68	9	28	140	140	40500	25
107				•					

eae																																							
Poaceae	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	-	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	
Cheno-am af		,		ı																			0							,								ı	
Slide Onagraceae	2	1		ı					-				,			•									•					0	,						-	ı	
Based on Counts and Low Magnification Scan of Slide a mays Sphaeralcea Cactaceae Cylindropuntia Onagraceae	-	~		,	.	7	9	7					,		0		9	4				ო		0	9	Ø	10	ო	ъ С	4	9	76	~			ო	9	24	
Low Magnifi Cactaceae		g	с С	ı	თ	4	ო	7	-		0	4	,		0	4	9		-	7		-	ო	-		0	7	0	-	ı	,	10			0			4	
n Counts and Sphaeralcea	,	÷	. 1	ı	·							·	,									0					Ð			ı		0						ı	
Based or Zea mays	ო	1	ļ Μ	,	15	16	4	Ŋ				-	5		ଚ୍ଚ	0	ო	0		-	. 	ы			Ø	ო	12	0		ო	0	80					ო	15	
Picea	2	1			,									•														•	•		,	•							
Pinus					,		0		,		•											,						•			,	•							
Bag #	852	854	856	858	859	860	861	862	864	866	892	893	894	895 895	896	897	808	668	006	952	<u> 3</u> 95	1016	1028	1077	1084	1100	1223	1228	1256	1339	1344	1405	1420	1536	1600	1612	1678	1713	

 Table 24.3 Continued.

 Based on Counts and Low Magnification Scan of Slide

 as mays
 Subarraicea
 Castaceae
 Cuindronutia
 Onactaceae

Bag # Finus Finus Finus Finus Finus Finus Sea mays Sphaeralece Caratocose Cylindropuntia Tonagraceae Solanose S					Ba	sed on Count:	Based on Counts and Low Magnification Scan of Slide	ification Scan	of Slide			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bag #	Pinus	Picea	Zea mays	Sphaeralcea	Cactaceae	Cylindropuntia	Platyopuntia	Onagraceae	Solanaceae	Nyctaginaceae	Cheno-am af
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	852		3.05	4.57	0	0	1.52	0	3.05	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	854		0		5.27	31.59	10.53	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	856	0	0	11	0	11	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	858	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	859	0	0	276.92	0	166.15	18.46	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	860		0	37.98	0	9.49	16.62	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	861		0	189.63	0	40.64	81.27	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	862	0	0	23.14	0	32.4	32.4	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	864	0	0	0	0	1.61	0	0	1.61	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	866	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	892	0	0	0	0	24.43	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	893		0	16.48	0	65.94	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	894		0	279.31	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	895		0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	896		0	853.78	0	43.78	43.78	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	897		0	4.98	0	9.97	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	898		0	16.74	0	33.48	33.48	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	899		0	21.25	0	0	42.49	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	006		0	0	0	3.41	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	952		0	11.33	0	79.3	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	995		0	0.59	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1016		0	24.83	24.83	12.41	37.24	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1028		0	0	0	20	0	0	0	0	0	13.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1077		0	0	0	21.43	42.86	0	0	0	0	0
0 0 22.32 0 14.88 59.52 0 0 0 0 23.25 13.44 5.37 26.87 0 0 0 0 0 13.61 0 13.61 20.42 0 0 0 0 0 0 13.61 20.42 0 0 0 0 0 11.54 57.69 0 0 0 0 0 0 11.54 57.69 0 0 0 0 0 12.81 0 0 17.08 0 8.54 0 630 12.86 64.29 48.57 0 0 0 6.4	1084		0	55.23	0	0	41.42	0	0	0	0	0
0 0 32.25 13.44 5.37 26.87 0 0 0 0 13.61 0 13.61 20.42 0 0 0 0 0 13.61 0 13.61 20.42 0 0 0 0 0 11.54 57.69 0 0 0 0 0 11.54 57.69 0 0 0 0 0 17.08 0 17.08 0 8.54 0 630 12.86 64.29 488.57 0 0 0 6.4	1100		0	22.32	0	14.88	59.52	0	0	0	0	0
0 0 13.61 0 13.61 20.42 0 <	1223		0	32.25	13.44	5.37	26.87	0	0	0	0	0
0 0 0 0 11.54 57.69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.54 0 0 0 8.54 0 0 0 14.52 0	1228		0	13.61	0	13.61	20.42	0	0	0	0	0
0 0 12.81 0 0 17.08 0 8.54 0 0 4.84 0 0 14.52 0 0 0 0 630 12.86 64.29 488.57 0 0	1256		0	0	0	11.54	57.69	0	0	0	0	0
0 0 4.84 0 0 14.52 0 0 0 0 630 12.86 64.29 488.57 0 0	1339		0	12.81	0	0	17.08	0		0	0	0
0 0 630 12.86 64.29 488.57 0 0	1344		0	4.84	0	0	14.52	0	0	0	0	0
	1405		0	630	12.86	64.29	488.57	0	0	6.43	0	0

d.	
ue	
ltin	
Sor	
3.0	
4	
e 2	
Ē	

Bag # S	Solanaceae	Rosaceae	Shepherdia	Polygonum	Eriogonum	Brassicaceae	Liliaceae	Sarcobatus	Poaceae	Cheno-am
852	0	0	0	0	0	0	0	0	16	572
854	0	0	0	0	0	0	0	0	0	297
856	0	0	0	0	0	0	0	0	0	214
858	0	0	0	0	0	0	0	0	0	49
859	0	0	0	0	0	0	0	0	30	360
860	0	0	0	0	0	0	0	0	0	216
861	0	0	0	0	0	0	0	0	0	467
862	0	0	0	0	0	0	0	0	0	432
864	0	0	0	0	0	0	0	0	31	167
866	0	0	0	0	0	0	0	0	78	627
892	0	0	0	0	0	0	0	0	32	1144
893	0	0	0	0	0	0	0	0	0	1115
894	0	0	0	0	0	0	0	0	56	3910
895	0	0	0	0	0	0	0	0	0	1100
896	0	0	0	0	0	0	0	0	197	6743
897	0	0	0	0	0	0	0	0	0	292
898	0	0	0	0	0	0	0	0	24	967
899	0	0	0	0	0	0	0	0	80	611
006	0	0	0	0	0	0	0	0	67	599
952	0	0	0	0	0	0	0	0	0	2651
995	0	0	0	0	0	0	0	0	54	738
1016	0	0	0	0	0	0	0	0	112	3519
1028	0	0	0	0	0	0	0	0	0	690
1077	0	0	0	0	0	0	0	0	174	2719
1084	0	0	0	0	0	0	0	0	25	734
1100	0	0	0	0	0	0	0	0	48	1161
1223	0	0	0	0	6	0	0	0	61	1022
1228	0	0	0	0	0	0	0	0	32	953
1256	0	0	0	0	0	0	0	0	31	623
1339	0	0	0	0	0	0	0	0	49	835
1344	0	0	0	0	0	0	0	0	0	236
1405	0	0	0	0	0	0	0	0	135	926
1420	0	0	0	0	0	0	0	0	26	653
1536	0	0	0	0	0	0	0	0	0	176
1600	0	0	0	0	0	0	0	0	24	1185
1612	0	0	0	0	0	0	0	0	0	837
1678	0	0	0	0	0	0	0	0	29	2474
1713	0	0	0	0	0	0	0	0	0	2268
1731	0	0	0	0	0	0	0	0	82	2197

Nyctaginaceae Indeterminate									0 42																											0 81	
<i>Ephedra</i> Nycta <u>ç</u>		23			0			0		0	0	0	0		153	0		0									31		0		0	9	0	0			
Platyopuntia Eph	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	27	
Cylindropuntia	4	0	0	0	30	46	62	22	0	0	0	0	0	0	44	16	97	53	0	0	0	84	60	58	51	145	44	64	156	0	47	489	0	18	0	54	
Cactaceae	0	0	24	0	210	31	62	65	10	0	64	80	0	0	44	32	121	0	22	118	0	0	0	29	0	24	4	32	31	0	0	45	0	0	0	0	
Artemisia	12	0	0	0	30	15	0	0	0	0	0	0	0	0	263	0	0	0	0	0	06	28	0	87	25	24	48	0	0	49	0	26	26	18	0	0	
Aster. Is	95	91	0	0	30	31	62	65	52	78	95	0	279	92	854	49	121	53	488	88	54	614	180	289	25	97	140	32	62	74	47	167	52	53	24	27	
Aster. Hs	20	68	0	0	30	31	0	65	0	0	0	80	0	153	88	49	48	0	133	118	36	196	120	203	25	24	105	95	218	0	16	51	26	35	121	135	
Cheno-am af.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	24	27	
Bag #	852	854	856	858	859	860	861	862	864	866	892	893	894	895	896	897	898	899	006	952	995	1016	1028	1077	1084	1100	1223	1228	1256	1339	1344	1405	1420	1536	1600	1612	

:				Table 2	Table 24.3. Continued	led.				
Bag #	unk sm tricolpate	Sphaeralcea	Zea mays	Sum	Total	marker	mark/slide	total marker	Lyco added	Wt/area
852	0	0	ø	513	2109	394	1064	1064	40500	25
854	0	23	0	26	593	71	308	308	40500	25
856	0	0	48	15	357	68	442	442	40500	25
858	0	0	0	Ю	49	99	286	286	40500	25
859	0	0	300	37	1110	54	88	88	40500	25
860	0	0	15	28	432	105	683	683	40500	25
861	0	0	218	36	1122	52	120	120	40500	25
862	0	0	108	36	778	75	350	350	40500	25
864	0	0	0	39	408	155	1008	1008	40500	25
866	0	0	0	40	1045	62	202	202	40500	25
892	0	0	0	45	1429	51	133	133	40500	25
893	0	0	27	56	1487	61	98	98	40500	25
894	0	0	279	92	5139	29	29	29	40500	25
895	0	0	0	51	1559	53	331	331	40500	25
896	0	0	854	442	9676	74	74	74	40500	25
897	0	0	16	29	470	100	650	650	40500	25
898	0	0	24	66	1596	67	290	290	40500	25
868	0	0	53	35	930	61	153	153	40500	25
006	0	0	0	62	1376	73	475	475	40500	25
952	0	0	0	104	3063	55	143	143	40500	25
995	0	0	18	63	1134	6	2754	2754	40500	25
1016	28	0	56	184	5139	58	131	131	40500	25
1028	0	0	30	39	1170	54	243	243	40500	25
1077	29	0	0	151	4368	56	76	76	40500	25
1084	0	0	51	42	1063	64	235	235	40500	25
1100	0	0	0	76	1838	67	218	218	40500	25
1223	0	17	44	510	2227	371	603	603	40500	25
1228	0	0	0	53	1684	51	238	238	40500	25
1256	0	0	0	43	1340	52	140	140	40500	25
1339	0	0	0	56	1375	99	380	380	40500	25
1344	0	0	16	25	393	103	670	670	40500	25
1405	0	26	630	489	3144	252	252	252	40500	25
1420	0	0	0	35	915	62	289	289	40500	25
1536	0	0	0	21	370	92	644	644	40500	25
1600	0	0	0	74	1789	67	290	290	40500	25
1612	0	0	0	49	1323	60	260	260	40500	25
1678	0	0	59	104	3063	55	119	119	40500	25
1713	0	0	259	146	4730	50	140	140	40500	25
1731	55	0	0	137	3762	59	192	192	40500	25

319

I				Bas	sed on Count:	Based on Counts and Low Magnification Scan of Slide	fication Scan	of Slide			
Bag #	Pinus	Picea	Zea mays	Sphaeralcea	Cactaceae	Cylindropuntia	Platyopuntia	Onagraceae	Solanaceae	Nyctaginaceae	Cheno-am af
852	0	3.05	4.57	0	0	1.52	0	3.05	0	0	0
854	0	0	63.19	5.27	31.59	10.53	0	0	0	0	0
856	0	0	11	0	11	0	0	0	0	0	0
858	0	0	0	0	0	0	0	0	0	0	0
859	0	0	276.92	0	166.15	18.46	0	0	0	0	0
860	0	0	37.98	0	9.49	16.62	0	0	0	0	0
861	27.09	0	189.63	0	40.64	81.27	0	0	0	0	0
862	0	0	23.14	0	32.4	32.4	0	0	0	0	0
864	0	0	0	0	1.61	0	0	1.61	0	0	0
866	0	0	0	0	0	0	0	0	0	0	0
892	0	0	0	0	24.43	0	0	0	0	0	0
893	0	0	16.48	0	65.94	0	0	0	0	0	0
894	0	0	279.31	0	0	0	0	0	0	0	0
895	0	0	0	0	0	0	0	0	0	0	0
896	0	0	853.78	0	43.78	43.78	0	0	0	0	0
897	0	0		0	9.97	0	0	0	0	0	0
898	0	0	16.74	0	33.48	33.48	0	0	0	0	0
899	0	0	21.25	0	0	42.49	0	0	0	0	0
006	0	0	0	0	3.41	0	0	0	0	0	0
952	0	0	11.33	0	79.3	0	0	0	0	0	0
995	0	0	0.59	0	0	0	0	0	0	0	0
1016	0	0	24.83	24.83	12.41	37.24	0	0	0	0	0
1028	0	0	0	0	20	0	0	0	0	0	13.33
1077	0	0	0	0	21.43	42.86	0	0	0	0	0
1084	0	0	55.23	0	0	41.42	0	0	0	0	0
1100	0	0	22.32	0	14.88	59.52	0	0	0	0	0
1223	0	0	32.25	13.44	5.37	26.87	0	0	0	0	0
1228	0	0	13.61	0	13.61	20.42	0	0	0	0	0
1256	0	0	0	0	11.54	57.69	0	0	0	0	0
1339	0	0	12.81	0	0	17.08	0	8.54	0	0	0
1344	0	0	4.84	0	0	14.52	0	0	0	0	0
1405	0	0	630	12.86	64.29	488.57	0	0	6.43	0	0
1420	0	0	0	0	0	5.6	0	0	0	0	0
1536	0	0	0	0	0	0	0	0	0	0	0
1600	0	0		0	11.16	0	0	0	0	0	0
1612	0	0	6.23	0	0	18.69	12.46	0	0	0	0
1678	0	0	40.78	0	0	81.57	0	13.59	0	0	0
1713	0	0	173.57	0	46.29	277.71	0	0	0	0	0
1731	0	0	0	0	0	0	0	0	0	8.45	С

	.3. Continued.
Bag #	Max. Potential
	Concentration
852	1.52
854	5.27
856	3.67
858	5.66
859	18.46
860	2.37
861	13.55
862	4.63
864	1.61
866	8.04
892	12.22
893	16.48
894	55.86
895	4.89
896	21.89
897	2.49
898	5.58
899	10.62
900	3.41
952	11.33
995	0.59
1016	12.41
1028	6.67
1077	21.43
1084	6.9
1100	7.44
1223	2.69
1228	6.81
1256	11.54
1339	4.27
1344	2.42
1405	6.43
1420	5.6
1536	2.52
1600	5.58
1612	6.23
1678	13.59
1713	11.57
1731	8.45

			Locus/					
3ag #	Bag # Provenience	Area	Unit	Structure	Stratum	Level	Feature Type	: Type
499	NO/E0	-	~	Pit structure 4:D shaped	თ	98.39	4	floor
632	N73/E87	-	12	Pit room 10	ı	99.05-99.00	10	floor:contact
992	N85.36/E86.3	-	-	Pit structure 4	ı	98.41	41	niche:wall
1061	N84/E89	-	-	Pit room 15	-	99.52-98.4	15	pit room
1526	N118.15/E132.35	2	ω	Pit structure 76 w/l 47	11	98.2	76	floor
1598	N81/E87	-	12	Pit room 16	ı	98.33	104	basin:mealing
1674	N81/E88	-	12	Pit room 16	ı	98.4-98.3	103	basin:mealing
1707	N91/E89	-	10	Pit room 70	11	98.3	02	floor
1732	N140/E137	2	თ	Extramural	4	98.35	126	pit:storage
1853	N116.6/E134.32	2	ω	Pit structure 47:circular	10	98.18	47	floor:contact
1881	N82.55/E89.05	-	12	Pit room 16	ı	98.46	16	floor
1997	N120/E137.26	2	ω	Pit structure 47	ı	97.88	163	niche:wall
2042	N121.53/E136.29	-	11	Pit structure 47	08-8	98.09	121	bin:storage
1571	N81/E88	-	12	Pit room 16	0	98.27	102	basin:mealing
1796	N119/E135	0	œ	Pit structure 47	Bottom	98.15	152	dump:ash/refuse

Naw Mavico 44 č Ś ů 6160 ⊲ (ulon o Ċ 200 Ĉ Dollog No.A Tahle 24.4

Bag #	Period	Age	Pinus	P. pond.	P. edulis	Picea	Ulmus	Onagraceae	Polygonum	Eriogonum
499	Early Rio Grande Developmental	AD 750-900	121	13	108	-	1	1	-	4
632	Coalition	AD 1200-1325	5	ı	5	'	ı	ı	·	ı
992	Early Rio Grande Developmental	AD 750-900	125	19	106	ı	ı	ı	-	
1061	Coalition	AD 1200-1325	7	-	9	'	ı	ı	ı	
1526	Late Rio Grande	AD 1000-1200	41	I	41	ı	ı	ı	ı	ı
	Developmental/Coalition									
1598	Coalition	AD 1200-1325	221	15	206	ı	-	~	ı	ı
1674	Coalition	AD 1200-1325	21	9	15	ı	ı	ı	ı	ı
1707	Coalition	AD 1200-1325	15	-	14	ı	ı	ı	ı	ı
1732	Late Rio Grande	AD 1000-1200	12	I	12	I	ı	ı	ı	I
	Developmental/Coalition									
1853	Early Rio Grande Developmental	AD 750-900	0	ı	0	'	ı	ı	ı	ı
1881	Coalition	AD 1200-1325	20	ı	20	'	ı	I	ı	ı
1997	Early Rio Grande Developmental	AD 750-900	0	ı		·	ı	-	ı	ı
2042	Early Developmental	AD 750-900	15	0	13	'	ı	ı	ı	
1571	Coalition	AD 1200-1300	20	7	18	'	ı	ı	·	ı
1796	Early Developmental	AD 750-900	5	1	5	·	-	ı	·	
1881	Coalition	AD 1200-1325	20	'	20	'	ı	ı	ı	
1997	Early Rio Grande Developmental	AD 750-900	0	ı		ı	ı	-	ı	·
2042	Early Developmental	AD 750-900	15	0	13	'	ı	I	ı	·
1571	Coalition	AD 1200-1300	20	0	18	'	ı	ı	ı	
1796	Early Developmental	AD 750-900	ŝ	I	LC.	ı	~	ı	ı	,

ī		I																	ra															
	% Indeter-		2.50 1.00	4./6	0.92	2.56	2.35	0.77	0	0	0	0	5.49	0	7.25	2.41	0		ו Ephedra	1	I	5	I	I	I	1	I	1	I	I	I	I	I	I
				47	764	78	170	522	74	18	58	43	91	9	69	83	44		unknown triporate	I	I	I	1	ı	I	ı	I	ı	I	ı	ı	1	-	ı
		zea mays	N		13	ı	7	10	с			-			~	~			Eriogonum	4	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	I	ı
	Sphaer-	aicea	N	·	4	ı	,	ı	·	·	ı	·	·	•					- Eri															
																			Cheno am af	'	'	1	'	I	'	4	'	1	'	'	'	-	'	'
-	Indeter-	minate	<u>v</u> 0	2	2	2	4	4	'	'	'	'	ŝ	ľ	Ŋ	2	'	Slide																
		Epheara	ŋ	ı	9	ო	9	16	-			-	-		ı	-		Scan of	Polygonum	2	ı	-	·	ı	ı	ı	ı	ı	ı	ı	ı	·	I	ı
-	Cylindro-	punta	Ø	•	ı	•	0	-	ı	'	'	'	ı	~	ı	-		l. ification	Onagra- ceae	ı	I	-	ı	ı	-	ı	ı	ı	ı	ı	ı	ı	I	ı
		actaceae	_				ი	7							-	ı		Continuec <mark>ow Magn</mark>	Platy- opuntia	•	ı	-	'	ı	ı	·	ı	ı	ı	'	ı	'	I	ı
		Arremisia Cactaceae	-0	ı	ი	ı	0	~						,	,		-	Table 24.4. Continued. Counts and Low Magnification Scan of Slide	Cylindr- opuntia	8	ı	-	ı	ı	-	ı	ı	ı	ı	ı	0	-	2	ı
		aceae IS /	00	·	33	ı	5	23	7		4	ო	12	·	2	-	7	Ta d on Coul	Cactaceae	3	2	7		12	2	ი	ı	·	ı	ı	ı	2	-	ı
	Aster-	aceae ns.	0	ı	ი	7	4	ω	-	·	7	·	2	ı	Ŋ	-		Based on																
	AS 5	aces																	alcea															
ō	Cheno-	am ai.		1	0	'	'	10	0	-	-	'	'	'	I	ı	•		Sphaera	3	I	1	ı	ı	ı	ı	I	ı	I	ı	I	ı	I	I
		Poaceae Unerio-am	107	35	552	59	92	223	41	2	34	34	47	4	39	54	31		Zea mays	7	5	3	ı	7	с С	-	с С	-	ı	~	ı	4	-	ı
	-	ae C	N					(N											Zea			43			÷	-						•		
		Poace:	-	1	ო	'	7	-	7	'	'	0	4	'	-	0	'		Picea	2	I	4	ı	ı	ı	ı	ı	ı	I	ı	ı	ı	I	ı
(Sarco-	palus		•	'	'	-	'	'	'	'	'	'	'	ı	'	'		Pinus	1	ı	ı	,	·	ı	ı	ı	ı	ı	,	2	,	ī	ı
	# ~ C	100 100	499	632	992	1061	1526	1598	1674	1707	1732	1853	1881	1997	2042	1571	1796		Bag #	499	632	992	1061	1526	1598	1674	1707	1732	1853	1881	1997	2042	1571	1796

Table 24.4. Continued

						Table 24	Table 24.4. Continued.	ued.						
						Onagra-	- Poly-	Eriogo-	Sarco-		Cheno-	Cheno-	Astera-	Ъ,
Bag #	Pinus	P. pond.	P. edulis	Picea	Ulmus	ceae	gonum		batus	Poaceae	am	am af.	ceae hs.	hs.
499	751	81	670	9	ı	ı	9	25	ı	43	1558		93	_
632	117	ı	117	ı	ı	•	•	•	ı	•	822	•	•	
992	•	160	894	ı	ı	•	œ	•		25	4658	17	76	6
1061		25	147	ı	ı	•	•	•			1448		172	•
1526	•		1230	ı	ı	•	•	•	30	60	2760		120	~
1598		45	623		ო	ო	•	•		ო	674	30	24	_
1674	374	107	267	ı	ı	'	•	18	·	36	730	36	4	~
1707	108	7	101	ı	I	I	ı	ı	ı	ı	14	7	•	
1732	211		211	ı	ı	ı	ı	ı	ı	ı	599	18	123	~
1853	09		60	ı	ı	ı	ı	•	ı	60	1020	'	•	
1881	282		282	ı	ı	•	•	•		56	662		28	~
1997	I	ı	ı	ı	ı	22	ı	•	I	ı	88	ı	•	
2042	324	43	281	ı	ı	ı	ı	ı	ı	22	842	·	108	~
1571	444	44	399	ı	ı	ı		ı	ı	44	1198	•	22	
1796	150	ı	150	ı	30	ı	ı	ı	ı	ı	930	ı	•	
						Table 24	Table 24.4. Continued	ued.						
	Astera-			Cylindro.	dro-		Indeter- 3	Sphaer-	Zea					Tot
Bag #	ceae Is	Artemisia	Cactace	ae puntia		Ephedra	minate	alcea	mays	Sum	Total M	Marker Tra	Trans T	Trans
499	329	192	9	(')	37	19	74	12	12	510		261	14	26
632	0	,	ı		ı		47	•		42	986	69	9	26
992	278	76	ı		1	51	59	34	110	764	6446	192	ø	29
1061	•		ı			74	49			78	1915	66	9	26
1526	150	60	270	U	60 1	180	120	ı	60	170	5100		10	25
1598	70	ო	9		ო	48	12		30	522	1578		20	26
1674	36		ı		ı	18			53	74	1317	91	4	25
1707	•	·	ı		ı	ı				18	130	224	4	26
1732	70	·	ı		ı	ı				58	1021	92	4	26
1853	06		ı		1	30			30	43	1290	54	10	25
1881	169		ı		ı	14	70			91	1282	115	4	26
1997	•	,	ı		22	ı	·	ı	ı	9	131	74	4	24
2042	43	ı	22		ı	ı	108	ı	22	69	1490	75	9	27
1571	22	•	•		22	22	44		22	83	1842	73	9	26
1796	210	•			ı	ı	ı		ı	44	1320	54	26	26

						Based	on Counts an	d Low Magr	Based on Counts and Low Magnification Scan of Slide	of Slide	
	Mark/	Lycopodium				Zea					
Bag #	Slide	added	Wt/Area	Pinus	Picea	mays	Sphaeralcea		Cactaceae Cylindropuntia	Platyopuntia	Platyopuntia Onagraceae
499	485	40500	25		6.68	23.4	10.03	10.03	26.74	1	
632	299	40500	25	•		27.09	·	10.84		ı	·
992	696	40500	25	•	9.31	100.1	25.6	4.66	2.33	2.33	2.33
1061	286	40500	25		•			•	·	ı	·
1526	135	40500	25	•	•	84		144	·	ı	·
1598	697	40500	25	•		30.22	·	4.65	2.32	ı	2.32
1674	569	40500	25	•	•	31.33		8.55		·	·
1707	1456	40500	25	•	•	3.34	ı	ı	·	I	ı
1732	598	40500	25	•		2.71	·	ı		ı	·
1853	135	40500	25	•	•	•		•		ı	
1881	748	40500	25	•	•	2.17		•		·	·
1997	444	40500	25	7.3	•	·	ı	ı	7.3	I	ı
2042	338	40500	25	•	•	19.2		9.6	4.8	ı	
1571	316	40500	25	•	•	5.12		5.12	10.24	·	·
1796	54	40500	25	'			I	I		ı	ı

<u> </u>
6
<u> </u>
2
⊇.
Ŧ
_
0
Õ
4
<u> </u>
N .
2
Ð
7
ð
Ē
F

Table 24.4. Continued. Based on Counts and Low Magnification Scan of Slide

		Cheno-		Unknown		Max. Potential
Bag #	Polygonum	am af	Eriogonum	Triporate	Ephedra	Concentration
499	6.68		13.37			3.34
632	ı	ı	I	ı		5.42
992	2.33	•	ı	ı	11.64	2.33
1061	ı	•	ı	ı	•	5.66
1526	ı	ı	I	ı	•	12
1598	ı	ı	I	ı		2.32
1674	·	11.39	ı	•		2.85
1707	ı	ı	ı	ı	•	1.11
1732	I	•	I	ı	•	2.71
1853	·	·	ı	•	•	12
1881	·	·	ı	•	•	2.17
1997	ı	•	ı	ı	•	3.65
2042	ı	4.8	I	ı	•	4.8
1571	ı	•	ı	5.12		5.12
1796	ı	•	,	ı	ı	30

Type	?floor	?floor				bin:mealing:adobe lined			posthole	posthole:sealed by floor	floor?	floor?	posthole:main roof support	posthole:main roof support	pit:storage:opening plastered over	pit:storage:bell shaped w/ subfl pit	pit:rodent damage	sipapu				
Feature	2	2	Ð	5	S		5	5			20	20	160	173	156	171	184	166	183	69	92	182
Elevation	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226	5226
Level Front of D	98.84-98.76	98.82-98.78	100.01	99.46-99.32	99.32	99.16	98.76	98.88-98.73	98.34	98.49	99.05	99.39-99.05	99.1-98.37	98.7-98.43	99.18-98.79	98.97-98.28	99.17-98.82	99.08-98.65	99.0-98.7	98	100.29-100.20	99.08-99.01
Stratum	255	255	510	530	540	540	555	555	580	585	755	755	780	780	785	785	785	785	785	25	0	780
Area Locus/Unit Structure Stratum Level Elevation Feature Type	pit structure 2:ovoid	pit structure 2:ovoid	pit structure 5	pit structure 5	pit structure 5	pit room 5	pit structure 5	pit structure 5	pit structure 5	pit structure 5	pit structure 50	pit structure 50	pit structure 50	pit structure 50	pit structure 50	pit structure 50	pit structure 50	pit structure 50	pit structure 50	extramural	extramural	pit structure 50
Locus/Unit	2	ы	4	4	4	4	4	4	4	4	10	10	10	10	10	10	10	10	10	12	12	10
Area I	-	~	~	~	~	~	~	~	~	~	2	2	С	0	0	0	2	2	2	2	0	0
Provenience	N94/E102	N93/E101	N105.76/E102.08	N102/E102	N101/E103	N102.5/E103.62	N103.3/E102.1	N102/E102	N104.52/E103.97	N102.6/E103.25	N124/E144	N122/E141	N125.62/E141.02	N121.67/E143.95	N122.7/E139.65	N121/E143	N125/E139.35	N125.28/E145.5	N126.68/E142.45	N110.3/E145.5	N111.4/E147.1	N126.14/E142.9
Bag #	1189	1203	1310	1464	1484	1505	1768	1823	1898	1942	2119	2156	2280	2286	2304	2319	2322	2368	2375	2407	2415	2498

Table 24.5. Continued

Bag #	Bag # Period	Age	Pinus	P. pond.	P. edulis	P. edulis Juniperus	Picea	Quercus	Fabaceae
1189	Rio Grande Developmental	AD 750-1200	89	15	74	-	ı		ı
1203	Early Rio Grande Developmental	AD 750-900	162	18	144	~	-	2	ı
1310	Early Rio Grande Developmental	AD 750-900	7	0	Ω	ı	ı		ı
1464	Early Rio Grande Developmental	AD 750-900	10	10		ı	ı		ı
1484	Early Rio Grande Developmental	AD 750-900	77	10	67	-	ı	·	~
1505	Early Rio Grande Developmental	AD 750-900	14	0	12		ı	ı	
1768		AD 750-900	25	7	18	ı	ı		ı
1823	Early Rio Grande Developmental	AD 750-900	13	-	42	ı		-	ı
1898	Early Rio Grande Developmental	AD 750-900	S		ŝ	·	ı		·
1942	Early Rio Grande Developmental	AD 750-900	-		-	ı	ı		ı
2119	Early Rio Grande Developmental	AD 750-900	2		2	·	·		ı
2156	Early Rio Grande Developmental	AD 750-900	•			·	·		ı
2280	Early Rio Grande Developmental	AD 750-900	ო	-	2	·	·		ı
2286	Early Rio Grande Developmental	AD 750-900	1	-	10	ı	ı		ı
2304	Early Rio Grande Developmental	AD 750-900	~		-	·	·		ı
2319	Early Rio Grande Developmental	AD 750-900	120	45	75	0	·		ı
2322		AD 750-900	ო		ო	·	·		ı
2368	Early Rio Grande Developmental	AD 750-900	12	ო	თ	·	ı		ı
2375	Early Rio Grande Developmental	AD 750-900	2	0		·	·		ı
2407	Rio Grande Developmental	AD 750-1200	210	95	115	0	4		ı
2415	Rio Grande Developmental	AD 750-1200	ო	ı	ო	·	ı		ı
2498	Rio Grande Developmental	AD 750-1200	52	6	43 8	·	ı		ı

								Cheno- /	Asteraceae	Cheno- Asteraceae Asteraceae
Bag #		Solanaceae Shepherdia	Polygonum	Eriogonum	Sarcobatus	Poaceae	Cheno-am	am af.	hs.	s
1189				-		~	361	-	12	ი
203	ı	ı	ı	ı	ı	6	265	-	15	20
310	ı	·	ı	-	·	~	89		ი	ი
1464				·	·	ო	63	ı		10
484	·	.		ı	ı	9	362	с	7	24
505	ı	ı	ı	-	ı	~	53	ı	N	~
768		·	ı	ı	ı	~	57	ı	~	7
823		·	·	·	ı	•	46	-	-	ო
898	·	·	ı	ı	ı	4	45	ı	.	7
942					·	~	11	ı	·	·
119	ı	·	·	·	·		ი		ı	ı
156	·		·			-	9	·		ı
280	·					ı	31	ı	ო	4
286	·		ı	·	·	7	151	·	·	12
304					ı	ı	4	ı	~	ı
319			-	·	~	1	244	ı	20	89
322	·		ო			4	14	ı	~	19
368	ı	·	·	·	·	-	ო		ı	7
375	ß		·				17	·	0	16
407	·		ı	2		12	165	ო	19	33
415						~	25		~	0
2498	ı	,	,	,		ო	36	ı	S	S

Table 24.5. Continu	ued.	
ble 24.	Contin	
	Υ.	

			Cylindro-		Indeter-	Sphaer-	Zea		%
Bag #	Artemisia	Cactaceae	puntia	Ephedra	minate	alcea	mays	Sum	Indeterminate
1189	Ł	2	13	54	5		4	554	6.0
1203	S	-	0	13	4		10	511	0.78
1310	ო	ı	0	~	4	~	•	134	2.99
1464	ო	ı	~	0	S		-	108	4.63
1484	4	-		5	7	~	-	501	1.4
1505	0	ı	ı	~	7	ı	ı	91	2.2
1768	·	ı	~	·	S	•	ı	122	4.1
1823	ო	·	•	·	4		ı	85	4.71
1898	Ø	·	•	·	9		ı	81	7.41
1942	4	•	•		ო	·	ı	21	14.29
2119	ı	ı	2	·	•	•	ო	18	ı
2156	ı	ı	•	~	•		•	ω	·
2280	4	ı	•	ı	0		0	52	3.85
2286	ı	ı	•	ı	•		1	187	•
2304	-	·	•		-		•	6	11.11
2319	10	ı	2	4	ი	•	•	513	1.75
2322	0	ı	•	ı	ო	·	0	51	5.88
2368	ı	ı	•	·	•	•	0	25	·
2375	5	ı	•	·	10	•	•	57	17.54
2407	5	ı	5	14	10	~	20	506	1.98
2415	ı	ı	0	ı	~		0	37	2.7
2498	,		-	~	'	ı	G	100	•

Table 24.5. Continued.

						Based	on Count	s and Le	unts and Low Magnif	Based on Counts and Low Magnification Scan of Slide	in of Slide					
				Sphaer-	Cacta-	Cylindro- Onagra-	Onagra-	Solan-	2		Polygo-	Cheno-	Shepher- Eriogo-	Eriogo-		P. ponder-
	Picea	Abies	Zea mays		ceae	puntia	ceae	aceae	Prosopis	Fabaceae		am af	dia	unu	Ephedra	osa
1189	1	,	9		7	14	1			ı	ı	1		-	1	
1203	~	-	20	·	7	80	ı	ı	ı	·	ı	7	ı	ı	ı	
1310	'	'	~	~	-	4		ı	-	·	~	'		'	ı	
1464	'	'	9		'	4		ı		·	•	~		'	ı	9
1484	'	'	~	~	-	'		ı		-	•	7	-	'	2	
1505	'	'	2	~	0	7		ı		·	•	'		-	ı	
1768	'	'	ო		0	7		ı		ı	•	'		'	ı	
1823	'	'	4		'	'		ı		·	•	'		'	ı	
1898	'	'	·		'	'		ı		ı	•	'		'	ı	
1942	'	'	ı		'	'	-	'		ı	•	'		'		~
2119	•	•	ო	•		2	ı	ı		ı	•	ı	•	•	ı	,
2156	'	'	ı		'	'		'		ı	•	'		'		
2280	'	•	9		•	~		ı		ı	•	•		'	~	,
2286	•	•	ı	•		•	ı	ı		ı	•	ı	•	•	ı	,
2304	•	•	ı	•	-	•	ı	ı		ı	•	ı	•	•	ı	,
2319	'	•	2		•	0	•	'		ı	~	•		•		,
2322	'	'	18		'	7		'		ı	•	'		'		~
2368	'	-	ო		'	~		·		ı	•	'		'		
2375	'	•	ı		'	'	-	10		ı	•	'		'		
2407	თ	-	39	ო	•	10	2	ı		ı	•	·	•	0	ı	·
2415	•	'	ı	•				•					•	•	•	

σ
d)
–
1
<u> </u>
÷
_
ō
õ
U
LO .
24
Ň
Ð
-
ab
g
Ľ.

					Table 24.5. Continued	ontinued.					
P. pond.	P. edulis	Pinus P. pond. P. edulis Juniperus	Picea	Quercus	Fabaceae	Solanaceae		Shepherdia Polygonum Eriogonum Sarcobatus	Eriogonum	Sarcobatus	Poaceae
98	481	7	'				ı	I	7		7
64	508	4	4	7			·	ı	ı	ı	32
53	133	ı	ı	ı			·	ı	27	ı	27
174	ı	·	ı	·				·	ı	·	52
69	464	7	ı	ı	7		7	ı	ı	ı	42
43	259		ı					·	22	·	22
177	456	ı	'	ı			·	ı	ı	ı	25
32	381	ı	'	32			·	ı	ı	ı	ı
ı	156	·	ı					·	ı	·	125
ı	17	ı	ı	ı			·	ı	ı	ı	17
'	52	·	'	·				ı	ı	·	
ı	ı	ı	'	ı			·	ı	ı	ı	27
21	42	ı	ı	ı			·	ı	ı	ı	,
31	306	·	'	·				ı	ı	·	61
'	24	ı	'	ı			·	ı	ı	ı	ı
142	236	9	ı					ო	ı	ო	35
ı	26	ı	·	ı	'	·	·	26	ı	ı	35
37	112	ı	'	ı	·	·	ı	ı	ı	ı	12
30	ı		ı	·		74		·	ı	·	ı
350	423	7	15	ı	,	·	·	ı	7	·	44
•	62	ı	•	ı	ı	ı	·	ı	ı	ı	21
58	276	ı	'		·		·				19

Table 24.5 Continued

	Cheno-	Cheno-	Asteraceae Asteraceae	Asteraceae			Cylindro-		Indeter-	Sphaer-
Bag #	am	am af.	hs.	ls	Artemisia	Cactaceae	puntia	Ephedra	minate	alcea
1189	2349	7	78	59	7	13	85	351	33	•
1203	935	4	53	71	18	4	7	46	14	
1310	2364		239	239	80	ı	53	27	106	27
1464	1097		·	174	52	ı	17	35	87	·
1484	2506	21	48	166	28	7	ı	35	48	7
1505	1145	ı	43	22	43	·	ı	22	43	ı
1768	1443		25	177	ı	ı	25	ı	127	
1823	1461	32	32	95	95	ı		ı	127	
1898	1402	I	31	218	249	ı	ı	ı	187	ı
1942	192	ı	·		70	ı	ı	ı	52	ı
2119	235		ı		ı	ı	52	ı		
2156	162		ı	ı	ı	ı	•	27	·	•
2280	644	'	62	83	83	ı		ı	42	
2286	4615		ı	367	ı	ı	•	ı	•	•
2304	97		24	·	24	ı		ı	24	
2319	769		63	281	32	ı	9	13	28	
2322	123	'	თ	166	18	ı		ı	26	
2368	37		ı	87	ı	ı		ı		
2375	253		30	238	74	ı		ı	149	
2407	608	1	70	122	18	ı	18	52	37	4
2415	513	•	21	41	ı	ı	41	ı	21	·
2498	231	'	33	33	,	,	ď	G		1

Ψ
_
÷
0
Õ
S
4
Ñ
Ð
Q
a
Ĥ

ğ.

	r								-	
# 	zea mave			Morber	% Indeter- minate	Trane	Tot Trane	Mark/	Lyco Addad	
	niays							aniio	Aureu	AICA
1109	97	504	3004	249	D.U	77	97	294	40500	C7
1203	35	511	1804	459	0.78	10	26	1193	40500	25
1310	•	134	3559	61	2.99	9	28	285	40500	25
1464	17	108	1881	93	4.63	4	25	581	40500	25
1484	7	501	3468	234	1.4	14	24	401	40500	25
1505	·	91	1966	75	2.2	9	28	350	40500	25
1768	•	122	3088	64	4.1	12	28	149	40500	25
1823	·	85	2700	51	4.71	œ	26	166	40500	25
1898	·	81	2523	52	7.41	12	26	113	40500	25
1942	·	21	366	93	14.29	4	26	605	40500	25
2119	78	18	470	62	•	14.5	14.5	62	40500	25
2156	ı	œ	216	60	•	10	28	168	40500	25
2280	42	52	1080	78	3.85	4	28	546	40500	25
2286	ı	187	5716	53	·	29	29	53	40500	25
2304	ı	თ	218	67	11.11	4	28	469	40500	25
2319	ı	513	1617	514	1.75	13	26	1028	40500	25
2322	18	51	447	185	5.88	4	26	1203	40500	25
2368	25	25	312	130		4	26	845	40500	25
2375	ı	57	847	109	17.54	4	27	736	40500	25
2407	74	506	1863	440	1.98	10	27	1188	40500	25
2415	41	37	759	79	2.7	29	29	79	40500	25
2498	39	109	701	252	ı	12	26	546	40500	25

Table 24.5. Continued.

						5				pased on ocanto and pow magninearion ocan of onde		21 CISC					
																	Max.
			I			:											Potential
			Zea	Sphaer-	Cac	Cylindro- Onagra-	Onagra-	Solan-				Polygo- Cheno-	Shep-	Eriogo-			Concentra-
Bag #	: Picea	Abies	mays	alcea	taceae	puntia	ceae	aceae	Prosopis	Fabaceae	num	am af	herdia	num	Ephedra	P. pond	tion
1189			33.3		38.54	77.07	•	•					•	5.51	•	•	5.51
1203	1.4	1.4	27.2	•	2.71	10.86	'	ı	ı		'	2.71	'	'	'	•	1.36
1310	ı	ı	5.69	5.69	5.69	22.76	'	ı	5.69		5.69	ı	ı	ı	ı	,	5.69
1464	ı	ı	16.7	'	ı	11.15	'	ı	,		ı	2.79	ı	ı	·	16.7	2.79
1484	ı	ı	4.04	4.04	4.04	'	ı	ı	ı	4.04	ı	8.08	4.04	ı	8.08		4.04
1505	ı	•	9.26	4.63	9.26	9.26	'	ı	ı		'	'	'	4.63	'	•	4.63
1768	ı	ı	32.5	'	21.7	21.7	·	ı	ı		ı	ı	1	1	,	,	10.85
1823	ı	ı	39.1	'	ı		'	ı	ı		ı	ı	ı	ı	ı	ı	9.77
1898	ı	ı	'	'	ı	'	ı	ı	ı		·	ı	·	ı	·	·	14.38
1942	ı	ı	'	'	ı	'	2.68	ı	ı		ı	ı	1	1	,	2.68	2.68
2119	•	•	78.4	•	•	52.26	•	'		·	•	'	'	•	•	•	26.13
2156	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	9.64
2280	•	•	17.8	•	'	2.97	•	'		,	•	'	'	•	2.97	'	2.97
2286	,	•	•	•	'	•	•	'			'	'	'	'	•	'	30.57
2304	·	•	•	•	3.45	•	•	•		•	•	•	•	•	•	•	3.45
2319	•	•	3.15	•	'	3.15	•	'		,	1.58	'	'	•	•	'	1.58
2322	,	•	24.3	•	'	2.69	•	'			'	'	'	'	•	1.35	1.35
2368	·	1.9	5.75	•	•	1.92	•	•		•	•	•	•	•	•	•	1.92
2375	,	•	•	•	'	•	2.2	22.02		,	•	'	'	•	•	•	2.2
2407	12	1.4	53.2	4.09	•	13.64	2.73	•	•	•	•	'	'	2.73	•	•	1.36
2415	•	•	•	ı	•	'	•	'	•	,	ı	•	•	•	•	·	20.51
2498	,	ı	38.6		'	8 [.] 9	'	2.97			ı	'	'	'	•	•	2.97

ued.	
. Contin	
ole 24.5.	
Tabl	

		Locus/									٩.		
Bag # 1	Bag # Provenience	Unit	Structure	Stratum	Level	Feature Type	Type	Period	Age	Pinus	pond.	P. edulis Juniperus	Juniperus
523	523 N185.05/E192.99	4	structure 18	40	98.19	18	floor	Early Rio Grande Developmental	AD 700-900	•	•	•	•
580 1	N192.1/E183.7	9	extramural	74	97.29	104 in 83	pit:subfloor:cist	Early Rio Grande Developmental	AD 700-900	-	-	ı	
613	613 N180/E184	Q	extramural	92	96.96	56	pit: bell shaped: roasting: 3 subfloor pits	Early Rio Grande Developmental	AD 700-900	4	~	б	
621 I	621 N179/E184	9	extramural	20	96.62	59 in 56	59 in 56 pit:subfloor	Early Rio Grande Developmental	AD 700-900	30	S	25	-
629 h	N232/E176.15	с	structure 9	400	97.5	6	floor: se	Early Rio Grande Developmental	AD 775-825	16	4	12	
630 h	N230.85/E172.84	e	structure 9	400	97.5	б	floor: sw	Early Rio Grande Developmental	AD 775-825	0	•	0	
659 h	N185.4/E183.82	9	pit structure 60	41	97.11-	60	floor:under pallet	Early Rio Grande Developmental	AD 740-835	10	-	თ	
665 1	N186/F183 4	9	nit structure 60	41	97.09 97.19	60	floor-under metate	Farlv Rio Grande Developmental	AD 740-835	3	00	23	e.
687 1	N186.35/E186.3	9	pit structure 60	41	97.16	80	floor	Early Rio Grande Developmental	AD 740-835	13	~	12	0
1 669 1	N184.88/E186.02	9	pit structure 60	floor	97.03	63	pit:	Early Rio Grande Developmental	AD 740-835	5	ı	5	,
				cont									
754 1	N173.84/E179.2	2	extramural	27	0	47	pit:small	Early Rio Grande Developmental	AD 700-900	თ	•	თ	-
810 1	810 N185.8/E178.5	9	extramural	42	97.41	85	burial:human	Early Rio Grande Developmental	AD 700-900	0		7	
866 h	N200/E187	7	extramural		96.5	92	subcist:in bell	Early Rio Grande Developmental	AD 605-665	9	•	9	
							shaped:burned						
881 h	N186.24/E196.12	4	structure 26	401	97.86	26	floor	Early Rio Grande Developmental	AD 700-900	ß	•	ß	
892 1	N185.75/E193.65	4	structure 18	71	97.92	19	pit:posthole:remodeled	Early Rio Grande Developmental	AD 700-900	19	•	19	•
919 h	N/E	4	structure 18			24	pit:storage	Early Rio Grande Developmental	AD 700-900	Ø	4	4	
935 h	N184.58/E193.8	4	structure 18	75	97.75	25	pit:storage	Early Rio Grande Developmental	AD 700-900	14		14	
942 N	N176.5/E185.4	5	extramural	92	97.04	53	stain, ?pot rest	Early Rio Grande Developmental	AD 700-900	16		16	
949 h	N182/E195.4	4	structure 26	20	97.58	31	posthole:double	Early Rio Grande Developmental	AD 700-900	7	•	2	
950	N182.03/E195.5	4	structure 26	20	97.6	31	posthole:double	Early Rio Grande Developmental	AD 700-900	ი	•	თ	ı

Table 24.6. Raw Pollen Counts and Concentration Values, LA 6171, Sandoval County, New Mexico

			Solan-	Brassic-	Sarco-		Cheno-	Cheno-				Cacta-	Cacta- Cylindro-
.×	Salix Quercus Carya	Carya	aceae	aceae	batus	Poaceae	am	am af.	ceae hs.	ceae Is	Artemisia	ceae	puntia
, i	ı	ı	ı	ı	ı	·	10	ı	•	ω	·	ı	•
'		ı	·		·	-	4	·	-	с	·	'	'
•	·	ı	ı		ı	-	37	ı	-	-	·	ı	ı
•	ı	ı	ı	-	7	15	429	I	15	14	0	I	I
'	ı	ı	ı	ı	ı	-	ი	ı	~	0	·	ı	ı
'	ı	ı	ı	ı	ı	-	23	ı	ı	~	·	ı	ı
•	·	ı	ı		ı	-	26	ı	2	4	~	ı	ı
•	ı	ı	ı	4	I	10	177	I	ω	32	0	I	I
ო		ı	·		·	7	85	-	с	1	·	-	'
ľ		-	ı	ı	ı	2	45	•	4	ო		'	
ı		·	·		·	-	66	ı	-	2	~	-	
ľ		·	·	ı	-	ო	22	1	0	6	~	'	'
ı	-		•	ı	•	-	93	'	ო	ß	ı	'	
'		ı	ı	ı	ı	2	14	•	2	ო		'	
1	ı	ı	ı	ı	I	9	111	с	ω	7	4	I	-
1	ı	ı	4	ı	I	2	14	I	-	7	·	-	I
ı		ı	·		·		27	-	9	-	·	'	'
ı		·	·		·	-	31	ı	10	•	ı	'	
ı	·	ı	·	ı	ı	ı	5	•	-	ı	ı	ı	ı
'	ı	•	I	ı	•		17	ı	Ŋ	2		ı	,

									Base	ed on Co	ounts and Lc	w Magnificat	Based on Counts and Low Magnification Scan of Slide	lide
1							%)		
			Unk				Indeter-		Zea	Sphaer-				
Bag #	Ephedra	Ephedra Indeterminate Triporate Sphaeralcea	Triporate	Sphaeralcea	Zea mays	Sum	minate	Pinus	mays	alcea	Cactaceae	Onagraceae	Solanaceae 1	Solanaceae Nyctaginaceae
~		0	•	I		20	10.00			•	I	ı	ı	ı
_		-	•	ı	ı	11	<u> 60</u> 6	Ŋ		,	ı	ı	ı	
		~	,	·	·	1 5	2.22	1		,	·	'	ı	
	4	10	,			523	1.91	ı	ı	,			·	
_	0					31	0.0						·	
_	~	ო			-	32	9.38		-				·	
~	ı		,		-	4	0.00	ı	0	,			·	
	4	11				289	3.81						·	
	4	13	,	·	·	143	<u> 60</u> 6	,	ო	,	·	'	ı	
_		0		-	0	65	3.08		ო	2		·	ı	
	ო	~	·		·	119	0.84						·	
	4	0				46	4.35	Ŋ					·	
	~	0				112	1.79						·	
	ı		,			27	3.70	ı	ı	,			·	
	4	ი	,	ı	9	178	5.06	,	10	~	·	'	ı	
_	~	11			თ	28	18.97		37	-	-	.	4	.
		4				23	7.55		-				·	
~ .	4	13	-			76	17.11						·	
949		~			-	10	10.00	Ŋ					·	
950		4	•			38	10.53			•		'		

Ē
.=
÷
<u> </u>
0
õ
U
۰Ö
w.
4
N
ω
_
<u> </u>
a

				ш	ased on	Counts	Based on Counts and low magnification scan of slide	r magnit	ication	scan of :	slide				
	Poly-	Cheno-	Eriogo-			Zea	Sphaer-	Cacta-	Onagra-	Solan-	Brassic-	Sarco-		Cheno-	Cheno-
Bag #	gonum	am af	unu	Ephedra	Pinus	mays	alcea	ceae	ceae	aceae	aceae	batus	Poaceae	am	am af.
523			1	ı	ı	•						ı	•	106	
580	ı	ı	I	ı	Ŋ	ı	ı	ı	ı	ı	I	ı	27	108	ı
613	ı	ı	ı	ı	1	1	'	ı	ı	ı	'	I	30	1110	ı
621	ı	·	'		ı	'	'	·	·	ı	27	53	398	11393	ı
629	•	·	·		·	'	•	'	·	·		ı	12	104	
630	ı	ı	ı	ı	ı	~	'	ı	ı	ı	'	I	31	703	ı
629	ı	ı	ı	ı	ı	0	ı	ı	ı	ı	ı	ı	14	360	ı
665	~	ı	~	ო	ı	ı	ı	ı	ı	ı	28	ı	71	1258	ı
687		•	·	·	·	ო	•	'	•	ı	•	ı	180	2186	26
669	•	•	•		•	ო	2	•	•	•	•	•	51	1157	•
754		•	'		•	'	•	'	•			ı	23	2228	•
810	•	~	·	9	Ŋ	'	•	'	·	·		16	48	349	
866	•	•	•		•	•	•	•	•			'	34	3206	•
881	'	•	•		·	'	•	•	•	ı		ı	57	398	
892		•	'		•	10	~	'	•			ı	187	3458	93
919	•	•	•	2	•	37	~	-	-	4		'	20	138	•
935	'	•	•		·	-	•	•	•	ı		ı		329	12
942	ı	·	·	·	•	•	•	·	·	·	•	ı	ი	290	·
949	•	•	•	•	2	•	•	•	•	•	·	•		59	•
950	•	•	•	ı	ı	ı		ı	·	ı		ı	ი	158	·

<u> </u>
σ
۵.
≝
=
<u> </u>
Ę
7
<u> </u>
0
0
<u>ر</u>
\mathbf{U}
~
ø
4
N I
()
<u> </u>
$\overline{}$
ש
⊢
•

Table 24.6. Continued.

Max. Potential	Concentration	1.57	6.23	6.92	8.17	1.78	7.05	2.13	2.84	7.91	5.71	5.4	2.44	34.47	9.09	14.38	1.41	1.74	1.44	1.69	1.43
	Ephedra								8.53		·		14.7			ı	2.82	ı			ı
Eriogo-	unu		•	•	•	•	•	•	2.84	•	ı	•	•	•	•	ı	ı	ı	•	•	•
Cheno- Eriogo-	am af							•			•	•	2.44			ı		ı			ı
Polygo-	unu		•		•	•	•	•	2.84	•	•	•		•	•	ı	ı	·	•		ı
Onagra- Solan- Nyctagin- Polygo-	aceae		ı		ı	ı	ı	ı		ı		ı		ı	ı	·	1.41	ı	ı		ı
Solan-	aceae		·				·		·	·	·		·	·		ı	5.64	ı		·	ı
Onagra-	ceae										•					ı	1.41	ı			ı
Cacta-	ceae		·	•			·		·	·	•		·	·		ı	1.41	ı		·	ı
Sphaer-	alcea		·				·			·	11.43			·		14.38	1.41	ı			,
Zea	mays						7.05	4.26		23.7	17.1					144	52.2	1.74			
	Pinus		31.2	76.2	ı	ı	ı	ı	ı	ı	ı	ı	12.2	ı	ı	ı	ı	ı	ı	8.45	•
	Bag # Pinus	523	580	613	621	629	630	629	665	687	669	754	810	866	881	892	919	935	942	949	950

Table 24.6. Continued.

ag #	3ag # Provenience	Structure	Stratum Level Feature Type	Level	Feature	e Type	Period	Age
192	N113/E120	extramural	ЪF	99.16	ი	pit:roasting	Early Rio Grande Developmental AD 800	AD 800
197	N112.1/E114	extramural	ЪF	99.17	1	pit:roasting	Early Rio Grande Developmental	AD 800
221	N106.46/E109.55 pit structure	pit structure 1	Ηd	97.24	16	posthole:main structure SW1/4	Early Rio Grande Developmental	AD 800
223	N108.96/E109.77 pit structure	pit structure 1	Ηd	97.10	17	posthole:main structure NW1/4	Early Rio Grande Developmental	AD 800
34	234 N107.4/E111.35 pit structure	pit structure 1	AS	97.46	20	pit:ash	Early Rio Grande Developmental AD 800	AD 800

σ
Ð
Ξ.
Ē
÷Ξ
Ċ
ō
õ
U
4
Ň
Ð
<u>م</u>
<u> </u>

P. Astera- Astera- Astera- s pond. P. edulis Poaceae Cheno-am ceae ls. - - - - 11 - 8 - 3 20 3 71 3 5 - 1 5 7 - 8 - 1 5 7 - 8 - 1 5 7 - 8 - 1 5 7 - - 1 - 1 2 14 2 1 - - 95 - 2349 - 254 - - - 95 - 222 1 2 1 - - - 95 - 2222 - 2 1 - </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>1 anic 24.7</th> <th></th> <th>ď.</th> <th></th> <th></th> <th></th> <th></th>						1 anic 24.7		ď.				
Image Predulis Poaceae Cheno-am ceae hs. - - - - 11 - - 3 20 3 71 3 - - 1 5 - - 1 5 - - 1 2 14 2 ues - - 349 - - 95 - 222 - - 13 64 - - 29 58 405 58			ط.				Astera-		Cacta-	Cylindr-		Indeter-
	Bag #	Pinus	pond.	P. edulis	Poaceae	Cheno-am	ceae hs.	ceae Is	ceae	opuntia	Ephedra	minate
 	Raw Co	ounts										
 . 3 . 3 . 20 . 1 . 2 . 3 . 1 . 2 . 3 . 1 . 2 . 3 . 3 . 405 . 58 	192	ı	ı	ı	·	11		œ	•		~	с
3 20 3 71 3 1 5 - 3 ues - 1 2 14 2 - 349 - 2 42 282 42 1000 42 - 29 58 405 58 58	197	ო	ı	ო	ı	7	ı	ı	ı	ı	~	7
	221	23	ო	20	ო	71	ო	2	0	-	6	ß
- 1 2 14 2 ues 349 2 - 95 - 349 - 2 - 95 - 222 - 2 - 13 64 - 1 - 29 58 405 58	223	ı	ı	ı	-	5		•	•		~	ı
ues 349 - 2 - 95 - 322 - 2 42 282 42 1000 42 - 29 58 405 58 58	234	-	ı	-	0	14	0	~		ı	·	Ω
349 - 2 - 95 - 222 - 42 1000 42 29 58 405 58	Concer	ntration	Values									
95 - 95 - 222 - 324 42 282 42 1000 42 13 64 - 29 - 29 58 405 58	192		•	ı		349		254	•		32	95
324 42 282 42 1000 42 13 64 - 29 - 29 58 405 58	197	95	•	95		222		•	•		32	64
13 64 - 29 - 29 58 405 58	221	324	42	282	42	1000	42	70	28	14	127	70
29 - 29 58 405 58	223		•	ı	13	64		•	•		13	'
	234	29	ı	29	58	405	58	29	•		•	145

				% Indeter-		Tot	Mark/S	Lyco	Wt/
Bag #	Sum	Total	Marker	minate	Trans	Trans	lide	Added	Area
192	23	731	51	13.04	10	26	133	40500	25
197	16	508	51	12.5	10	26	133	40500	25
221	122	1719	115	4.1	9	27	518	40500	25
223	7	06	126		4	27	851	40500	25
234	26	752	56	19.23	9	25	233	40500	25

Table 24.7. Continued.

Table 24.7. Continued.

Based on Counts and Low Magnification Scan of Slide

S
Ē
D
0
0
≥
-

Raw Counts	ounts								
			769	Snhaer- Cacta- Culindr-	Carta-	Culindr-		Aster-	Aster- aceae Max Potential
Bag #	Bag # Pinus Picea	Picea		alcea	ceae	opuntia	opuntia Ephedra	ls	Concentration
192	•	ı	1	•	•	•	•	•	
197	ı	ı	ı	ı	I	ı	ı	ı	
221	ı	~	0	~	4	~	ø	ı	
223	9	ı	ı		ı		0	0	
234	ı	ı	ı	ı	ı	I	ı	ı	
Concel	Concentration Values	Values	"						
192	ı	ı	ı	•	ı	'		ı	12.22
197	ı	ı	•		ı	•		ı	12.22
221	ı	3.1	6.26	3.13	12.5	3.13	25	ı	3.13
223	11.4	•	•	•	•	•	3.81	3.81	1.9
234	'	•	•		•		•	•	6.94

	Table 24.8. Raw Pollen Counts and	ollen Cc	unts a		n Values, F	ollen Wa	ash San	Concentration Values, Pollen Wash Samples, Pena Blañca Project, Sandoval County, New Mexico	andoval County, New Mexico	
Bag # Pr	Prov	Area	Locus/ Unit	Structure	Stratum	Level	Feature Type	Type	Period	Age
1480 N	N441.6/E493.36	-	4	pit structure 4	S	99.39	22	ceramic:pitcher:burial:human	Early Rio Grande Developmental	AD 750-900
1486 N	N467.08/E490.55	-	2	extramural:SU1		99.37	24	ceramic:Tallahoga red seed jar w/ burial	Early Rio Grande Developmental	AD 750-900
∠ ∞	1488 N466.77/E490.6	~	0	extramural:SU1	В	99.44	24	ceramic: pot: pit: bell-shaped: storage w/ adult burial	Early Rio Grande Developmental	AD 750-900
2	1698 N460.02/E499.89	-	2	extramural:SU1	۷	99.87	244	ceramic:mug:pit:oval:lg w/ 2 pit-burial	Early Rio Grande Developmental	AD 750-900
1699 h	N459.65/E500.31	-	2	extramural:SU1		99.83	244	ceramic:jar:pit:oval:lg w/ 2 pit- burial	Early Rio Grande Developmental	AD 750-900
375 N	NO/E0	-	1	burial	T1wall cl	0	2	ceramic:utility:burial:human:4 5+vr female	Early Rio Grande Developmental	AD 750-900
387 1	N94/E100	-	1	burial		0	0	ceramic:bowl:burial:human:45 +yr female	Early Rio Grande Developmental	AD 750-900
396 N	N94/E102	-	1	burial	-	99.97- 99.68	0	ceramic: red pitcher: burial: human45+yr female	Early Rio Grande Developmental	AD 750-900
398	N99.7/E102	-	1	burial	ю	99.72	0	ceramic:jar:burial:human: 45+yr female	Early Rio Grande Developmental	AD 750-900
1046	N121.9/E133.4	7	80	pit structure 47		99.76	49	ceramic:sherds:burial:child	Early Rio Grande Developmental	AD 750-900
1047	N121.85/E133.3	7	ø	pit structure 47	4	98.81	49	ceramic:jar:burial:child	Early Rio Grande Developmental	AD 750-900
1210 1	N118.55/E132	ы	00	pit structure 76 w/l 47	4	98.25 98.25	81	ceramic:bowl:burial:human:18- 19vr male	Late Rio Grande Developmental/Coalition	AD 1000-1200
158 1	N100.75/E111.45	0	0		BPF	99.03	7	ceramic:jar:burial:human:in shallow pit	Early Rio Grande Developmental	AD 800
159 1	N110.48/E111.35	0	2	extramural	BPF	99.01	7	ceramic:bowl:burial:human:in shallow pit	Early Rio Grande Developmental	AD 800
160 1	N100.56/E111.4	0	7	extramural	BPF	98.98	2	ceramic: jar lino gray: burial: human: inshallow pit	Early Rio Grande Developmental	AD 800
161 1	N100.6/E111.2	0	2	extramural	BPF	66	7	ceramic: seed jar: burial: human: in shallow pit	Early Rio Grande Developmental	AD 800
7	181 N99.2/E107.65	0	7	extramural	00-BPF	98.98	9	ceramic: seed jar hanging: burial: human w/ fetus in shallow pit	Early Rio Grande Developmental	AD 800

σ
Ð
<u>ت</u>
Ē
÷
Ċ
ō
Ō
0
م
w.
4
Ň
<u>_</u>
Δ
<u>a</u> t
Ë
•

					Та	Table 24.8. Continued.	. Contin	ued.						
				-	Juniper-							Solana- Rosa-	Rosa-	Poly-
Site	Bag #		Pinus P. pond. P. edulis		sn		Abies	Alnus	Ulmus	Quercus	Picea Abies Alnus Ulmus Quercus Prosopis	ceae	ceae	gonum
LA 265	1480	73	10	63	I	L	I	ı	ı	1	ı	I	I	ı
LA 265	1486	ı	ı	ı	I	ı	ı	ı	ı	-	ı	0	I	ı
LA 265	1488	0	·	0	ı	ı	ı	ı	ı	ı		·	ı	ı
LA 265	1698	-	•	-	ı	•	ı	ı	ı			•	'	
LA 265	1699	4	•	4	ı	·	ı	ı	ı	ı		ı	ı	·
LA 6169	375	0	·	0	ı	ı	ı	ı	ı	ı		·	I	ı
LA 6169	387	ო	~	0	•	•	ı		ı	-			ı	
LA 6169	396	4	•	4	•	•	ı		-	·			-	
LA 6169	398	2	•	0	ı	•	ı	ı	ı	ы		•	·	
LA 6169	1046	147	39	108	ı	-	-	-	ı	2		•	·	-
LA 6169	1047	325	111	214	-	•	ı		ı	·	0		-	
LA 6169	1210	54	œ	46	ı	•	ı	ı	ı			•	ı	
LA 115862	158	-	•	~	ı	•	ı	ı	ı	-		•	·	
LA 115862	159	7	•	7	•	•	ı	·	ı	ı		•	ı	ı
LA 115862	160	4	•	4	ı	-	ı	ı	ı			•	ı	
LA 115862	161	œ	0	9	ı	ı	ı	ı	ı	ı	•	·	ı	ı
LA 115862	181	-	ı	1	ı	ı	ı	ı	ı	ı	•	,	I	,

								Aster-	Aster-		
		Eriog-	Lili;	Sarco-		Cheno-	Cheno-	aceae	aceae	Arte-	Cacta-
Site	Bag #	onum	aceae	batus	Poaceae	am	am af.	hs.	ls	misia	ceae
LA 265	1480	ı	ı	ı	6	233	٢	18	22	16	ø
LA 265	1486	•			•	16	•	0	0	4	-
LA 265	1488	'			•	6	·	~	•	ı	
LA 265	1698	ı	ı	ı		6	ı	0	ı	ı	ı
LA 265	1699	ı	ı	ı	~	15	·	25	4	ı	-
LA 6169	375	'		ı	ı	•			~	•	
LA 6169	387	'				~	·	~	•	ı	
LA 6169	396	1			•	•	-	•	•	ı	·
LA 6169	398	'		ı	ı	~			~	•	
LA 6169	1046		·	ı	9	289	-	-	23	11	·
LA 6169	1047	'		~	4	217	·	2	21	11	-
LA 6169	1210	ı	ı	ı	7	63	ı	4	12	7	ı
LA 115862	158	-			•	ო	•	~	~	•	
LA 115862	159	•			ı	S		ო	0	•	
LA 115862	160	•	~	ı	0	ო	·	2	ო	ı	•
LA 115862	161	•	ı	ı	0	25	·	ო	2	ı	•
LA 115862	181	ı	ı	ı	·	9	'	4	-	ı	ı

Ded.
Contin
4.8. C
ble 24
Tak

				- 40							
		Cylindr-	Platy-		Nyctagin- Indeter- Sphaer-	Indeter-	Sphaer-	Zea	Cucurbi-		% Indeter-
Site	Bag #	opuntia	opuntia	opuntia Ephedra	aceae	minate	alcea	mays	taceae	Sum	minate
LA 265	1480	51	2	2	•	17	•	24	2	553	3.07
LA 265	1486	-	•			ო	•	ı		32	9.38
LA 265	1488	•	•			•	•	ı		12	ı
LA 265	1698	·	ı	ı	·	0	ı	ı	ı	1 4	14.29
LA 265	1699	•	•			~		•		51	1.96
LA 6169	375	•	•			•	•	ı		ო	ı
LA 6169	387	•	ı			·	•	ı		9	I
LA 6169	396	•	ı			·	•	ı		2	I
LA 6169	398		ı	·	•	0	•	ı	·	ø	25
LA 6169	1046	~	•	-	•	თ	ı	2	•	497	1.81
LA 6169	1047	•	•	ი	~	4	ı	ო	•	606	0.66
LA 6169	1210	•	-	-	•	10	-	ო		163	6.13
LA 115862	158	ı	ı	ı	•	ı		-	ı	10	ı
LA 115862	159	•	•	·	•	•	•	-		25	ı
LA 115862	160	ı	ı	-	•	ო		ო		27	11.11
LA 115862	161	•		ı	•	~	ო	ı		55	1.82
LA 115862	181			•	•	•		٢		14	

ntinued.	
.8 .0	
Table 24	

					Table	Table 24.8. Continued	inued.					
				Ű	3ased on	Based on Counts and Low Magnification Scan of Slide	Low Mag	Inificatio	n Scan of	Slide		
							Sphaer-	Cacta-	Cylindro- Platy-	Platy-	Solana-	Solana- Nyctagin-
		Pinus	Picea	Abies	Quercus	Zea mays	alcea	ceae	puntia	opuntia	ceae	aceae
LA 265	1480		•	1		24	•	8	51	2	•	
LA 265	1486	ı	ı	•	•	-		•	•	•	2	ı
LA 265	1488	ı		•		ı		•	•	•	•	·
LA 265	1698	·		ı		ı		•	•	•	•	
LA 265	1699	ı	ı	·	•	0		0	2	•	•	ı
LA 6169	375	ı	ı	ı		ı		'	•	•	'	·
LA 6169	387	·	·	ı	•	-		•	•	•	•	,
LA 6169	396	9	2	·	•	ı		•	•	·	•	ı
LA 6169	398	ı	ı	ı	·	ı	·	·	•	ı	•	ı
LA 6169	1046	ı	~	-	·	0	·	-	~	ı	•	ı
LA 6169	1047	·	S	ı	•	12		4	•	•	•	0
LA 6169	1210	·		ı		9	-	•	•	-	•	
LA 115862	158	ı	ı	ı	·	0	·	·	•	ı	•	ı
LA 115862	159	·	·	ı	•	-		0	•	•	•	,
LA 115862	160	,	2	ı	. 	12	,	-	•	•	,	ı
LA 115862	161	ı	,	ı		ı	ო	'		•	'	-
LA 115862	181	ı	ı	ı	ı	5	ı	ı	ı	ı	I	

					i Iuliucu.				
			Based or	Counts	and Low	Magnific	ation Sc	Based on Counts and Low Magnification Scan of Slide	
		Polygo-	Cucurbi-	Cheno-	Rosa-	Eriogo-			
		unu	taceae	am af	ceae	unu	Ulmus	Ulmus P. pond P. edulis	P. edulis
LA 265	1480	•	2		ı	-	•		
LA 265	1486	•		-	ı	•	•	~	ı
LA 265	1488	•		•	ı	•	•	•	ı
LA 265	1698				ı	ı	ı		ω
LA 265	1699	•		•	ı	ı	ı	S	ı
LA 6169	375	•		•	ı	'	'	•	ı
LA 6169	387				ı	ı	ı		ı
LA 6169	396	•		•	ı	•	2	•	ı
LA 6169	398	•	•	•	ı	•	•	•	ı
LA 6169	1046	~		•	ı	•	•	•	ı
LA 6169	1047	0		0	-	ı	-		ı
LA 6169	1210	ı	ı	ı	I	-	ı	·	·
LA 115862	158	•		•	ı	•	·	•	ı
LA 115862	159	•		•	ı	•	•	•	ı
LA 115862	160	•		•	ı	ı	•	•	ı
LA 115862	161	ı	•	ı	ı	•	ı	•	ı
LA 115862	181	•		•	ı	•	•	•	ı

Table 24.8. Continued.

					0	Cheno-am	Astera-	Astera-		Cacta-	Cacta- Cylindro-
Site	Bag #	Liliaceae	Sarcobatus		Poaceae Cheno-am	af.	ceae hs.	ceae Is	Artemisia	ceae	puntia
LA 265	1480	·	I	0.98	25.41	0.11	1.96	2.4	1.75	0.87	5.56
LA 265	1486	•	·	•	6.65		0.83	0.83	1.66	0.42	0.42
LA 265	1488	•	·	•	24.79	ı	2.75		•		
LA 265	1698	•		•	1.45	•	0.32		•	•	
LA 265	1699	•	·	0.04	0.56		0.93	0.15	•	0.04	ı
LA 6169	375	•	·	•	ı	ı	ı	7.48	•		
LA 6169	387	ı	·	ı	1.18	ı	1.18	ı	ı	•	•
LA 6169	396	•		•	ı	2.23	ı		•	•	
LA 6169	398	·	·	'	1.95	·	ı	1.95		ı	ı
LA 6169	1046	•	·	1.3	62.65	0.22	0.22	4.99	2.38	'	0.22
LA 6169	1047	•	0.46	1.85	100.24	•	2.31	9.7	5.08	0.46	
LA 6169	1210	•	·	1.9	17.11	ı	1.09	3.26	1.9		
LA 115862	158	•	·	•	1.26		0.42	0.42	•	ı	ı
LA 115862	159	•	·	•	5.13	ı	3.08	2.05	•		
LA 115862	160	1.59	·	3.18	4.77		3.18	4.77	•		
LA 15862	161	•	·	1.22	15.2	ı	1.82	3.04	·	'	
LA 115862	181	ı		•	2.86	•	1.91	0.48	•	ı	·

ō
Ð
⊒.
Ħ
2
ŏ
U
<u></u>
õ
23
\sim
(D)
ž
ä

a Ephedra inaceae minate alcea mays -0.22 -1.85 -2.62 -2.62 $$ -1.25 $$ -2.62 $$ -1.25 $$ $$ $$ -1.25 $$ $$ $ -1.25 $			Platv-		Nvctaq-	Indeter-	Sphaer-	Zea	Cucur-
1480 0.22 0.22 1.85 - 1486 - - - 1.85 - 1486 - - - 1.25 - 1488 - - - 1.25 - 1488 - - - 1.25 - 1488 - - - - - - 1699 - - - 0.32 - - 375 - - - 0.04 -	Site	Bag #	opuntia	Ephedra	inaceae	minate	alcea	mays	bitaceae
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LA 265	1480	0.22	0.22	ı	1.85	•	2.62	0.22
1488 -	LA 265	1486	ı		•	1.25	ı	ı	
1698 - - 0.32 - 1699 - - 0.04 - 375 - - 0.04 - 387 - - 0.04 - 387 - - - 0.04 - 386 - - - - - - 396 - - - - - - - 398 -	LA 265	1488	·		•	·	·	ı	
1699 - - 0.04 - 375 - - - 0.04 - 375 - - - - - - 375 - - - - - - - 375 -	LA 265	1698	·	•	ı	0.32	·	ı	•
375 -	LA 265	1699	I	•	ı	0.04	ı	I	ı
387 -	LA 6169	375	·		•	·	·	ı	
396 -	LA 6169	387		·	ı			'	ı
398 - - 3.91 - 1046 - 0.22 - 1.95 - 1047 - 4.16 0.46 1.85 - 1047 - 4.16 0.46 1.85 - 1210 0.27 0.27 - 2.72 0.27 1218 - - - - - - 1210 0.27 0.27 - 2.72 0.27 1210 0.27 0.27 - - - - 1210 0.27 0.27 - - - - - 1210 0.27 0.27 -	LA 6169	396	·	•	ı	ı	·	ı	•
1046 - 0.22 - 1.95 - 1047 - 4.16 0.46 1.85 - 1210 0.27 0.27 - 2.72 0.27 1218 - - - 2.72 0.27 1218 - - - 2.72 0.27 1218 - - - - - 1218 - - - - - 158 - - - - - - 159 - 1.59 - 4.77 - - 160 - 1.59 - - - - - - 161 - <	LA 6169	398		ı	I	3.91		•	ı
1047 - 4.16 0.46 1.85 - 1210 0.27 0.27 0.27 - 2.72 0.27 158 - - 2.72 0.27 15 - - 159 - - - - - - - - 160 - 1.59 - 4.77 - - - - - - 161 - - - - - 0.61 1.82 -	LA 6169	1046		0.22	ı	1.95		0.43	ı
1210 0.27 0.27 0.27 0.27 158 - - - 2.72 0.27 158 - - - - - - 159 - - - - - - - 160 - 1.59 - 4.77 - - - 161 - - 1.59 - 4.77 - - 181 - - - - - - - -	LA 6169	1047	·	4.16	0.46	1.85		1.39	•
158 -	LA 6169	1210	0.27	0.27	•	2.72	0.27	0.81	
159	LA 115862	158		ı	I	·		0.42	ı
160 - 1.59 - 4.77 - 161 0.61 1.82 181	LA 115862	159		ı	ı			1.03	ı
161 0.61 1.82 181	LA 115862	160		1.59	•	4.77		4.77	
181	LA 115862	161	•	•	•	0.61	1.82	•	•
	LA 115862	181	I			I	I	0.48	

Table 24.8. Continued.

							Lasca		2			במסכמ כון כסמוונס מוומ בסיי ואמטוווויסמוטו סכמון כו כוומכ
				Mark/S							Zea	Sphaer-
Marker Ti	F١	Trans ⁻	Trans	lide	Added	Wt/Area	Pinus	Picea	Abies	Quercus	mays	alcea
	2	27	27	1182	40500	314.16	I	I	I	ı	2.62	ı
77		4	27	520	40500	1264.66	ı	·	ı	·	0.06	
85 1	-	4	14	85	40500	173	ı	'	ı		'	ı
318		9	22	1166	40500	788.34	ı	·	I	•	•	·
164		4	27	1107	40500	6614.43	ı	ı	ı	·	0.01	ı
	ñ	6	26	44	40500	123	ı	•	ı	•	•	•
244 12	2		28	569	40500	141	ı	·	I	•	0.5	·
	12		20	360	40500	84	8.04	2.68	I	•	•	·
	12		22	235	40500	162	ı	•	ı	•	•	,
834 25	25		25	834	40500	224	ı	0.22	0.22		0.43	ı
	2		25	2575	40500	425.63	I	0.18	ı	ı	0.44	1
	ø		30	1178	40500	475	ı	ı	ı	·	0.43	0.07
108 6	9		22	396	40500	895.35	ı	•	ı		0.23	•
57 4	4		26	371	40500	692.72	ı	'	ı		0.16	ı
	œ		26	273	40500	303	ı	0.98	ı	0.49	5.88	1
53 16	10		25	83	40500	1257.16	ı	ı	ı	·	•	1.17
56 4	7	t	26	364	40500	1518.01	•	•	ı	•	0.37	•

<u> </u>
a)
•
_
_
~
·
-
C
-
0
()
\sim
ø
ω.
4
\sim
CD CD
_
~
<u> </u>
ð
ເບ
1.2
•

						an	able 23.0. Collillueu.	volutined.							
						Based or	n Counts	Based on Counts and Low Magnification Scan of Slide	<i>A</i> agnificati	on Scan	of Slide				
		Cacta-	Cylindro-	Platy-	Solana-	Nyctagi-	Poly-	Cucurbit- Cheno-	Cheno-	Rosa-	Eriog-		٩.	٩.	Max. Potential
		ceae	puntia	opuntia	ceae	naceae	gonum	aceae	am af	ceae	unuo	Ulmus	pond.	edulis	Concentration
LA 265	1480	0.87	5.56	0.22	•			0.22	•	•	0.11				0.11
LA 265	1486		ı	'	0.12	'	ı		0.06	ı	·	,	0.06	'	0.06
LA 265	1488			•	·		'		'	'			ı		2.75
LA 265	1698		ı	'	·	'	ı		'	'	·		ı	0.35	0.04
LA 265	1699	0.01	0.01	•			'		'	'	'	•	0.03	•	0.01
LA 6169	375		ı	•			'		'	•		•		•	7.48
LA 6169	387		ı	•					•	•				•	0.5
LA 6169	396		ı	•	•		·		•	•	•	2.68	·	•	1.34
LA 6169	398		ı	•	•		•		·	·		ı	•	·	1.07
LA 6169	1046	0.22	0.22	•	•		0.22	•	•	•	•	•	•	•	0.22
LA 6169	1047	0.15	ı	•		0.07	0.07		0.07	0.04		0.04		•	0.04
LA 6169	1210		ı	0.07	'		'		'	'	0.07	•	'	•	0.07
LA 115862	158		ı	•			'		'	•		•		•	0.11
LA 115862	159	0.32	ı	•	•		•	•	•	•	•	•	•	•	0.16
LA 115862	160	0.49	ı	1	•	'		•	•	•	•		•	•	0.49
LA 115862	161		ı	•	•	0.39			·	·		ı	•	·	0.39
LA 115862	181	'		'	ı	'	ı	'	'	'	ı	'	ı		0.07

	Blanca	Project	
A: Eigen	value Analysis	s, Standardiz	
			Cumulative
Axis	Eigenvalues	Percentage	Percentage
Axis 1	11.7423	30.4018	30.4018
Axis 2	4.3831	11.3481	41.7499
Axis 3	2.2537	5.835	47.585
Axis 4	1.8958	4.9083	52.4933
Axis 5	1.5694	4.0633	56.5566
Axis 6	1.4522	3.76	60.3166
Axis 7	1.3173	3.4106	63.7272
Axis 8	1.2112	3.1358	66.863
Axis 9	1.126	2.9152	69.7783
Axis 10	1.0905	2.8233	72.6015
Axis 11	1.038	2.6874	75.289
Axis 12	0.9868	2.555	77.844
Axis 13	0.9353	2.4215	80.2655
Axis 14	0.8733	2.2612	82.5266
Axis 15	0.8247	2.1353	84.662
Axis 16	0.7618	1.9723	86.6343
Axis 17	0.6771	1.753	88.3873
Axis 18	0.6505	1.6841	90.0714
Axis 19	0.6042	1.5644	91.6359
Axis 20	0.5183	1.3419	92.9778
Axis 21	0.4466	1.1563	94.1341
Axis 22	0.3955	1.0241	95.1582
Axis 23	0.3538	0.916	96.0742
Axis 24	0.3214	0.8322	96.9064
Axis 25	0.2799	0.7246	97.631
Axis 26	0.2276	0.5893	98.2204
Axis 27	0.1882	0.4873	98.7077
Axis 28	0.1287	0.3332	99.0409
Axis 29	0.1221	0.3162	99.3571
Axis 30	0.1088	0.2816	99.6387
Axis 31	0.084	0.2176	99.8563
Axis 32	0.0555	0.1437	100
Axis 33			100

Table 24.9. Results of PCA, Soil Samples, Peña Blanca Project

ned.	
Continued.	
24.9.	
Table	

B: PCA variable loadings	adings										
	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8	Axis 9	Axis 10	Axis 11
P. ponderosa	0.2479	-0.2081	0.0088	-0.1045	0.0532	-0.0849	-0.0565	-0.152	-0.0033	0.1169	-0.042
P. edulis	0.2963	-0.1679	0.0051	0.099	-0.026	0.1064	-0.0521	-0.203	-0.0336	0.1105	-0.0523
Juniperus	0.1894	-0.3385	-0.0153	0.0541	0.062	0.0112	0.0391	0.0374	-0.0386	-0.0491	0.0012
Picea	0.1733	-0.2199	0.012	-0.1329	-0.018	-0.0649	-0.0491	-0.121	-0.0147	0.1306	-0.0184
Salix	0.0821	0.0009	-0.0751	-0.0296	0.1375	0.4473	0.093	0.1088	-0.275	-0.2129	-0.1152
Ulmus	0.0845	-0.1861	-0.0035	0.0074	0.0424	-0.0174	-0.0451	0.0309	-0.0514	-0.0703	-0.0499
Quercus	0.1580	-0.2386	-0.0144	0.0046	0.0935	0.0689	-0.0811	0.1128	-0.0333	-0.1025	0.0088
Carya	0.0176	0.0309	0.0826	-0.0462	-0.253	0.0065	0.4218	0.1514	-0.5445	0.1556	-0.0663
Prosopis	0.1442	-0.1715	0.3583	0.1234	0.0535	-0.1274	0.1741	0.1447	0.0964	-0.0825	0.0771
Onagraceae	0.0301	0.0297	0.0314	-0.0301	0.0006	0.0878	-0.1707	0.19	0.1049	0.7202	-0.4105
Fabaceae	0.1658	-0.3538	0.0005	0.0288	0.0437	0.0259	0.0092	0.0003	-0.0188	-0.0439	-0.0065
Solanaceae	0.0542	-0.0385	0.0559	-0.057	0.0836	0.0424	-0.2158	0.5032	0.0461	0.2533	0.1014
Shepherdia	0.1658	-0.3538	0.0005	0.0288	0.0437	0.0259	0.0092	0.0003	-0.0188	-0.0439	-0.0065
Polygonum	0.0447	0.0391	0.0816	-0.1068	-0.427	-0.0594	-0.1502	-0.066	0.165	-0.0522	0.0436
Eriogonum	0.1209	-0.0753	0.1344	-0.0787	-0.441	0.0384	-0.1391	-0.241	0.1115	0.0207	0.0613
Brassicaceae	0.1396	-0.0458	-0.3043	0.2176	-0.122	-0.2503	0.1685	0.1743	0.1781	-0.0303	0.0161
Sarcobatus	0.1063	0.1402	-0.3378	0.3516	-0.051	-0.2321	0.1555	-0.044	0.0706	0.0938	-0.0199
Poaceae	0.2975	0.1581	-0.1677	0.0411	0.0138	-0.0889	0.1167	0.167	-0.01	-0.1262	-0.0259
Cheno-am	0.2847	0.2732	-0.1636	0.0993	-0.066	-0.1157	0.0174	0.0223	0.0117	-0.0132	-0.0723
Cheno-am af.	0.1111	0.1292	0.0074	-0.2013	0.0591	0.4576	0.1492	-0.188	0.2548	-0.0871	-0.1526
Asteraceae hs.	0.3211	-0.0273	-0.0808	0.0256	-0.067	0.0385	0.2108	-0.087	0.0718	0.1346	0.0721
Asteraceae Is	0.3191	0.148	0.0104	-0.2175	0.0132	-0.146	-0.1593	0.1215	-0.0817	-0.1238	-0.0134
Artemisia	0.2034	0.1427	0.067	-0.1106	-0.204	-0.0496	-0.3906	0.105	0.0771	-0.1586	0.0566
Cactaceae	0.1010	0.1521	0.1568	0.3081	0.2609	-0.0516	-0.1352	-0.403	-0.2288	0.1448	-0.0139
Cylindropuntia	0.1055	0.1279	0.4602	0.1969	0.2226	-0.1505	0.112	-0.057	0.0735	0.106	0.0058
Platyopuntia	0.0299	0.0398	0.1833	0.0213	0.0797	0.137	0.3708	0.0345	0.5836	-0.0183	-0.0466
Ephedra	0.1656	0.1746	-0.089	0.2075	-0.049	0.2447	-0.1598	-0.286	-0.0736	0.0256	-0.0128
Nyctaginaceae	0.0364	0.0545	-0.0631	-0.4104	0.2291	-0.2661	0.0652	-0.168	0.0225	0.0072	0.0234
Indeterminate	0.3166	0.266	-0.0924	-0.1253	0.1537	0.2753	0.0093	0.1923	-0.0106	0.03	0.1217
Unk Triporate	0.0118	0.0172	-0.0302	0.0039	0.0246	0.1634	0.0408	-0.015	-0.0084	0.2998	0.8526
Unk Sm Tricolpate	0.0776	0.0815	-0.058	-0.4891	0.2381	-0.2816	0.1504	-0.175	-0.0505	0.0951	0.0175
Sphaeralcea	0.1186	0.1118	0.3382	-0.1159	-0.389	0.0076	0.2887	0.0106	-0.1652	0.0485	-0.0266
Zea mays	0.1377	0.1947	0.3845	0.1406	0.1592	-0.1036	-0.1731	0.1562	-0.0672	-0.2133	0.0161

ued.
Contin
24.9. (
Table :

B: continued											
	Axis 12	Axis 13	Axis 14	Axis 15	Axis 16	Axis 17	Axis 18	Axis 19	Axis 20	Axis 21	Axis 22
P. ponderosa	0.0583	-0.0251	-0.0589	0.0670	-0.0302	-0.0677	0.1389	-0.0747	0.2506	0.3269	-0.2616
P. edulis	-0.0520	-0.0279	0.0444	0.0338	0.0537	-0.0321	0.0302	-0.0648	0.0442	-0.1005	-0.2064
Juniperus	0.0612	-0.0060	-0.0164	-0.0117	0.0910	-0.0345	-0.0216	0.0540	-0.0693	0.0381	0.0888
Picea	0.0735	0.0212	-0.0420	0.2927	-0.3092	-0.2518	0.1818	0.2605	0.2531	-0.2471	-0.2419
Salix	0.5912	0.0208	-0.0082	-0.1492	0.0371	-0.2455	-0.1307	-0.0005	-0.0536	0.0772	-0.1944
Ulmus	-0.1743	0.1766	0.5619	-0.6098	-0.3543	0.0311	-0.0521	0.0463	0.1721	-0.1061	-0.0074
Quercus	-0.1829	0.1445	0.0336	0.2542	0.1387	0.1595	-0.1470	-0.5997	0.1367	-0.2035	-0.1794
Carya	-0.3206	-0.0736	0.1004	0.0769	0.1743	-0.1905	-0.0572	0.0306	0.3051	0.1593	0.1359
Prosopis	0.1656	0.0329	-0.1735	-0.1738	0.0657	0.1067	0.0612	0.0174	0.0026	-0.2989	0.0844
Onagraceae	0.0790	0.3786	-0.0555	-0.0925	0.1311	-0.0202	-0.1221	0.0435	-0.0966	-0.0050	0.0407
Fabaceae	-0.0835	-0.0076	-0.0209	0.0158	0.1827	0.0314	0.0297	0.1686	-0.2571	0.0759	0.1741
Solanaceae	-0.0215	-0.6850	0.0790	-0.1219	0.0000	0.0521	0.2060	-0.0430	-0.0296	0.0354	-0.1535
Shepherdia	-0.0835	-0.0076	-0.0209	0.0158	0.1827	0.0314	0.0297	0.1686	-0.2571	0.0759	0.1741
Polygonum	0.3866	0.0224	0.5444	0.1862	0.3978	0.1108	0.1563	0.0385	0.1436	-0.0533	0.0999
Eriogonum	0.1064	-0.1696	-0.2914	-0.2482	-0.2008	-0.0093	-0.3462	-0.2676	0.0424	0.2250	0.0704
Brassicaceae	0.1010	0.0018	-0.0687	-0.0859	0.0824	0.0806	-0.0573	0.1164	0.2123	0.4171	-0.0923
Sarcobatus	0.0401	-0.1387	0.0221	-0.0889	0.0470	0.0140	-0.0235	0.0065	-0.0778	-0.2766	-0.2153
Poaceae	0.1164	0.1029	-0.1184	-0.0127	-0.0249	-0.0337	0.0147	0.2165	0.0662	-0.1039	0.0059
Cheno-am	-0.1093	0.1409	0.0407	0.0370	-0.0290	0.0502	0.0514	-0.2107	-0.1683	0.0643	-0.1668
Cheno-am af.	-0.2640	-0.0522	-0.0110	-0.0504	0.1114	0.4567	0.0386	0.3044	0.1019	0.1326	-0.2403
Asteraceae hs.	-0.0353	-0.0908	0.0184	0.0657	-0.1158	0.1226	-0.1286	-0.0021	-0.1085	-0.1253	0.3298
Asteraceae Is	-0.0191	0.0936	0.1855	0.0048	-0.0910	-0.0394	0.0489	-0.1168	-0.3135	0.3094	0.0759
Artemisia	-0.2194	-0.0143	-0.1485	0.0156	0.0308	-0.2692	-0.2654	0.3529	0.0839	-0.1697	0.0304
Cactaceae	0.0340	-0.2891	0.2772	0.1255	0.0579	-0.0165	-0.3626	0.1353	-0.1434	0.0538	-0.0634
Cylindropuntia	0.1889	0.0331	-0.0631	-0.0460	-0.0648	0.1785	0.0607	-0.0243	0.3195	0.1314	0.1617
Platyopuntia	-0.1231	-0.0683	0.2222	0.0889	-0.0102	-0.5736	-0.0624	-0.1356	-0.0966	0.0738	-0.0097
Ephedra	-0.1001	-0.0339	-0.1396	-0.2616	0.1411	-0.2418	0.5927	-0.1633	0.0586	-0.0473	0.2560
Nyctaginaceae	-0.0205	-0.0900	-0.0943	-0.3716	0.5330	-0.1309	-0.1795	-0.0845	0.1248	-0.1766	-0.0843
Indeterminate	0.0805	-0.0668	0.0187	0.1375	-0.0948	0.1171	-0.1616	-0.0820	0.2256	-0.1712	0.3059
Unk triporate	-0.0101	0.2862	0.0355	-0.0705	0.0697	-0.0434	-0.0161	0.0751	-0.0651	0.0927	-0.1604
Unk sm tricolpate	0.1038	-0.0197	0.0166	0.0639	-0.1933	0.0304	0.1815	-0.0189	-0.1429	0.0434	0.1059
Sphaeralcea	0.0335	-0.0297	-0.0486	-0.0952	-0.0544	0.1173	0.0941	-0.0097	-0.3455	-0.1999	-0.3223
Zea mays	-0.1486	0.2034	-0.0573	0.0180	0.1326	-0.0550	0.0783	0.0560	-0.0076	0.1374	-0.1813

				IaDI	I able ∠4.9. Continued	nunuea					
B: Continued					- -						
	Axis 23	Axis 24	Axis 25	Axis 26	Axis 27	Axis 28	Axis 29	Axis 30	Axis 31	Axis 32	Axis 33
P. ponderosa	-0.2532	-0.1046	-0.1053	-0.1750	-0.4488	0.2053	0.3452	0.1071	-0.1126	0.2201	0.0000
P. edulis	-0.2064	0.0938	-0.0933	-0.2882	-0.0413	-0.2095	-0.7118	0.1381	0.1264	-0.0399	0.0000
Juniperus	0.1091	0.0552	0.0798	-0.1409	0.0498	0.0328	0.1544	0.2977	-0.3451	-0.7267	0.000.0
Picea	0.1427	0.0031	0.2515	0.2784	0.1370	-0.1130	0.0852	-0.2630	0.1961	-0.1424	0.0000
Salix	-0.0267	-0.0028	0.0128	-0.0003	0.2051	0.1897	0.0088	0.0411	0.1569	0.1002	0.0000
Ulmus	0.0211	0.0119	-0.0437	0.0978	-0.0269	0.0661	0.0067	0.0145	-0.0451	0.0467	0.0000
Quercus	0.2053	0.0920	-0.1061	0.0041	0.2960	0.0568	0.1220	-0.1182	-0.1534	0.1732	0.0000
Carya	0.0921	-0.1783	-0.0257	-0.0663	0.0818	-0.0277	0.0078	0.0490	0.1115	-0.0035	0.000.0
Prosopis	0.2737	-0.0549	-0.0108	-0.2392	-0.1524	-0.2693	0.2125	0.2272	0.3904	0.1689	0.0000
Onagraceae	0.1264	-0.0021	-0.0123	-0.0216	0.0049	0.0152	0.0274	-0.0143	-0.0215	0.0155	0.0000
Fabaceae	-0.0850	-0.1197	-0.1793	0.2770	0.0117	0.0380	-0.0338	-0.1381	0.0636	0.1081	-0.7071
Solanaceae	0.0167	-0.0513	0.0875	0.0578	0.1227	-0.0021	-0.0456	0.0688	-0.0450	0.0527	0.000.0
Shepherdia	-0.0850	-0.1197	-0.1792	0.2770	0.0117	0.0380	-0.0338	-0.1381	0.0636	0.1081	0.7071
Polygonum	0.0646	-0.0977	0.0148	0.0381	0.0095	0.0584	-0.0180	0.0578	-0.0196	0.0144	0.0000
Eriogonum	0.2364	-0.3030	0.0146	0.1497	0.0274	-0.0361	-0.1057	-0.0529	-0.0172	-0.0539	0.0000
Brassicaceae	0.2427	0.5368	-0.0643	0.0966	0.0294	-0.0295	-0.0817	-0.0862	0.1033	0.0457	0.0000
Sarcobatus	0.0478	-0.3852	-0.2437	-0.1918	0.0353	0.3197	0.0650	-0.2660	0.1192	-0.1844	0.0000
Poaceae	0.0452	-0.2836	0.0854	0.0070	0.0282	-0.3408	-0.1111	-0.0006	-0.6166	0.2978	0.0000
Cheno-am	-0.2116	-0.1226	0.1060	0.4335	0.1029	-0.1346	0.1374	0.5105	0.2545	-0.0785	0.0000
Cheno-am af.	0.1530	-0.1191	0.0264	-0.0988	0.1421	-0.0347	0.1094	-0.0142	0.0631	-0.0513	0.0000
Asteraceae hs.	-0.1135	0.1544	0.5706	-0.1480	0.0567	0.4099	-0.0108	0.0303	0.0139	0.2247	0.0000
Asteraceae Is	-0.0487	-0.0236	0.0943	-0.3845	0.0896	-0.2759	0.1281	-0.4130	0.1753	-0.1196	0.0000
Artemisia	-0.1233	0.1677	-0.2846	-0.1598	0.2411	0.1827	0.1345	0.1910	0.0437	0.0769	0.0000
Cactaceae	0.2375	0.1328	-0.0139	0.0656	-0.0395	-0.1819	0.1680	0.0355	-0.0862	0.1172	0.0000
Cylindropuntia	-0.3821	-0.0258	-0.1424	0.0663	0.4281	0.0494	-0.0099	-0.1283	-0.0583	-0.1079	0.0000
Platyopuntia	0.0339	-0.0124	-0.0761	0.0224	-0.0160	-0.0298	-0.0028	-0.0082	-0.0634	0.0163	0.0000
Ephedra	0.1757	0.1649	-0.0405	0.0190	0.0683	-0.0013	0.1209	-0.0602	-0.0609	0.0448	0.0000
Nyctaginaceae	-0.1435	0.0698	0.2134	0.1335	-0.0354	-0.0674	-0.0034	-0.1262	0.0187	-0.0743	0.0000
Indeterminate	0.0001	0.0745	-0.2578	0.2028	-0.4516	-0.0222	-0.0341	-0.1298	0.0847	-0.2239	0.0000
Unk triporate	0.0161	-0.0579	-0.0191	-0.0221	0.0818	-0.0278	0.0296	0.0099	-0.0126	0.0099	0.0000
Unk sm tricolpate	0.3619	0.0004	-0.3227	-0.0199	0.1767	0.2175	-0.1926	0.2561	-0.0153	0.0783	0.0000
Sphaeralcea	-0.1000	0.3579	-0.1550	0.1231	-0.1156	0.0541	0.0741	-0.1495	-0.2333	-0.0445	0.0000
Zea mays	0.2924	-0.1222	0.2392	0.1136	-0.2235	0.4085	-0.2999	-0.0574	-0.0024	-0.0742	0.0000
		1			1			1			1

		Ť							
Axis	e S	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8	Axis 9	Axis 10	Axis 11
-1.6089 0.0	0.0053	0.0663	0.0762	-0.0072	0.0034	0.0239	-0.0204	-0.0293	0.0138
	-0.0402	-0.0149	0.0179	0.0140	-0.0146	0.0021	0.007	-0.0054	0000.0-
	80	-0.0231	0.0137	-0.0124	-0.0714	-0.0472	-0.0117	0.0278	-0.0007
	60	-0.0347	0.0178	0.0295	-0.0456	0.0365	0200.0-	-0.0149	0.0143
	ß	0.0197	0.0176	0.0197	0.0151	-0.0366	-0.0173	0.0352	0.0103
	0	6000.0-	0.0119	0.0078	-0.0119	0.0147	-0.0051	-0.0138	0.0008
•	ß	0.0055	0.0210	0.1126	-0.0631	-0.0499	-0.0363	0.1045	-0.0649
	თ	-0.0151	-0.0667	0.1205	0.1025	-0.0002	-0.1505	-0.0314	-0.0326
	m	0.0171	0.0311	0.0107	-0.0144	-0.0048	-0.0168	0.0022	0.0069
-	i0	0.0003	-0.0002	-0.0004	0.0001	0.0001	0000.0	0000.0	-0.0002
	ო	0.1923	0.1742	-0.0578	-0.1240	-0.1480	-0.1270	0.0117	0.0045
	4	0.0298	0.0294	-0.0127	-0.0138	-0.0261	-0.0104	0.0133	0.0050
0.0811 0.1274		0.0812	0.0941	-0.0336	-0.0540	-0.0387	-0.0468	-0.0034	-0.0002
	0	0.0633	0.0561	-0.0283	-0.0250	-0.0526	-0.0382	0.0112	0.0020
0.0341 -0.0190		-0.0068	0.0321	0.0650	-0.0023	0.0337	-0.0372	0.0139	-0.0348
0.0476 -0.0575		-0.0189	0.0527	0.1313	0.0326	0.0638	-0.0893	-0.0772	-0.0356
.0267 0.0029		0.0448	0.0436	-0.0319	-0.0228	-0.0477	-0.0438	0.0076	-0.0115
0.0653 0.0131		0.0666	0.0541	0.0078	-0.0105	-0.0738	-0.0405	0.0411	0.0066
		-0.0148	0.1270	0.0388	-0.1046	0.1810	-0.0539	-0.1211	0.0181
		-0.0088	-0.0034	0.0183	0.0277	0.0020	0.0063	0.0227	0.0155
0.6134 0.1808		0.0510	0.0509	-0.1223	-0.4289	0.2010	-0.0930	-0.3019	0.0273
		0.0273	0.0231	-0.0132	-0.0038	-0.0323	-0.0159	0.0146	0.0013
		0.0554	0.1334	0.0561	0.0025	-0.1363	-0.0139	0.0375	-0.0252
		0.0192	0.0288	-0.0257	0.0108	0.0356	-0.0025	-0.0216	-0.0018
•		-0.0455	0.0116	-0.0497	-0.0134	0.0285	-0.0296	-0.0248	0.0036
	_	0.0968	0.0676	-0.0257	-0.0152	-0.1059	-0.0629	0.0470	-0.0022
•	_	-0.3461	0.1436	-0.2411	-0.0125	-0.1027	0.0305	-0.0341	0.0245
	~	-0.2877	-0.0003	-0.1772	0.1511	0.0109	-0.1030	0.0242	0.0096
	\sim	-0.0427	0.0519	0.0983	0.0457	-0.0451	0.0540	-0.0048	-0.0206
0.0820 -0.0780	0	-0.3295	0.1185	-0.1761	0:0050	-0.1013	-0.0348	0.1228	0.0226
.0721 0.0226	<i>(</i> 0	0.0359	0.0074	0.0086	-0.0283	-0.0093	-0.0014	-0.0094	0.0039
0.0896 0.0727	ĸ	0.0202	0.0766	-0.0348	-0.0109	-0.0062	-0.0021	0.0260	0.0066
0.0776 0.1138	m	-0.0268	-0.1812	0.0109	0.0116	-0.0584	-0.0257	0.0187	0.0075
.1492 -0.0137	\sim	0.0607	0.0623	0.0998	-0.0067	-0.0448	-0.0247	0.0416	0.0296
0.1144 0.0541	5	0.0427	0.0830	0.0216	0.0690	-0.0103	0.0102	0.0641	0.0401
0.1103 -0.0112	2	-0.0224	0.0073	0.0638	-0.0997	0.0991	0.0297	0.2035	-0.1106
		0600.0	0.0207	-0.0102	0.0057	0.0069	0.0010	0.0011	0.0032
0.2063 0.931		0.2763	0.1926	-0.2229	0.2822	0.2314	0.1319	-0.0946	0.0674

				Tat	Table 24.9. Continued	ontinued.					
C: Component Scores	Scores				-						
	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8	Axis 9	Axis 10	Axis 11
LA265-1420	0.1082	0.0707	-0.0231	-0.0236	0.0096	0.0254	-0.0129	0.0429	0.0023	-0.0092	0.0186
LA265-1536	0.0667	0.0320	0.0020	-0.0164	0.0074	0.0089	0600.0-	0.0153	0.0040	0.0021	0.0124
LA265-1600	0.2237	0.1294	-0.0537	-0.0551	0.0515	0.1693	0.0587	0.0006	0.0472	0.0131	0.0089
LA265-1612	0.1814	0.1152	0.1850	-0.0127	0.1110	0.2539	0.4323	-0.0055	0.6382	-0.0041	-0.0584
LA265-1678	0.1925	0.1164	0.0413	0.0127	0.0317	0.0169	-0.0633	0.1160	0.0575	0.3613	-0.2000
LA265-1713	0.3157	0.1713	0.4149	0.2480	0.2699	-0.1547	-0.0251	-0.1734	-0.0451	0.1051	-0.0160
LA265-1731	0.4970	0.2594	-0.1585	-0.8148	0.3951	-0.3176	0.1630	-0.2113	0.0011	0.0500	0.0055
LA6169-499	0.4818	0.0841	0.1606	-0.1613	-0.4544	-0.0262	-0.2370	-0.1262	0.0714	-0.0219	0.0519
LA6169-632	0.0518	0.0356	-0.0016	0.0114	0.0167	0.0121	-0.0077	0.0007	-0.0088	0.0037	0.0027
LA6169-992	0.5217	0.1660	0.1883	-0.1354	-0.3343	0.0322	0.0064	-0.0788	0.0361	0.0718	-0.0830
LA6169-1061	0.1569	0.0530	-0.0511	0.0382	-0.0158	0.0555	0.0169	-0.0573	0.0022	0.0393	0.0112
LA6169-1526	0.5335	0.3367	-0.0969	0.4732	0.1295	-0.0350	-0.1100	-0.3892	-0.1417	0.1606	-0.0182
LA6169-1598	0.1669	0.0286	0.0006	-0.0177	0.0177	0.1460	-0.0229	-0.0848	0.0493	0.0720	-0.0979
LA6169-1674	0.1864	0.0172	0.0513	-0.0679	-0.1339	0.1319	-0.0272	-0.1736	0.0996	-0.0103	-0.0332
LA6169-1707	0.0172	0.0020	0.0016	-0.0092	0.0035	0.0283	0.0063	-0.0171	0.0136	-0.0017	-0.0106
LA6169-1732	0.1055	0.0226	-0.0152	-0.0251	-0.0044	0.0644	0.0411	-0.0436	0.0407	0.0066	-0.0175
LA6169-1853	0.0876	0.0564	-0.0229	0.0156	-0.0014	-0.0115	-0.0117	0.0092	-0.0121	-0.0236	-0.0095
LA6169-1881	0.1480	0.0625	-0.0356	-0.0146	0.0103	0.0139	-0.0072	0.0241	-0.0134	-0.0107	0.0032
LA6169-1997	0.0307	0.0275	0.0380	-0.0183	0.0072	0.0642	-0.1332	0.1488	0.0860	0.5786	-0.3280
LA6169-2042	0.1682	0.0530	-0.0201	0.0072	0.0313	0.0324	0.0125	-0.0113	-0.0102	0.0308	0.0164
LA6169-1571	0.1367	0.0411	-0.0130	0.0281	0.0148	0.0122	-0.0033	-0.0197	0600.0-	0.0125	-0.0061
LA6169-1796	0.1513	-0.1385	-0.0113	-0.0143	0.0354	-0.0392	-0.0648	0.0384	-0.0590	-0.0777	-0.0537
LA6170-1189	0.3340	0.1587	-0.0144	0.1696	-0.0617	0.1813	-0.1219	-0.2942	-0.0250	0.0579	-0.0182
LA6170-1203	0.1917	-0.0045	-0.0125	0.0123	0.0006	0.0269	-0.0380	-0.0528	-0.0084	0.0113	-0.0134
LA6170-1310	0.4801	0.1039	0.2835	-0.1015	-0.4839	-0.0181	0.0157	-0.0949	0.0679	0600.0	0.0793
LA6170-1464	0.2091	0.0801	-0.0176	-0.0405	0.0089	-0.0077	-0.0709	0.0190	-0.0077	-0.0179	0.0042
LA6170-1484	0.4055	-0.2083	-0.0086	-0.0125	-0.0009	0.0999	0.0205	-0.0484	-0.0060	-0.0482	-0.0436
LA6170-1505	0.1978	0.0233	0.0707	-0.0321	-0.2320	0.0289	-0.0801	-0.1230	0.0374	0.0164	0.0292
LA6170-1768	0.2412	0.0556	-0.0031	-0.0174	0.0548	0.0055	-0.0297	-0.0163	-0.0252	0.0289	0.0004
LA6170-1823	0.2791	0.0526	-0.0099	-0.0871	0.0275	0.1635	-0.0783	0.0294	0.0606	-0.0764	-0.0136
LA6170-1898	0.3535	0.2192	-0.0415	-0.1012	-0.0710	0.0026	-0.1951	0.1512	0.0259	-0.1127	0.0489
LA6170-1942	0.0706	0.0513	-0.0010	-0.0257	-0.0190	0.0184	-0.0701	0.0528	0.0205	0.0458	-0.0245
LA6170-2119	0.0254	0.0241	0.0566	0.0266	0.0254	-0.0180	-0.0041	0.0039	0.0004	-0.0054	-0.0003
LA6170-2156	0.0260	0.0199	-0.0145	0.0145	-0.0027	0.0083	-0.0033	-0.0079	-0.0044	-0.0046	-0.0027
LA6170-2280	0.1220	0.0597	0.0101	-0.0285	-0.0261	-0.0075	-0.0686	0.0311	0.0115	-0.0272	0.0178
LA6170-2286	0.2279	0.1138	-0.0630	-0.0154	-0.0153	-0.0739	-0.0283	0.0326	-0.0208	-0.0350	-0.0332
LA6170-2304	0.0351	0.0177	-0.0017	-0.0054	-0.0054	0.0077	-0.0151	0.0050	0.0035	-0.0014	0.0083
LA6170-2319	0.2180	0.0395	-0.0254	-0.0396	-0.0532	-0.0473	-0.0561	-0.0097	0.0114	-0.0072	0.0003
LA6170-2322	0.1245	0.0815	0.0701	-0.1240	-0.3880	-0.0695	-0.1627	-0.0254	0.1435	-0.0748	0.0436

Table 24.9. Continued.

C: Component Scores	Scores										
	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8	Axis 9	Axis 10	Axis 11
LA6170-2368	0.0481	0.0039	0.0066	-0.0093	0.0062	-0.0136	-0.0141	0.0018	-0.0074	-0.0063	-0.0044
LA6170-2375	0.2247	0.0687	0.0388	-0.1324	0.0746	0.0686	-0.2825	0.5269	0.0482	0.2498	0.0889
LA6170-2407	0.3666	-0.0802	0.0507	-0.0949	-0.0664	0.0257	-0.0842	-0.1382	0.0250	0.1717	-0.0799
LA6170-2415	0.0616	0.0372	0.0239	0.0133	0.0193	-0.0123	0.0049	0.0125	0.0004	-0.0039	0.0017
LA6170-2498	0.0803	-0.0054	0.0077	0.0073	0.0081	-0.0037	-0.0133	-0.0008	-0.0029	0.0166	-0.0021
LA6171-523	0.0299	0.0185	-0.0033	-0.0156	0.0050	-0.0008	-0.0087	0.0130	-0.0049	-0.0063	0.0024
LA6171-580	0.0629	0.0209	-0.0143	-0.0164	0.0063	-0.0035	0.0022	0.0150	-0.0031	-0.0040	0.0034
LA6171-613	0.0823	0.0305	-0.0266	-0.0006	0.0016	-0.0027	0.0088	0.0081	-0.0002	0.0025	-0.0016
LA6171-621	1.1055	0.4968	-0.8017	0.4909	-0.1575	-0.3640	0.3029	0.1639	0.1699	0.0279	-0.0123
LA6171-629	0.0485	-0.0013	-0.0090	0.0069	-0.0015	0.0072	-0.0096	-0.0246	-0.0054	0.0084	-0.0049
LA6171-630	0.0959	0.0722	-0.0236	0.0040	0.0190	0.0378	-0.0106	0.0204	-0.0101	-0.0080	0.0099
LA6171-659	0.0730	0.0112	-0.0071	-0.0025	-0.0103	-0.0075	-0.0018	-0.0022	0.0031	0.0012	0.0025
LA6171-665	0.3496	0.0515	-0.2397	0.1015	-0.1672	-0.1791	0.0345	0.1386	0.1398	-0.0589	0.0286
LA6171-687	0.5697	0.2560	-0.1915	-0.0616	0.2146	0.6048	0.0971	0.1207	-0.2438	-0.2265	-0.0968
LA6171-699	0.2054	0.1346	0.1853	-0.0871	-0.3955	0.0094	0.5530	0.1825	-0.6102	0.1689	-0.0685
LA6171-754	0.1460	0.0689	-0.0359	0.0548	-0.0055	0.0208	-0.0409	-0.0486	-0.0228	0.0012	-0.0086
LA6171-810	0.1517	0.1063	-0.1188	0.0883	-0.0190	-0.0301	0.0101	-0.0210	0.0093	0.0064	-0.0056
LA6171-866	0.2654	0.0289	-0.0723	0.0101	0.0224	0.0323	-0.0232	0.0434	-0.0184	-0.0318	0.0019
LA6171-881	0.1007	0.0336	-0.0290	-0.0056	0.0012	-0.0022	0.0151	0.0182	-0.0024	-0.0054	0.0026
LA6171-892	0.7065	0.4453	0.0048	-0.1436	-0.0396	0.4332	0.0802	-0.0646	0.1475	-0.1126	-0.0698
LA6171-919	0.1412	0.0552	0.0425	-0.0515	0.0814	0.0420	-0.1236	0.2682	0.0067	0.1463	0.0425
LA6171-935	0.0831	0.0284	-0.0152	-0.0211	0.0085	0.0682	0.0296	-0.0199	0.0281	0.0087	-0.0042
LA6171-942	0.1374	0.0751	-0.0678	0.0073	0.0385	0.2361	0.0534	-0.0185	-0.0094	0.3254	0.8809
LA6171-949	0.0164	0.0042	0.0007	-0.0003	0.0034	0.0036	0.0005	0.0011	-0.0001	0.0019	0.0022
LA6171-950	0.0529	0.0161	-0.0135	-0.0041	0.0037	0.0148	0.0108	0.0054	0.0015	0.0077	0.0079
LA115862-192	0.1155	0.0795	-0.0204	-0.0388	0.0187	0.0260	-0.0362	0.0291	-0.0201	-0.0158	0.0119
LA115862-197	0.0515	0.0353	-0.0165	0.0061	0.0092	0.0423	-0.0107	-0.0061	-0.0065	0.0071	0.0079
LA115862-221	0.2078	0.0886	-0.0198	0.0555	0.0012	0.0658	-0.0331	-0.0985	-0.0466	0.0365	-0.0038
LA115862-223	0.0152	0.0067	-0.0066	0.0055	-0.0006	0.0030	-0.0023	-0.0056	-0.0022	-0.0008	-0.0017
LA115862-234	0.1333	0.0779	-0.0454	-0.0211	0.0271	0.0459	0.0248	0.0521	0.0001	0.0009	0.0250

Table 24.9. Continued.

ntinued.
<u>о</u> .С
24.9
Table

C: Component Sco											
	Axis 12	Axis 13	AXIS 14	AXIS 15	AXIS 16	Axis 17	AXIS 18	AXIS 19	AXIS 20	Axis 21	AXIS 22
LA249-189	-0.0210	-0.0078	-0.0117	0.0104	0.0736	-0.0197 0.0568	-0.0143	0.0345	-0.0184	-0.0053	0.0384
LA249-308	-0.0368	0.0226	0.0198	0.0524	-0.0094	0.0386	-0.0245	-0.0836	0.0065	-0.0003	0600.0
LA249-329	-0.0132	-0.0251	0.0049	0.0432	-0.0135	-0.0358	-0.0314	0.0040	0.0541	0.0559	-0.0462
LA249-338	-0.0369	0.0182	0.0147	0.0645	-0.0009	0.0191	-0.0491	-0.0995	0.0333	-0.0294	0.0026
LA249-360	-0.0048	-0.0280	0.0439	0.0407	-0.0283	0.0247	-0.0548	-0.0142	-0.0358	-0.0242	0.0540
LA249-378	-0.0237	0.0192	0.0061	0.0326	0.0170	0.0199	-0.0181	-0.0778	0.0146	-0.0235	-0.0230
LA265-852	0.0258	0.0487	-0.0089	0.0335	0.0178	-0.0584	0.0410	-0.1041	0.0619	-0.0343	-0.0618
LA265-854	0.1531	-0.0182	0.0071	-0.0618	-0.0092	-0.0255	-0.0084	-0.0129	-0.1575	-0.0325	-0.1238
LA265-856	-0.0005	-0.0112	0.0159	0.0182	0.0023	0.0053	-0.0280	0.0012	0.0048	-0.0027	0.0062
LA265-858	-0.0003	0.0004	0.0001	0.0001	-0.0001	0.0002	0.0002	-0.0007	-0.0005	0.0002	-0.0005
LA265-859	-0.0227	-0.0909	0.1158	0.0771	0.0521	-0.0249	-0.1878	0.1044	-0.0571	0.0467	-0.0514
LA265-860	0.0036	-0.0185	0.0171	0.0136	-0.0051	0.0072	-0.0373	0.0131	0.0048	0.0069	0.0203
LA265-861	-0.0085	0.0000	0.0368	0.0299	0.0215	0.0037	-0.0330	0.0081	0.0058	0.0560	-0.0378
LA265-862	-0.0097	-0.0248	0.0475	0.0266	0.0063	0.0064	-0.0542	0.0143	-0.0403	0.0305	0.0004
LA265-864	0.0837	0.0230	0.0057	-0.0109	0.0044	-0.0272	-0.0378	0.0046	-0.0103	0.0034	-0.0080
LA265-866	0.1914	0.0238	-0.0053	-0.0307	-0.0040	-0.0720	-0.0392	0.0034	-0.0046	0.0198	-0.0527
LA265-892	0.0087	-0.0243	0.0485	0.0234	0.0062	-0.0085	-0.0452	0.0110	-0.0478	0.0405	-0.0205
LA265-893	-0.0037	-0.0559	0.0602	0.0453	-0.0039	0.0184	-0.0882	0.0036	-0.0314	-0.0102	0.0182
LA265-894	-0.1299	0.1656	0.0443	0.2025	0.0523	0.1067	-0.0790	-0.4030	0.0680	-0.0563	-0.1013
LA265-895	-0.0103	-0.0075	0.0212	0.0282	-0.0345	0.0320	-0.0293	-0.0324	-0.0291	-0.0179	0.0702
LA265-896	-0.2477	0.2215	-0.0515	0.0151	0.0505	-0.2291	0.0665	0.0832	-0.1015	0.1254	0.0379
LA265-897	-0.0001	-0.0188	0.0278	0.0139	-0.0049	0.0084	-0.0308	0.0027	-0.0238	0.0129	0.0133
LA265-898	-0.0137	-0.0797	0.0833	0.0456	0.0051	0.1197	-0.0985	0.0696	0.0172	0.0773	-0.0169
LA265-899	0.0203	0.0318	-0.0139	0.0031	-0.0093	0.0105	0.0081	0.0140	0.0234	0.0073	0.0092
LA265-900	0.0011	0.0159	0.0683	0.0234	-0.0514	0.0066	-0.0246	-0.0183	-0.1195	0.0696	0.0746
LA265-952	-0.0089	-0.0674	0.0996	0.0571	-0.0054	0.0200	-0.1176	-0.0038	-0.0989	0.0237	0.0194
LA265-995	-0.0573	-0.0571	-0.1064	-0.2893	0.4244	-0.1563	-0.1898	0.0031	0.1040	-0.1687	-0.0655
LA265-1016	0.0596	0.0374	0.0490	0.0483	-0.1840	0.0883	0.0759	-0.0637	-0.2707	0.0329	0.0426
LA265-1028	-0.0551	-0.0195	0.0328	0.0140	-0.0092	0.1467	-0.0252	0.0480	0.0021	0.0570	0.0226
LA265-1077	0.1005	0.0110	-0.0196	0.3015	-0.3664	-0.1489	0.0984	0.1979	0.1481	-0.1605	-0.0080
LA265-1084	-0.0148	0.0141	-0.0276	-0.0202	0.0075	-0.0219	0.0498	-0.0038	0.0277	-0.0064	0.0434
LA265-1100	0.0440	0.0017	-0.0047	0.0334	-0.0356	0.0268	-0.0172	-0.0073	0.0996	0.0608	0.0271
LA265-1223	0.0056	-0.0282	-0.0774	-0.0565	-0.0626	0.0039	-0.0297	-0.0456	-0.0617	-0.0182	-0.0386
LA265-1228	0.0125	-0.0373	-0.0026	0.0030	-0.0132	0.0107	0.0423	-0.0527	0.0668	-0.0532	0.1589
LA265-1256	0.0523	-0.0383	0.0203	0.0488	-0.0657	0.0925	-0.0781	-0.0167	0.0647	-0.0298	0.1759
LA265-1339	0.0136	0.1251	-0.0345	-0.0138	0.0294	-0.0263	-0.0536	0.0248	0.0124	-0.0432	0.0675
LA265-1344	0.0115	0.0066	0.0018	0.0018	-0.0065	0.0139	0.0005	-0.0075	0.0084	0.0166	0.0244
LA265-1405	0.1782	0.0724	-0.1504	-0.1470	0.0370	0.0795	0.1069	0.0318	0.0441	-0.1508	-0.0113

				- 25							
C: Component S	Scores Axis 12	Axis 13	Axis 14	Axis 15	Axis 16	Axis 17	Axis 18	Axis 19	Axis 20	Axis 21	Axis 22
LA265-1420	-0.0001	0.0003	-0.0021	0.0246	-0.0218	0.0068	-0.0377	0.0033	0.0228	-0.0297	0.0535
LA265-1536	0.0002	-0.0041	0.0011	0.0145	-0.0165	0.0061	-0.0211	-0.0017	0.0151	-0.0034	0.0378
LA265-1600	-0.0364	-0.0366	0.0174	0.0502	-0.0249	0.1418	-0.0643	0.0242	0.0581	-0.0439	0.0722
LA265-1612	-0.1683	-0.0883	0.2220	0.1024	-0.0206	-0.4151	-0.0821	-0.0940	-0.0528	0.0768	0.0223
LA265-1678	0.0426	0.2208	-0.0175	-0.0250	0.0328	0.0333	-0.0621	-0.0202	-0.0482	0.0186	0.0622
LA265-1713	0.0937	-0.0127	0.0464	0.0462	-0.0131	0.0981	-0.0252	-0.0279	0.1857	0.2059	-0.0282
LA265-1731	0.0421	-0.0473	0.0031	-0.1189	0.1063	0.0587	0.0541	-0.0858	-0.0310	0.0916	0.0338
LA6169-499	0.0640	-0.0740	-0.0689	-0.0298	-0.0946	-0.0976	-0.1851	-0.0135	0.0361	0.0161	0.0015
LA6169-632	-0.0046	-0.0008	0.0108	0.0161	-0.0016	0.0078	-0.0150	-0.0139	0.0038	-0.0068	-0.0007
LA6169-992	0.0175	0.0654	0.1446	0.0890	0.0449	-0.0166	0.1745	0.0301	-0.1041	-0.0834	-0.2728
LA6169-1061	-0.0273	-0.0168	-0.0121	-0.0102	-0.0099	-0.0021	0.0622	-0.0551	-0.0044	-0.0340	0.0961
LA6169-1526	-0.0332	-0.2466	0.1489	-0:0080	0.0868	-0.0879	-0.0752	0.0143	-0.0899	-0.1675	-0.0340
LA6169-1598	-0.0956	0.0443	0.0455	-0.0869	0.0242	0.0811	0.0553	0.0423	0.0338	0.0299	-0.0701
LA6169-1674	-0.0420	-0.0669	-0.1165	-0.0995	-0.0369	0.1066	-0.0792	-0.0253	0.0614	0.1577	-0.0861
LA6169-1707	-0.0168	-0.0033	0000.0	-0.0014	0.0080	0.0249	0.0044	0.0152	0.0089	0.0079	-0.0223
LA6169-1732	-0.0507	-0.0117	0.0139	0900.0	-0.0031	0.0800	-0.0069	0.0252	-0.0202	0.0123	-0.0013
LA6169-1853	-0.0072	0.0283	-0.0077	-0.0137	0:0030	-0.0195	0.0470	-0.0082	-0.0192	0.0113	0.0020
LA6169-1881	0.0043	0.0142	0.0132	0.0120	-0.0190	0.0007	0.0083	-0.0193	-0.0123	-0.0022	0.0353
LA6169-1997	0.0686	0.3036	-0.0464	-0.0744	0.1023	-0.0110	-0.0943	0.0322	-0.0664	0.0029	0.0344
LA6169-2042	0.0049	-0.0221	0.0223	0.0436	-0.0267	0.0277	-0.0451	-0.0202	0.0148	-0.0202	0.0492
LA6169-1571	0.0003	0.0091	-0.0053	0.0078	-0.0024	-0.0022	0.0279	-0.0227	0.0261	-0.0029	-0.0056
LA6169-1796	-0.1697	0.1810	0.5411	-0.5497	-0.3344	0.0243	-0.0361	0.0102	0.1035	-0.0526	-0.0144
LA6170-1189	-0.0703	-0.0426	-0.1285	-0.1968	0.0605	-0.1266	0.3862	-0.1843	0.0811	0.0434	0.1649
LA6170-1203	-0.0386	0.0165	-0.0117	0.0344	-0.0041	-0.0294	0.0598	-0.0331	0.0417	-0.0248	-0.0426
LA6170-1310	0.1475	-0.0944	-0.1087	-0.1406	-0.0949	0.0885	-0.1563	-0.1490	-0.0977	-0.0464	0.0852
LA6170-1464	-0.0078	0.0171	-0.0233	0.0138	-0.0185	-0.0457	0.0319	-0.0057	0.0527	0.0538	0.0105
LA6170-1484	-0.1435	0.0001	-0.0173	0.0083	0.1641	0.0886	0.0732	0.1599	-0.2640	0.0877	0.0772
LA6170-1505	0.0256	-0.0815	-0.1447	-0.1057	-0.0967	-0.0201	-0.1562	-0.1145	0.0151	0.0697	0.0210
LA6170-1768	0.0150	-0.0027	0.0301	0.0528	-0.0299	0.0105	-0.0069	-0.0533	0.0435	0.0640	-0.0184
LA6170-1823	-0.1744	0.0354	-0.0018	0.1068	0.0562	0.1316	-0.1051	-0.0870	0660.0	-0.0683	-0.0893
LA6170-1898	-0.0853	0.0186	-0.0652	0.0503	-0.0326	-0.1160	-0.1719	0.1716	0.0556	-0.1152	0.0989
LA6170-1942	-0.0167	0.0345	-0.0288	0.0038	0.0094	-0.0334	-0.0620	0.0538	0.0200	-0.0412	0.0286
LA6170-2119	0.0011	0.0179	-0.0072	-0.0010	0.0046	0.0094	0.0109	-0.0021	0.0205	0.0183	-0.0061
LA6170-2156	-0.0013	0.0044	-0.0128	-0.0147	0.0064	-0.0145	0.0342	-0.0012	0.0046	-0.0068	0.0128
LA6170-2280	-0.0458	0.0045	-0.0147	0.0199	-0.0106	-0.0347	-0.0544	0.0413	0.0028	-0.0176	0.0311
LA6170-2286	-0.0274	0.0728	0.0475	0.0158	-0.0304	-0.0033	0.0360	-0.0766	-0.1091	0.0872	-0.0557
LA6170-2304	-0.0102	-0.0074	-0.0036	0.0089	-0.0043	-0.0063	-0.0254	0.0146	0.0071	-0.0180	0.0186
LA6170-2319	0.0334	0.0103	0.0726	0.0344	0.0192	-0.0160	0.0335	-0.0140	-0.0015	0.0520	0.0017
LA6170-2322	0.3503	0.0374	0.5067	0.1772	0.3505	0.0906	0.1342	0.0438	0.1107	-0.0319	0.1114

Table 24.9. Continued.

				ומחוב		וווומכמ.					
C: Component Scores	Scores										
	Axis 12	Axis 13	Axis 14	Axis 15	Axis 16	Axis 17	Axis 18	Axis 19	Axis 20	Axis 21	Axis22
LA6170-2368	-0.0009	0.0107	0.0061	0.0041	-0.0029	-0.0073	0.0116	-0.0066	-0.0055	0.0294	-0.0160
LA6170-2375	-0.0341	-0.5743	0.0749	-0.0768	-0.0251	0.0234	0.1035	-0.0209	-0.0214	0.0242	-0.0487
LA6170-2407	0.0273	0.0328	-0.1021	0.0532	-0.1152	-0.0941	0.1021	0.0379	0.1584	0.0634	-0.1587
LA6170-2415	0.0060	0.0153	-0.0015	0.0051	-0.0080	0.0133	0.0024	-0.0055	0.0106	0.0096	0.0130
LA6170-2498	-0.0052	-0.0169	-0.0004	0.0018	0.0003	-0.0048	0.0265	-0.0101	0.0098	0.0184	-0.0265
LA6171-523	0.0006	0.0043	0.0115	0.0047	-0.0083	0.0016	-0.0018	-0.0106	-0.0123	0.0130	0.0125
LA6171-580	0.0073	0.0047	0.0046	0.0093	-0.0146	0.0031	-0.0026	-0.0032	-0.0028	0.0114	0.0181
LA6171-613	0.0006	0.0097	0.0012	0.0133	-0.0130	0.0075	-0.0009	-0.0138	0.0000	0.0017	0.0013
LA6171-621	0.0654	-0.0054	-0.0634	-0.0694	-0.0122	0.0692	0.0045	-0.0010	0.0113	-0.0337	-0.0809
LA6171-629	-0.0031	-0.0007	-0.0068	-0.0069	0.0036	-0.0154	0.0359	-0.0129	0.0106	0.0115	-0.0038
LA6171-630	0.0003	0.0077	-0.0076	0.0038	-0.0037	-0.0021	0.0227	-0.0212	0.0233	-0.0198	0.0426
LA6171-659	-0.0124	0.0026	0.0022	0.0089	-0.0102	-0.0018	-0.0108	0.0035	-0.0153	-0.0015	0.0137
LA6171-665	0.0928	0.0113	-0.0211	-0.0422	0.0648	0.0237	-0.0507	0.0848	0.1569	0.3021	0.0039
LA6171-687	0.4999	0.0120	-0.0076	-0.1110	0.0217	-0.1274	-0.0669	0.0121	0.0143	0.0389	-0.0167
LA6171-699	-0.3149	-0.0685	0.0873	0.0631	0.1322	-0.1284	-0.0370	0.0184	0.1574	0.0708	0.0535
LA6171-754	-0.0320	9000.0-	-0.0018	-0.0164	0.0183	-0.0393	0.0511	-0.0271	-0.0238	-0.0094	0.0243
LA6171-810	-0.0075	-0.0276	-0.0075	-0.0472	0.0136	-0.0249	0.0603	-0.0055	-0.0261	-0.0660	0.0001
LA6171-866	-0.0856	0.0730	0.0310	0.0978	0.0181	0.0648	-0.0200	-0.2693	-0.0056	-0.0663	-0.0087
LA6171-881	0.0064	0.0092	0.0039	0.0113	-0.0179	0.0074	-0.0084	0.0031	-0.0122	-0.0099	0.0271
LA6171-892	-0.2653	-0.0032	-0.0871	-0.0349	0.0432	0.3038	0.0715	0.2460	0.0565	-0.0678	-0.0340
LA6171-919	-0.0024	-0.2996	0.0357	-0.0507	0.0145	0.0260	0.0782	-0.0331	0.0062	0.0134	-0.0485
LA6171-935	-0.0282	-0.0148	0.0062	0.0128	-0.0044	0.0623	-0.0156	0.0153	0.0123	-0.0104	0.0135
LA6171-942	-0.0099	0.2664	0.0309	-0.0579	0.0528	-0.0293	-0.0104	0.0451	-0.0336	0.0412	-0.0631
LA6171-949	-0.0009	-0.0002	-0.0001	0.0044	-0.0019	0.0025	-0.0021	-0.0027	0.0041	-0.0007	0.0036
LA6171-950	0.0017	-0.0049	0.0039	0.0119	-0.0120	0.0117	-0.0136	-0.0061	0.0026	-0.0154	0.0290
LA115862-192	-0.0012	0.0079	0.0263	0.0034	-0.0201	-0.0054	0.0262	-0.0468	-0.0230	0.0281	0.0680
LA115862-197	-0.0021	-0.0070	-0.0057	-0.0031	0.0015	-0.0052	0.0255	-0.0229	0.0232	-0.0204	0.0369
LA115862-221	-0.0086	-0.0203	-0.0177	-0.0195	-0.0049	-0.0623	0.1412	-0.0355	0.0248	-0.0374	0.0455
LA115862-223	0.0002	0.0017	-0.0069	-0.0062	0.0027	-0.0078	0.0179	-0.0013	0.0054	0.0007	0.0030
LA115862-234	0.0223	-0.0045	-0.0016	0.0331	-0.0322	0.0296	-0.0383	-0.0039	0.0360	-0.0475	0.0821

. (4 Coorde			Та	Table 24.9. Continued	ontinued.					
u: component acores Axis 23	n acores Axis 23	Axis 24	Axis 25	Axis 26	Axis 27	Axis 28	Axis 29	Axis 30	Axis 31	Axis 32	Axis 33
LA249-189	0.0323	0.0012	0.0216	-0.0355	0.0014	0.0166	0.0066	0.0192	-0.0256	-0.0336	0
LA249-267	-0.0554	-0.0030	0.0118	-0.0240	-0.0015	0.0363	-0.0297	0.0331	0.0408	0.0409	0
_A249-308	-0.0551	0.0169	0.0358	-0.0757	0.0421	-0.0137	-0.0064	-0.0107	-0.0106	0.0248	0
LA249-329	-0.0946	0.0152	-0.0593	-0.0676	-0.1026	0.0298	0.0594	0.0518	0.0120	0.0430	0
LA249-338	-0.0173	0.0328	-0.0453	-0.0284	-0.0105	0.0019	0.0127	-0.0225	0.0171	0.0047	0
LA249-360	-0.0417	0.0349	0.0873	-0.0557	-0.0263	-0.0159	-0.0805	0.0038	0.0144	0.0269	0
LA249-378	0.0248	0.0117	-0.0129	-0.0035	0.0384	0.0039	0.0142	-0.0178	-0.0173	0.0208	0
LA265-852	-0.0490	0.0528	-0.0118	-0.0948	-0.0165	-0.0082	-0.1101	0.0074	0.0305	0.0357	0
LA265-854	-0.0223	0.1428	0.0031	0.0301	0.0053	0.0862	0.0291	-0.0606	-0.0271	0.0178	0
LA265-856	0.0215	0.0067	-0.0078	0.0265	-0.0413	0.0015	-0.0076	-0.0012	0:0050	-0.0129	0
LA265-858	-0.0007	-0.0004	0.0003	0.0014	0.0003	-0.0004	0.0004	0.0016	0.0008	-0.0002	0
LA265-859	0.1627	0.0381	0.0470	0.0570	-0.0575	0.0098	0.0031	0.0113	-0.0606	0.0500	0
LA265-860	-0.0164	0.0180	0.0013	0.0002	0.0242	0.0058	0.0099	-0.0022	0.0018	0.0027	0
LA265-861	0.0303	-0.0038	0.0177	0.0207	-0.0401	0.0302	-0.0561	-0.0130	0.0046	-0.0189	0
_A265-862	0.0355	0.0166	0.0657	0.0052	-0.0035	0.0248	0.0028	-0.0044	0.0010	0.0178	0
_A265-864	0.0035	-0.0077	-0.0083	-0.0034	0.0013	-0.0175	-0.0133	-0.0085	-0.000 <u>0</u>	0.0123	0
_A265-866	-0.0288	-0.0387	-0.0016	-0.0040	0.0255	-0.0147	-0.0234	0.0099	-0.0085	0.0481	0
_A265-892	0.0188	-0.0039	0.0184	-0.0019	-0.0028	-0.0668	0.0560	0.0447	-0.0470	-0.0293	0
_A265-893	0.0196	0.0377	0.0405	0.0377	-0.0361	-0.0067	0.0063	0.0401	0.0138	0.0178	0
_A265-894	0.0934	-0.0171	-0.0436	0.0994	-0.0220	-0.0005	-0.0023	-0.0528	-0.0162	0.0000	0
_A265-895	-0.0469	0.0279	0.0889	-0.0138	-0.0184	0.0360	-0.0169	0.0103	0.0441	0.0059	0
_A265-896	0.0653	-0.0581	0.1000	-0.0015	-0.0264	0.0857	-0.0274	0.0022	0.0199	-0.0260	0
_A265-897	0.0014	0.0143	0.0362	-0.0060	0.0112	0.0032	0.0119	-0.0025	0.0038	0.0130	0
_A265-898	0.0174	0.0011	0.0037	0.0072	0.0155	-0.0617	0.0817	-0.0171	-0.0110	0.0066	0
_A265-899	-0.0214	-0.0479	0.0087	0.0178	0.0143	-0.0436	-0.0313	-0.0098	-0.0677	0.0131	0
_A265-900	-0.0264	-0.0103	0.1239	-0.1262	0.0286	-0.0847	0.0326	-0.1128	-0.0013	0.0254	0
_A265-952	0.0228	0.0439	0.0949	0.0464	0.0014	-0.0314	0.0791	0.0936	0.0104	-0.0196	0
_A265-995	-0.1564	0.0598	0.1569	0.0690	0.0177	-0.0451	0.0078	-0.0500	-0.0141	-0.0138	0
_A265-1016	-0.0248	0.0991	-0.0622	-0.0534	0.0447	0.0177	-0.0247	0.0085	-0.0876	-0.0358	0
_A265-1028	-0.0070	-0.0075	0.0742	-0.0430	0.0461	0.0135	0.0431	-0.0484	0.0480	-0.0232	0
_A265-1077	0.0918	-0.0181	0.0584	0.1232	0.0943	-0.0366	-0.0131	-0.0262	0.0388	0.0233	0
LA265-1084	-0.0172	0.0091	-0.0024	0.0162	0.0324	0.0134	-0.0015	0.0076	-0.0148	0.0032	0
_A265-1100	-0.1244	-0.0250	-0.0558	0.0102	-0.0242	-0.0042	0.0525	-0.0018	-0.0381	0.0074	0
_A265-1223	-0.0690	0.0535	-0.0120	-0.0173	-0.0183	-0.0010	-0.0757	-0.0207	-0.0813	0.0074	0
_A265-1228	-0.0120	0.0579	-0.0173	0.0587	-0.0647	-0.0093	-0.0101	-0.0236	-0.0068	-0.0219	0
-A265-1256	-0.1043	0.0411	0.0676	0.0234	0.0107	0.0575	-0.0069	-0.0408	-0.0099	0.0001	0
-A265-1339	0.0073	0.0102	-0.0697	0.0036	-0.0322	-0.0370	-0.0194	0.000	-0.0139	-0.0152	0
_A265-1344	-0.0234	0.0007	0.0064	-0.0035	0.0219	0.0062	0.0065	-0.0053	-0.0057	-0.0424	0
LA265-1405	0.0860	-0.0215	-0.0299	-0.0531	-0.0259	-0.0613	0.0077	0.0149	0.0487	0.0289	0

ω
<u>ح</u>
_
÷Ξ
È
0
ŏ
0
<u> </u>
ດ
4
Ň
ወ
-
൧
σ
\vdash

				- an		וומומכמ.					
C: Component Scor Axis	: Scores Axis 23	Axis 24	Axis 25	Axis 26	Axis 27	Axis 28	Axis 29	Axis 30	Axis 31	Axis 32	Axis 33
LA265-1420	-0.0233	0.0069	-0.0272	0.0205	-0.0410	-0.0126	0.0022	-0.0012	0.0051	-0.0177	0.0000
LA265-1536	-0.0274	0.0135	-0.0075	-0.0072	-0.0166	0.0157	0.0143	-0.0116	0.0143	-0.0085	0.0000
LA265-1600	-0.0059	0.0092	0.0131	0.0371	-0.0986	-0.0006	-0.0161	0.0013	0.0415	-0.0426	0.0000
LA265-1612	0.0015	-0.0109	-0.0138	0.0120	0.0076	0.0114	-0.0036	-0.0063	-0.0190	-0.0020	0.0000
LA265-1678	-0.0243	-0.0202	0.0509	0.0321	0.0340	0.0056	-0.0090	0.0204	0.0190	-0.0135	0.0000
LA265-1713	-0.2348	-0.0210	-0.0497	0.0553	0.1272	0.0563	-0.0233	-0.0033	-0.0190	-0.0331	0.0000
LA265-1731	0.1209	-0.0407	-0.1096	-0.0433	-0.0317	0.0445	-0.0093	0.0436	0.0226	0.0113	0.0000
LA6169-499	-0.0193	-0.0428	-0.0580	-0.0154	0.0784	-0.0123	-0.0456	-0.0275	0.0255	-0.0245	0.0000
LA6169-632	-0.0047	0.0022	-0.0096	0.0318	-0.0326	-0.0106	-0.0204	0.0222	0.0209	-0.0192	0.0000
LA6169-992	-0.1128	0.1383	-0.0099	0.0679	-0.0526	-0.0086	0.0162	0.0207	0.0228	-0.0456	0.0000
LA6169-1061	-0.0308	0.0509	0.0938	0.0117	-0.0139	0.0651	0.0070	0.0437	0.0254	0.0330	0.0000
LA6169-1526	0.0894	-0.0116	-0.1353	-0.0948	0.0172	-0.0216	-0.0326	-0.0395	0.0368	-0.0137	0.0000
LA6169-1598	0.0173	-0.0031	0.0008	-0.0695	0.0101	-0.0265	-0.0561	0.0199	0.0354	-0.0033	0.0000
LA6169-1674	0.1011	-0.1679	0.0278	0.0020	-0.0021	-0.0255	-0.0238	0.0091	-0.0175	0.0047	0.0000
LA6169-1707	0.0018	-0.0056	-0.0011	-0.0143	0.0031	-0.0052	-0.0114	0.0041	0.0065	-0.0027	0.0000
LA6169-1732	-0.0165	0.0048	0.0898	-0.0532	0.0335	0.0248	-0.0164	0.0102	0.0363	0.0140	0.0000
LA6169-1853	0.0029	-0.0303	0.0237	0.0051	0.0129	-0.0539	-0.0066	0.0053	-0.0382	0.0186	0.0000
LA6169-1881	-0.0241	-0.0111	0.0084	-0.0306	-0.0281	-0.0745	-0.0458	-0.0290	-0.0120	-0.0053	0.0000
LA6169-1997	0.0862	-0.0040	-0.0143	-0.0141	0.0139	0.0144	0.0250	-0.0116	-0.0184	0.0104	0.0000
LA6169-2042	-0.0375	0.0201	0.0346	0.0012	-0.0809	0.0121	-0.0350	0.0147	0.0104	0.0081	0.0000
LA6169-1571	-0.0460	-0.0114	-0.0024	0.0035	-0.0301	-0.0375	-0.0581	0.0384	-0.0164	0.0113	0.0000
LA6169-1796	-0.0088	0.0040	-0.0238	0.0483	-0.0072	0.0042	0.0034	-0.0094	0.0044	0.0191	0.0000
LA6170-1189	0.0395	0.0703	-0.0026	0.0270	0.0597	-0.0003	0.0451	0.0276	-0.0090	0.0157	0.0000
LA6170-1203	-0.0152	0.0157	0.0313	-0.0296	0.0187	-0.0180	-0.0400	0.0082	0.0009	0.0220	0.0000
LA6170-1310	0.0419	-0.0055	0.0343	0.0358	-0.0384	0.0183	0.0685	0.0072	0.0391	0.0261	0.0000
LA6170-1464	-0.0692	-0.0191	-0.0597	-0.0341	-0.0807	-0.0101	0.0932	0.0037	-0.0281	0.0279	0.0000
LA6170-1484	-0.1345	-0.0895	-0.1580	0.2157	0.0022	-0.0230	-0.0229	-0.0735	0.0646	0.0827	0.0000
LA6170-1505	0.0518	-0.0924	-0.0183	0.0681	-0.0065	-0.0087	-0.0525	0.0193	-0.0170	-0.0091	0.0000
LA6170-1768	-0.0927	-0.0138	-0.0355	-0.0328	-0.1420	-0.0362	-0.0065	0.0082	0.0214	-0.0059	0.0000
LA6170-1823	0.0301	0.0405	-0.0986	-0.0405	0.0844	0.0253	0.0348	0.0131	0.0378	0.0093	0.0000
LA6170-1898	-0.0945	0.0427	-0.1608	-0.0636	0.0348	-0.0296	0.0386	0.0578	-0.0319	0.0262	0.0000
LA6170-1942	-0.0081	0.0205	-0.0591	-0.0063	0.0040	0.0139	0.0149	0.0240	-0.0041	0.0038	0.0000
LA6170-2119	-0.0138	-0.0106	0.0062	0.0149	0.0166	0.0261	-0.0290	-0.0034	0.0013	-0.0145	0.0000
LA6170-2156	0.0097	-0.0053	0.0028	0.0059	0.0062	-0.0173	0.0030	0.0019	-0.0294	0.0155	0.0000
LA6170-2280	-0.0405	0.0331	-0.0096	-0.0333	0.0123	0.0566	0.0225	0.0273	0.0328	0.0079	0.0000
LA6170-2286	-0.0956	-0.0677	0.0527	0.0043	0.0378	-0.1552	0.0129	0.0639	0.0610	-0.0178	0.0000
LA6170-2304	-0.0102	0.0165	-0.0075	-0.0040	-0.0017	0.0164	0.0030	0.0105	0.0073	0.0027	0.0000
LA6170-2319	-0.0718	-0.0372	0.0079	-0.1158	-0.0361	0.0041	0.0434	-0.0238	0.0040	0.0153	0.0000
LA6170-2322	0.0505	-0.1007	0.0181	-0.0045	0.0117	0.0157	-0.0137	0.0125	-0.0278	0.0119	0.0000

C: Component Scores	Scores										
	Axis 23	Axis 24	Axis 25	Axis 26	Axis 27	Axis 28	Axis 29	Axis 30	Axis 31	Axis 32	Axis 33
LA6170-2368	-0.0135	-0.0118	0.0054	-0.0347	-0.0166	-0.0133	-0.0090	-0.0163	-0.0031	0.0048	0.0000
LA6170-2375	-0.0178	-0.0066	0.0094	0.0017	0.0535	-0.0025	0.0094	0.0078	0.0130	0.0060	0.0000
LA6170-2407	-0.0024	-0.0597	0.0781	-0.0005	-0.1060	0.0239	0.0824	-0.0706	-0.0038	0.0197	0.0000
LA6170-2415	-0.0241	-0.0130	0.0141	0.0092	0.0105	-0.0013	-0.0202	-0.0047	-0.0070	-0.0060	0.0000
LA6170-2498	-0.0288	-0.0092	0.0237	-0.0331	-0.0226	0.0068	-0.0417	0.0153	-0.0128	0.0241	0.0000
LA6171-523	-0.0042	0.0001	-0.0017	-0.0129	-0.0079	-0.0174	0.0073	-0.0242	0.0144	-0.0142	0.0000
LA6171-580	-0.0129	-0.0106	0.0149	-0.0196	-0.0217	-0.0140	0.0111	-0.0202	-0.0168	0.0115	0.0000
LA6171-613	-0.0309	-0.0163	0.0172	0.0144	-0.0222	-0.0180	-0.0016	0.0303	-0.0065	0.0116	0.0000
LA6171-621	-0.0321	-0.1088	0.0111	0.0336	-0.0050	0.0471	0.0127	0.0197	-0.0096	0.0031	0.0000
LA6171-629	-0.0147	0.0015	0.0010	-0.0236	-0.0170	-0.0044	-0.0036	0.0050	-0.0113	0.0180	0.0000
LA6171-630	0.0071	-0.0024	-0.0205	0.0381	-0.0538	-0.0255	-0.0136	-0.0056	-0.0080	-0.0196	0.0000
LA6171-659	-0.0257	0.0071	0.0441	-0.0319	0.0074	0.0178	-0.0143	0.0100	0.0028	0.0223	0.0000
LA6171-665	0.1373	0.3493	-0.0470	0.0180	0.0119	-0.0577	-0.0295	-0.0415	0.0343	0.0176	0.0000
LA6171-687	0.0205	-0.0341	-0.0013	0.0165	0.0356	-0.0031	0.0216	0.0068	0.0156	-0.0264	0.0000
LA6171-699	0.0324	-0.0571	-0.0071	-0.0150	0.0153	-0.0036	0.0009	0.0053	0.0093	-0.0002	0.0000
LA6171-754	-0.0068	0.0236	0.0074	0.0282	0.0248	-0.0420	0.0197	0.0841	-0.0024	-0.0312	0.0000
LA6171-810	0.0189	-0.0930	-0.0506	-0.0816	0.0174	0.0441	0.0418	-0.1003	0.0011	-0.0277	0.0000
LA6171-866	0.0095	0.0291	0.0377	0.0336	0.0974	-0.0256	0.0415	0.0116	-0.0024	0.0517	0.0000
LA6171-881	-0.0193	-0.0153	0.0403	-0.0231	-0.0057	-0.0345	-0.0296	-0.0088	-0.0345	0.0245	0.0000
LA6171-892	0.0303	0.0208	0.0463	-0.0298	0.0181	-0.0024	-0.0029	0.0091	-0.0670	-0.0028	0.0000
LA6171-919	0.0226	-0.0191	0.0301	0.0489	-0.0458	0.0076	-0.0301	-0.0092	-0.0304	0.0005	0.0000
LA6171-935	-0.0088	0.0082	0.0324	-0.0153	-0.0123	0.0159	-0.0222	0.0058	0.0260	-0.0061	0.0000
LA6171-942	0.0057	-0.0185	-0.0053	-0.0050	0.0153	-0.0036	0.0036	0.0011	-0.0011	0.0005	0.0000
LA6171-949	-0.0030	0.0014	0.0048	0.0008	-0.0131	0.0094	-0.0047	0.0014	0.0024	0.0000	0.0000
LA6171-950	-0.0129	0.0084	0.0188	-0.0041	-0.0194	0.0060	-0.0174	-0.0022	0.0031	0.0018	0.0000
LA115862-192	-0.0016	0.0142	-0.0194	-0.0274	-0.0397	-0.0536	0.0284	-0.0813	0.0435	-0.0501	0.0000
LA115862-197	0.0031	0.0183	-0.0271	0.0185	-0.0364	-0.0095	-0.0117	-0.0049	0.0107	-0.0197	0.0000
LA115862-221	0.0164	0.0557	0.0055	0.0302	-0.0267	-0.0507	0.0145	-0.0248	-0.0260	0.0113	0.0000
LA115862-223	0.0017	-0.0037	0.0000	0.0003	-0.0026	-0.0057	0.0055	0.0018	-0.0156	0.0101	0.0000
LA115862-234	-0.0112	-0.0053	-0.0026	0.0343	-0.0831	-0.0214	-0.0184	-0.0187	-0.0319	-0.0063	0.0000

Table 24.9. Continued.

D:Simpson	i's Diversit	y Index, Log	Base e
			Number of
Sample	Index	Evenness	Species
LA249-189	0.7672	0.8056	21
LA249-267	0.6323	0.7113	9
LA249-308	0.6499	0.6999	14
LA249-329	0.6943	0.7811	9
LA249-338	0.679	0.7759	8
LA249-360	0.6941	0.7933	8
LA249-378	0.75	1	4
LA265-852	0.6659	0.7103	16
LA265-854	0.774	0.8514	11
LA265-856	0.5956	0.7444	5
LA265-858	0	0	1
LA265-859	0.7787	0.8652	10
LA265-860	0.7143	0.8036	9
LA265-861	0.7523	0.8597	8
LA265-862	0.6497	0.758	7
LA265-864	0.7462	0.8528	8
LA265-866	0.6025	0.7029	7
LA265-892	0.3516	0.4102	7
LA265-893	0.4222	0.5066	6
LA265-894	0.41	0.4685	8
LA265-895	0.4775	0.5969	5
LA265-896	0.4965	0.5416	12
LA265-897	0.585	0.6825	7
LA265-898	0.612	0.6732	11
LA265-899	0.5469	0.6381	7
LA265-900	0.6712	0.783	7
LA265-952	0.2526	0.2886	8
LA265-995	0.5568	0.6264	9
LA265-1016	0.5176	0.5574	14
LA265-1028	0.6241	0.7133	8
LA265-1077	0.5918	0.6456	12
LA265-1084	0.5113	0.5682	10
LA265-1100	0.5902	0.6492	11
LA265-1223	0.7088	0.7595	15
LA265-1228	0.6507	0.723	10
LA265-1256	0.7247	0.8282	8
LA265-1339	0.6135	0.6816	10
LA265-1344	0.6048	0.7056	7
LA265-1405	0.8083	0.8588	17
LA265-1420	0.4766	0.5447	8
LA265-1536	0.7166	0.836	7
LA265-1600	0.5357	0.6123	8
LA265-1612	0.5762	0.6483	9
LA265-1678	0.3471	0.3905	9
LA265-1713	0.6418	0.722	9
LA265-1731	0.5688	0.632	10
LA6169-499	0.6959	0.7423	16
LA6169-632	0.34	0.425	5
LA6169-992	0.459	0.486	18
LA6169-1061	0.4116	0.4939	6
LA6169-1526	0.6424	0.7007	12
LA6169-1598	0.657	0.7039	15
LA6169-1674	0.6455	0.7101	10
LA6169-1707	0.4067	0.5083	5

D:Simpson's Diversity Index, Log Base € Sample Index Evenness Species LA6169-1732 0.5961 0.7153 6 LA6169-1853 0.3645 0.4374 6 LA6169-1881 0.6631 0.7579 8 LA6169-1997 0.5485 0.7313 4 LA6169-1796 0.4649 0.6198 4 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5322 16 LA6170-1180 0.5459 0.5849 15 LA6170-1484 0.5608 0.6309 9 LA6170-1768 0.6234 0.6927 10 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1848 0.6163 0.7191 7 LA6170-2149 0.6172 0.8229 4 LA6170-2140 0.6172 0.8229 4 LA6170-2280 0.5797 0.6522 9 <	la	able 24.9. C	continued.	
SampleIndexEvennessSpeciesLA6169-17320.59610.71536LA6169-18530.36450.43746LA6169-18810.66310.75798LA6169-19970.54850.73134LA6169-20420.63460.705110LA6169-17960.46490.61984LA6169-17960.46490.61984LA6170-11890.54590.584915LA6170-12030.64650.689616LA6170-14640.50080.63099LA6170-14840.45660.48716LA6170-14840.45660.48716LA6170-17680.62340.692710LA6170-18980.61630.71917LA6170-19420.63560.76276LA6170-19420.63560.76276LA6170-21560.40630.60943LA6170-22800.57970.65229LA6170-23040.6980.83776LA6170-23050.75810.84557LA6170-23680.75810.84457LA6170-23750.78470.84457LA6170-24980.72260.802910LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6290.73880.86197LA6171-6290.73880.86197LA6171-6290.73880.86197LA6171-6290.5659 <td>D:Simpson's D</td> <td>iversity Ind</td> <td>ex, Log Bas</td> <td>e e</td>	D:Simpson's D	iversity Ind	ex, Log Bas	e e
LA6169-1732 0.5961 0.7153 6 LA6169-1853 0.3645 0.4374 6 LA6169-1881 0.6631 0.7579 8 LA6169-1997 0.5485 0.7313 4 LA6169-2042 0.6346 0.7051 10 LA6169-1796 0.4649 0.6198 4 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15 LA6170-1203 0.6465 0.6896 16 LA6170-1464 0.5008 0.6309 9 LA6170-1484 0.4566 0.487 16 LA6170-1483 0.5712 0.6347 10 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-1942 0.6356 0.7627 6 LA6170-2156 0.4063 0.6094 3 LA6170-2280 0.5797 0.6522 9 LA6170-2319 0.713 0.7678 14 LA6170-236 0.7581 0.8473 17 LA6170-2375 0.7847 0.8968 8 LA6170-2498 0.7226 0.8029 10 LA6171-629 0.7388 0.8619 7 LA				Number of
LA6169-1732 0.5961 0.7153 6 LA6169-1853 0.3645 0.4374 6 LA6169-1881 0.6631 0.7579 8 LA6169-1997 0.5485 0.7313 4 LA6169-2042 0.6346 0.7051 10 LA6169-1796 0.4649 0.6198 4 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15 LA6170-1203 0.6465 0.6896 16 LA6170-1464 0.5008 0.6309 9 LA6170-1484 0.4566 0.487 16 LA6170-1484 0.4566 0.487 16 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-1942 0.6356 0.7627 6 LA6170-2156 0.4063 0.6094 3 LA6170-2280 0.5797 0.6522 9 LA6170-2319 0.713 0.7678 14 LA6170-2320 0.7686 0.854 10 LA6170-2368 0.7581 0.8473 17 LA6170-2498 0.7226 0.8029 10 LA6171-629 0.7388 0.8619 7 <t< td=""><td>Sample</td><td>Index</td><td>Evenness</td><td>Species</td></t<>	Sample	Index	Evenness	Species
LA6169-1853 0.3645 0.4374 6 LA6169-1997 0.5485 0.7313 4 LA6169-2042 0.6346 0.7051 10 LA6169-2042 0.6346 0.7051 10 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15 LA6170-1203 0.6465 0.6896 16 LA6170-1310 0.5017 0.5352 16 LA6170-1484 0.4566 0.487 16 LA6170-1768 0.6234 0.6927 10 LA6170-17823 0.5712 0.6347 10 LA6170-1823 0.5712 0.6347 10 LA6170-2189 0.6163 0.7191 7 LA6170-2199 0.6172 0.8229 4 LA6170-2280 0.5797 0.6522 9 LA6170-2304 0.698 0.8377 6 LA6170-2319 0.713 0.7678 14 LA6170-2322 0.7886 0.842 </td <td></td> <td></td> <td></td> <td>6</td>				6
LA6169-1881 0.6631 0.7579 8 LA6169-1997 0.5485 0.7313 4 LA6169-2042 0.6346 0.7051 10 LA6169-1571 0.5298 0.5828 11 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15 LA6170-1203 0.6465 0.6896 16 LA6170-1464 0.5608 0.6309 9 LA6170-1768 0.6234 0.6927 10 LA6170-1768 0.6234 0.6927 10 LA6170-1783 0.5712 0.6347 10 LA6170-1823 0.5712 0.6347 10 LA6170-219 0.6172 0.8229 4 LA6170-2280 0.5797 0.6522 9 LA6170-2304 0.698 0.8377 6 LA6170-2304 0.698 0.854 10 LA6170-2319 0.713 0.7678 14 LA6170-2498 0.7226 0.8029 <td></td> <td></td> <td></td> <td></td>				
LA6169-1997 0.5485 0.7313 4 LA6169-2042 0.6346 0.7051 10 LA6169-1771 0.5298 0.5828 11 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15 LA6170-1203 0.6465 0.6896 16 LA6170-1444 0.5007 0.5352 16 LA6170-1484 0.4566 0.487 16 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-1942 0.6356 0.7627 6 LA6170-2156 0.4063 0.6094 3 LA6170-2280 0.5797 0.6522 9 LA6170-2320 0.7686 0.854 10 LA6170-2304 0.698 0.854 10 LA6170-2325 0.7847 0.8968 8 LA6170-2340 0.7975 0.8473 <td></td> <td></td> <td></td> <td></td>				
LA6169-2042 0.6346 0.7051 10 LA6169-1571 0.5298 0.5828 11 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15 LA6170-1130 0.5017 0.5352 16 LA6170-1484 0.4566 0.487 16 LA6170-1484 0.4566 0.487 16 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-2199 0.6172 0.8229 4 LA6170-2280 0.5797 0.6522 9 LA6170-2280 0.5797 0.6522 9 LA6170-2304 0.698 0.8377 6 LA6170-2304 0.698 0.854 10 LA6170-2319 0.713 0.7678 14 LA6170-2407 0.7975 0.8473 17 LA6170-2498 0.7226 0.8029 <td></td> <td></td> <td></td> <td></td>				
LA6169-1571 0.5298 0.5828 11 LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15 LA6170-1203 0.6465 0.6896 16 LA6170-1310 0.5017 0.5352 16 LA6170-1464 0.5608 0.6309 9 LA6170-1484 0.4566 0.487 16 LA6170-1505 0.5175 0.5573 14 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1942 0.6356 0.7627 6 LA6170-2150 0.4063 0.6094 3 LA6170-2280 0.5797 0.6522 9 LA6170-2280 0.5797 0.6522 9 LA6170-2304 0.698 0.8377 6 LA6170-2304 0.698 0.854 10 LA6170-2319 0.713 0.7678 14 LA6170-2415 0.5259 0.6011 8 LA6170-2415 0.5259 0.6011 8 LA6170-2415 0.5259 0.6011 8 LA6171-620 0.788 0.8619 7 LA6171-621 0.322 0.3512 12 LA6171-630 0.4668 0.5446 7 LA6171-				-
LA6169-1796 0.4649 0.6198 4 LA6170-1189 0.5459 0.5849 15LA6170-1203 0.6465 0.6896 16LA6170-1310 0.5017 0.5352 16LA6170-1464 0.5608 0.6309 9LA6170-1464 0.5608 0.6309 9LA6170-1464 0.5608 0.6309 9LA6170-1464 0.5613 0.6927 10LA6170-1823 0.5712 0.6347 10LA6170-1888 0.6163 0.7191 7LA6170-1942 0.6356 0.7627 6LA6170-2166 0.4063 0.6094 3LA6170-2280 0.5797 0.6522 9LA6170-2304 0.698 0.8377 6LA6170-2320 0.7678 14LA6170-2320 0.7847 0.8968 LA6170-2375 0.7847 0.8968 LA6170-2407 0.7975 0.8473 LA6170-2407 0.7975 0.8473 LA6171-523 0.58 0.87 LA6171-621 0.322 0.3512 LA6171-629 0.7388 0.8619 LA6171-629 0.7388 0.8619 LA6171-630 0.4668 0.5446 LA6171-645 0.6029 0.6531 LA6171-659 0.6519 0.7451 LA6171-687 0.6259 0.678 LA6171-810 0.7254 0.7979 LA6171-841 0.7254 0.7979 LA6171-841 0.6722 0.8666 LA6171-841<				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
LA6170-1203 0.6465 0.6896 16 LA6170-1310 0.5017 0.5352 16 LA6170-1464 0.5608 0.6309 9 LA6170-1484 0.4566 0.487 16 LA6170-1505 0.5175 0.5573 14 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-2159 0.6172 0.8229 4 LA6170-2280 0.5797 0.6522 9 LA6170-2286 0.2559 0.3198 5 LA6170-2304 0.698 0.8377 6 LA6170-2304 0.698 0.8377 6 LA6170-2304 0.698 0.854 10 LA6170-2305 0.7847 0.8968 8 LA6170-2407 0.7975 0.8473 17 LA6170-2458 0.7226 0.8029 10 LA6170-2458 0.7226 0.8029 10 LA6171-621 0.322 0.3512 12 LA6171-629 0.7388 0.8819 7 LA6171-629 0.7388 0.8619 7 LA6171-629 0.6531 13 LA6171-629 0.5056 0.5688 9 LA6171-647 0.6259 0.678 13 LA6171-647 0.6259 0.678 13 LA6171-841 0.6722 0.8066 6 LA6171-841 0.7224 0.7979 11 LA6171-841 0.7				-
LA6170-1310 0.5017 0.5352 16 LA6170-1464 0.5608 0.6309 9LA6170-1484 0.4566 0.487 16 LA6170-1505 0.5175 0.5573 14 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-1942 0.6356 0.7627 6 LA6170-2150 0.4063 0.6094 3 LA6170-2280 0.5797 0.6522 9 LA6170-2304 0.698 0.8377 6 LA6170-2304 0.698 0.8377 6 LA6170-2304 0.698 0.854 10 LA6170-2304 0.698 0.854 10 LA6170-2305 0.7847 0.8968 8 LA6170-2306 0.7581 0.8473 17 LA6170-2475 0.7847 0.8029 10 LA6170-2480 0.7226 0.8029 10 LA6171-523 0.58 0.87 3 LA6171-621 0.322 0.3512 12 LA6171-629 0.7388 0.8619 7 LA6171-629 0.7388 0.8619 7 LA6171-659 0.6519 0.7451 8 LA6171-659 0.6519 0.7451 8 LA6171-687 0.6259 0.678 13 LA6171-810 0.7254 0.7979 11 LA6171-841 0.6722 0.8066 6 LA6171-841				
LA6170-1464 0.5608 0.6309 9 LA6170-1484 0.4566 0.487 16LA6170-1505 0.5175 0.5573 14LA6170-1768 0.6234 0.6927 10LA6170-1823 0.5712 0.6347 10LA6170-1888 0.6163 0.7191 7LA6170-1942 0.6356 0.7627 6LA6170-2119 0.6172 0.8229 4LA6170-2156 0.4063 0.6094 3LA6170-2280 0.5797 0.6522 9LA6170-2304 0.698 0.8377 6LA6170-2319 0.713 0.7678 14LA6170-2368 0.7581 0.8845 7LA6170-2375 0.7847 0.8968 8LA6170-2407 0.7975 0.8473 17LA6170-2407 0.7975 0.8473 17LA6170-2498 0.7226 0.8029 10LA6171-621 0.322 0.3512 12LA6171-629 0.7388 0.8619 7LA6171-629 0.7581 0.7451 8LA6171-630 0.4668 0.5446 7LA6171-687 0.6259 0.678 13LA6171-687 0.6259 0.678 13LA6171-810 0.7254 0.7979 11LA6171-810 0.7254 0.7979 11LA6171-811 0.6722 0.8666 6LA6171-821 0.6533 0.7622 7LA6171-841 0.6722 0.8661 6				
LA6170-1484 0.4566 0.487 16 LA6170-1505 0.5175 0.5573 14 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1942 0.6356 0.7627 6 LA6170-2119 0.6172 0.8229 4 LA6170-2280 0.5797 0.6522 9 LA6170-2286 0.2559 0.3198 5 LA6170-2304 0.698 0.8377 6 LA6170-2319 0.713 0.7678 14 LA6170-2304 0.698 0.854 10 LA6170-2319 0.7781 0.8453 17 LA6170-2368 0.7581 0.8845 7 LA6170-2375 0.7847 0.8968 8 LA6170-2498 0.7226 0.8029 10 LA6170-2498 0.7226 0.8029 10 LA6171-523 0.58 0.87 3 LA6171-621 0.322 0.3512 12 LA6171-629 0.7388 0.8619 7 LA6171-659 0.6519 0.7451 8 LA6171-659 0.6519 0.7451 8 LA6171-754 0.3008 0.3343 10 LA6171-810 0.7254 0.7979 11 LA6171-810 0.7224 0.8629 7 LA6171-810 0.7224 0.8629 7 LA6171-810 0.7254 0.7979 11 LA6171-810 0.7254 0.7979 11 LA6171-819<				
LA6170-1505 0.5175 0.5573 14 LA6170-1768 0.6234 0.6927 10 LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-1942 0.6356 0.7627 6 LA6170-2119 0.6172 0.8229 4 LA6170-2280 0.5797 0.6522 9 LA6170-2286 0.2559 0.3198 5 LA6170-2304 0.698 0.8377 6 LA6170-2319 0.713 0.7678 14 LA6170-2304 0.698 0.854 10 LA6170-2319 0.713 0.7678 14 LA6170-2308 0.7581 0.8845 7 LA6170-2375 0.7847 0.8968 8 LA6170-2407 0.7975 0.8473 17 LA6170-2498 0.7226 0.8029 10 LA6171-523 0.58 0.87 3 LA6171-621 0.322 0.3512 12 LA6171-621 0.322 0.3512 12 LA6171-629 0.7388 0.8619 7 LA6171-659 0.6519 0.7451 8 LA6171-659 0.6519 0.7451 8 LA6171-754 0.3008 0.3343 10 LA6171-810 0.7224 0.7979 11 LA6171-810 0.7224 0.7979 11 LA6171-810 0.7224 0.8629 7 LA6171-810 0.7244 0.7979 11 LA6171-810 </td <td></td> <td></td> <td></td> <td></td>				
LA6170-17680.62340.692710LA6170-18230.57120.634710LA6170-18980.61630.71917LA6170-19420.63560.76276LA6170-21190.61720.82294LA6170-21560.40630.60943LA6170-22800.57970.65229LA6170-23040.6980.83776LA6170-23190.7130.767814LA6170-23220.76860.85410LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24070.79750.847317LA6170-24080.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6590.65690.67813LA6171-8700.62590.67813LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-8920.59210.64612LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9490.71680.86016LA6171-9490.7180.86016LA6171-9490.76830.8629<				
LA6170-1823 0.5712 0.6347 10 LA6170-1898 0.6163 0.7191 7 LA6170-1942 0.6356 0.7627 6 LA6170-2119 0.6172 0.8229 4 LA6170-2156 0.4063 0.6094 3 LA6170-2280 0.5797 0.6522 9 LA6170-2286 0.2559 0.3198 5 LA6170-2304 0.698 0.8377 6 LA6170-2319 0.713 0.7678 14 LA6170-2322 0.7686 0.854 10 LA6170-2375 0.7847 0.8968 8 LA6170-2407 0.7975 0.8473 17 LA6170-2498 0.7226 0.8029 10 LA6171-613 0.317 0.3699 7 LA6171-621 0.322 0.3512 12 <td></td> <td></td> <td></td> <td></td>				
LA6170-1898 0.6163 0.7191 7 LA6170-1942 0.6356 0.7627 6 LA6170-2119 0.6172 0.8229 4 LA6170-2156 0.4063 0.6094 3 LA6170-2280 0.5797 0.6522 9 LA6170-2286 0.2559 0.3198 5 LA6170-2304 0.698 0.8377 6 LA6170-2319 0.713 0.7678 14 LA6170-2322 0.7686 0.854 10 LA6170-2375 0.7847 0.8968 8 LA6170-2407 0.7975 0.8473 17 LA6170-2407 0.7975 0.8473 17 LA6170-2498 0.7226 0.8029 10 LA6171-523 0.58 0.87 3 LA6171-621 0.322 0.3512 12 LA6171-621 0.322 0.3512 12 LA6171-629 0.7388 0.8619 7 LA6171-659 0.6519 0.7451 8 LA6171-687 0.6259 0.678 13				
LA6170-19420.63560.76276LA6170-21190.61720.82294LA6170-21560.40630.60943LA6170-22800.57970.65229LA6170-22860.25590.31985LA6170-23040.6980.83776LA6170-23190.7130.767814LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24070.79750.847317LA6170-24980.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6870.62590.67813LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-810.67220.80666LA6171-9190.85290.918514LA6171-9200.73960.86297LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9420.63140.8418 <t< td=""><td>LA6170-1823</td><td></td><td></td><td></td></t<>	LA6170-1823			
LA6170-21190.61720.82294LA6170-21560.40630.60943LA6170-22800.57970.65229LA6170-22860.25590.31985LA6170-23040.6980.83776LA6170-23190.7130.767814LA6170-23220.76860.85410LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24150.52590.60118LA6171-5230.580.82910LA6171-5230.580.8773LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6590.65290.67813LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8200.59210.64612LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.85434LA15862-1970.62720.83634LA15862-2210.62890.6813				7
LA6170-21560.40630.60943LA6170-22800.57970.65229LA6170-23040.6980.83776LA6170-23190.7130.767814LA6170-23220.76860.85410LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24150.52590.60118LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6740.30080.334310LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8410.67220.80666LA6171-850.65330.76227LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.86334<			0.7627	6
LA6170-22800.57970.65229LA6170-22860.25590.31985LA6170-23040.6980.83776LA6170-23190.7130.767814LA6170-23220.76860.85410LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6590.65290.67813LA6171-6590.5560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-810.67220.80666LA6171-820.59210.64612LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.85434LA115862-1970.62720.86634<	LA6170-2119	0.6172	0.8229	4
LA6170-22860.25590.31985LA6170-23040.6980.83776LA6170-23190.7130.767814LA6170-23220.76860.85410LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.62590.67813LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-810.67220.80666LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.86334<			0.6094	3
LA6170-2304 0.698 0.8377 6 LA6170-2319 0.713 0.7678 14 LA6170-2322 0.7686 0.854 10 LA6170-2368 0.7581 0.8845 7 LA6170-2375 0.7847 0.8968 8 LA6170-2407 0.7975 0.8473 17 LA6170-2415 0.5259 0.6011 8 LA6170-2498 0.7226 0.8029 10 LA6171-523 0.58 0.87 3 LA6171-523 0.58 0.87 3 LA6171-613 0.317 0.3699 7 LA6171-621 0.322 0.3512 12 LA6171-629 0.7388 0.8619 7 LA6171-659 0.6519 0.7451 8 LA6171-659 0.6529 0.678 13 LA6171-687 0.6259 0.678 13 LA6171-754 0.3008 0.3343 10 LA6171-810 0.7254 0.7979 11	LA6170-2280	0.5797	0.6522	9
LA6170-23190.7130.767814LA6170-23220.76860.85410LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6590.62590.67813LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-810.67220.80666LA6171-9420.59210.64612LA6171-9500.71190.85436LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9420.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6170-2286	0.2559	0.3198	5
LA6170-23220.76860.85410LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8110.67220.80666LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.86334LA115862-1970.62720.83634	LA6170-2304	0.698	0.8377	6
LA6170-23680.75810.88457LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-5400.76030.91246LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8110.67220.80666LA6171-8220.59210.64612LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9420.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6170-2319	0.713		14
LA6170-23750.78470.89688LA6170-24070.79750.847317LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8410.67220.80666LA6171-9190.85290.918514LA6171-9200.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9220.63140.84184LA115862-1920.63140.84184LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6170-2322	0.7686	0.854	10
LA6170-24070.79750.847317LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-5400.76030.91246LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6590.65190.74518LA6171-6590.62590.67813LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8410.67220.80666LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9500.71190.86334LA115862-1970.62720.83634LA115862-2230.53550.7384	LA6170-2368		0.8845	7
LA6170-24150.52590.60118LA6170-24980.72260.802910LA6171-5230.580.873LA6171-5800.76030.91246LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8410.67220.80666LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9500.71190.85436LA6171-9220.63140.84184LA115862-1970.62720.83634LA115862-2230.5350.7384	LA6170-2375	0.7847	0.8968	8
LA6170-24980.72260.802910LA6171-5230.580.873LA6171-5800.76030.91246LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6290.73880.86197LA6171-6590.65190.74518LA6171-6550.60290.653113LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.72540.797914LA6171-8100.72540.797914LA6171-8100.72540.797914LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA115862-1970.62720.83634LA115862-1970.62720.83634LA115862-2230.55350.7384	LA6170-2407	0.7975		17
LA6171-5230.580.873LA6171-5800.76030.91246LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8200.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA6171-9220.63140.84184LA115862-1970.62720.83634LA115862-2230.53550.7384	LA6170-2415	0.5259		8
LA6171-5800.76030.91246LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8200.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9220.63140.84184LA6171-9500.71190.85436LA6171-9220.63140.84184LA115862-1970.62720.83634	LA6170-2498	0.7226	0.8029	10
LA6171-6130.3170.36997LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.72540.797911LA6171-8100.59210.64612LA6171-8100.59210.64612LA6171-8200.59210.64612LA6171-9490.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA115862-1920.63140.84184LA15862-1970.62720.83634LA15862-2230.55350.7384	LA6171-523	0.58	0.87	3
LA6171-6210.3220.351212LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8110.67220.80666LA6171-8220.59210.64612LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9500.71190.85436LA6171-9220.63140.84184LA6171-9500.71190.86334LA115862-1970.62720.83634	LA6171-580	0.7603	0.9124	6
LA6171-6290.73880.86197LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8100.67220.80666LA6171-8200.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA6171-9500.71190.85434LA115862-1970.62720.83634LA115862-2230.55350.7384	LA6171-613	0.317	0.3699	7
LA6171-6300.46680.54467LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA6171-9500.71190.85434LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-621	0.322	0.3512	12
LA6171-6590.65190.74518LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-629	0.7388	0.8619	7
LA6171-6650.60290.653113LA6171-6870.62590.67813LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA6171-9500.71190.85434LA115862-1970.62720.83634LA115862-2230.55350.7384	LA6171-630	0.4668	0.5446	7
LA6171-6870.62590.67813LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9420.73960.86297LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-659	0.6519	0.7451	8
LA6171-6990.50560.56889LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-665	0.6029	0.6531	13
LA6171-7540.30080.334310LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9250.65330.76227LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-687	0.6259	0.678	13
LA6171-8100.72540.797911LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-699	0.5056	0.5688	9
LA6171-8660.30440.34798LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-754	0.3008	0.3343	10
LA6171-8810.67220.80666LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-810	0.7254	0.7979	11
LA6171-8920.59210.64612LA6171-9190.85290.918514LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-866	0.3044	0.3479	8
LA6171-9190.85290.918514LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-881	0.6722	0.8066	6
LA6171-9350.65330.76227LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-892	0.5921	0.646	12
LA6171-9420.73960.86297LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-919	0.8529	0.9185	14
LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-935	0.6533	0.7622	7
LA6171-9490.71680.86016LA6171-9500.71190.85436LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384	LA6171-942	0.7396	0.8629	7
LA115862-1920.63140.84184LA115862-1970.62720.83634LA115862-2210.62890.681313LA115862-2230.55350.7384		0.7168	0.8601	6
LA115862-197 0.6272 0.8363 4 LA115862-221 0.6289 0.6813 13 LA115862-223 0.5535 0.738 4	LA6171-950	0.7119	0.8543	6
LA115862-197 0.6272 0.8363 4 LA115862-221 0.6289 0.6813 13 LA115862-223 0.5535 0.738 4	LA115862-192	0.6314	0.8418	4
LA115862-223 0.5535 0.738 4		0.6272	0.8363	4
LA115862-223 0.5535 0.738 4	LA115862-221	0.6289	0.6813	13
LA115862-234 0.6304 0.7565 6	LA115862-223	0.5535	0.738	4
	LA115862-234	0.6304	0.7565	6

A: Eigenva	lue Analysis	•	
Ū	5		Cumulative
Axis	Eigenvalues	Percentage	Percentage
Axis 1	8.5501	31.6672	31.6672
Axis 2	4.1519	15.3775	47.0447
Axis 3	3.01	11.1481	58.1928
Axis 4	2.6136	9.6801	67.8729
Axis 5	2.286	8.4666	76.3394
Axis 6	1.5026	5.5652	81.9046
Axis 7	1.2129	4.4924	86.397
Axis 8	1.0367	3.8395	90.2365
Axis 9	0.8481	3.1412	93.3777
Axis 10	0.7901	2.9264	96.3041
Axis 11	0.5287	1.9581	98.2623
Axis 12	0.3087	1.1433	99.4056
Axis 13	0.1069	0.396	99.8015
Axis 14	0.0441	0.1635	99.965
Axis 15	0.0087	0.0321	99.9971
Axis 16	0.0008	0.0029	100
Axis 17	0	0	100
Axis 18	0	0	100
Axis 19	0	0	100
Axis 20	0	0	100
Axis 21	0	0	100
Axis 22	0	0	100
Axis 23	0	0	100
Axis 24	0	0	100
Axis 25	0	0	100
Axis 26	0	0	100
Axis 27	0	0	100

Table 24.10. Results of PCA, Pollen Wash Samples, Peña Blanca Project

						Table 24.1	Table 24.10. Continued	∋d.						
B: PCA variable loadings	loadings		Coity					0.000			11 Oive		01010	A vio 4.4
		7415 2	D SIXH	4XIS 4	C SIXY	AXIS O		ANS O	P SIXH					AXIS 14
P. ponderosa	0.3186	0.1485	-0.0326	-0.0337	-0.0883	0.0683	-0.0579	-0.0162	0.0254	0.0097	-0.0070	0.0960.0	-0.0963	-0.1268
P. edulis	0.3215	0.1414	0.0086	-0.0435	-0.0550	0.0435	-0.0851	-0.0035	-0.0348	0.0735	0.0230	-0.0920	0.0906	0.0228
Picea	-0.0098	0.0807	0.5622	-0.0102	-0.0324	-0.0332	0.0606	-0.0259	0060.0	-0.0630	-0.0249	-0.0427	0.0137	0.0877
Abies	0.0635	0.0584	-0.0059	-0.1773	0.5878	-0.0870	0.0823	-0.1987	0.0403	-0.1348	-0.0704	-0.0013	0.0002	-0.0943
Juniperus	0.3070	0.1468	-0.0268	0.0002	-0.1801	0.1082	-0.0703	0.0003	0.0151	0.0154	0.0288	0.1017	-0.0611	-0.0699
Solanaceae	-0.0287	-0.0051	-0.0745	-0.0599	-0.0108	0.3910	0.5717	0.4978	0.0545	-0.2826	-0.1333	-0.1441	-0.0477	0.1709
Rosaceae	0.0062	0.1963	0.4905	-0.1410	-0.1480	-0.0517	0.0532	0.0019	0.0590	-0.0055	-0.0555	-0.0104	0.1133	-0.0200
Polygonum	0.1623	0.1046	-0.0145	-0.1710	0.5080	-0.0484	0.0563	-0.1917	0.0438	-0.1250	-0.0584	0.0322	-0.0199	-0.1140
Eriogonum	-0.0452	-0.0733	-0.0771	-0.1484	-0.0811	-0.0254	-0.5696	0.1853	0.2933	-0.6717	-0.0948	-0.0366	0.2117	0.0636
Liliaceae	0.0570	-0.2703	0.2311	0.3992	0.1183	0.1086	-0.0198	-0.0345	0.0892	-0.1277	0.1090	-0.0537	-0.2969	0.2980
Sarcobatus	0.3070	0.1468	-0.0268	0.0002	-0.1801	0.1082	-0.0703	0.0003	0.0151	0.0154	0.0288	0.1017	-0.0611	-0.0700
Poaceae	0.2209	-0.2327	0.1218	0.2078	0.1495	-0.2202	-0.0005	0.1062	0.2093	0.0227	-0.1668	-0.1132	-0.2748	0.0762
Cheno-am	0.3104	0.0803	-0.0612	-0.1416	0.1149	-0.0509	0.0323	-0.1062	-0.0278	-0.0398	-0.1817	0.1302	0.0257	0.5434
Cheno-am af.	-0.0497	0.1577	0.5012	-0.1790	-0.0631	-0.0881	0.0790	-0.0255	0.0586	-0.0221	-0.0570	-0.0269	0.1223	-0.0041
Asteraceae hs.	0.1195	-0.2185	-0.0469	0.2536	-0.1953	0.0083	0.1292	-0.3933	-0.2494	-0.0955	-0.5438	-0.0377	0.4218	0.1420
Asteraceae Is	0.2775	-0.0020	-0.0179	0.0623	0.1169	-0.0921	-0.0647	0.1167	-0.1066	0.1108	0.4170	-0.6733	0.3736	0.1616
Artemisia	0.3018	0.0263	-0.0585	-0.2140	0.0440	0.0673	0.0840	0.1714	0.1113	0.0486	-0.2124	-0.0349	-0.0896	-0.0830
Cactaceae	0.1780	-0.3251	0.0442	-0.1742	-0.0636	0.1822	0.2582	-0.0976	-0.0245	-0.1926	0.1066	-0.0718	0.2239	-0.4543
Cylindropuntia	0.0327	-0.3289	-0.0104	-0.4007	-0.1431	-0.0742	0.0982	-0.1350	-0.0319	-0.0295	0.2315	0.0885	-0.1111	0.2283
Platyopuntia	0.0299	-0.2764	-0.0265	-0.2662	-0.0758	-0.2467	-0.1342	0.2832	0.1637	0.4207	-0.4382	-0.2102	-0.0444	-0.0979
Ephedra	0.3223	0.0231	0.0571	0.1176	-0.1062	0.1206	-0.0813	-0.0003	0.0622	-0.0061	0.0301	0.0617	-0.1718	0.0301
Nyctaginaceae	0.2399	0.1487	-0.0925	0.1102	-0.2095	-0.3431	0.1773	0.0254	0.0280	-0.1867	0.1273	0.1284	-0.0451	-0.0858
Indeterminate	0.1380	-0.2635	0.1140	0.1541	0.2252	0.0007	-0.0055	0.3639	0.1185	0.2101	0.1629	0.5888	0.4979	0.0331
Sphaeralcea	-0.0021	0.0376	-0.1116	0.1623	-0.0954	-0.6769	0.3184	0.1097	0.0589	-0.2205	0.0470	0.0217	0.0089	-0.0903
Zea mays	0.1404	-0.3836	0.1751	0.1697	0.0107	0.0742	-0.0756	-0.1235	0.0309	-0.1033	0.0174	-0.0802	-0.1683	-0.3605
Cucurbitaceae	0.0323	-0.3296	-0.0045	-0.3878	-0.1646	-0.0998	0.0520	-0.1639	-0.0372	-0.0032	0.2430	0.0983	-0.1038	0.2201
Wt/area	-0.0720	0.0606	-0.1708	0.0715	-0.1065	0.1167	0.1842	-0.3512	0.8359	0.1709	0.0774	-0.0808	0.1632	0.0578

ntinu
ပိ
4.10
ole 2
Tak

					Table	Table 24.10. Continued	ntinued.						
	Axis 15	Axis 16	Axis 17	Axis 18	Axis 19	Axis 20	Axis 21	Axis 22	Axis 23	Axis 24	Axis 25	Axis 26	Axis 27
P. ponderosa	-0.1359	-0.3314	-0.0504	-0.3885	-0.0729	-0.1934	0.5949	-0.2069	-0.0776	0.1557	0.1413	-0.0636	-0.2177
P. edulis	0.1036	-0.6390	0.0293	0.0464	0.0508	-0.0724	-0.5230	0.0920	-0.0527	0.0519	-0.1802	0.1875	-0.2307
Picea	0.0151	0.0223	0.0617	-0.1645	-0.0668	-0.0403	-0.0146	0.4600	0.0909	-0.1887	0.5413	0.1795	-0.1724
Abies	-0.1150	0.0373	0.3209	-0.0039	-0.6018	-0.0200	-0.0493	-0.0933	-0.0067	-0.0522	-0.1192	0.1155	-0.0813
Juniperus	-0.0571	0.2380	0.6682	0.2231	0.2241	-0.1916	0.0956	0.1986	0.1310	-0.1403	-0.1784	-0.1956	-0.1244
Solanaceae	-0.2032	-0.1031	-0.0040	0.0142	0.0021	0.0283	0.0598	0.0037	0.0624	-0.1530	-0.1220	0.0756	-0.0706
Rosaceae	-0.0442	0.0352	0.0341	0.0093	0.0664	-0.0076	-0.1951	-0.7099	0.1913	-0.1733	0.0113	-0.1871	0.0316
Polygonum	-0.1297	0.1150	-0.3289	0.1224	0.6130	-0.0660	0.0394	0.0143	0.0121	-0.1260	0.0044	0.0839	-0.1985
Eriogonum	-0.0131	0.0110	-0.0005	-0.0202	0.0002	-0.0150	-0.0069	-0.0039	-0.0073	0.0120	-0.0073	0.0092	-0.0289
Liliaceae	0.1687	0.0478	-0.0215	0.3365	-0.0512	-0.2221	0.0195	-0.2068	-0.3168	0.1427	0.0360	-0.0851	-0.3143
Sarcobatus	-0.0572	0.2400	-0.5687	0.1800	-0.4225	-0.1752	-0.0914	0.1684	0.2152	-0.2035	-0.1364	-0.1908	-0.0937
Poaceae	0.1351	0.0761	-0.0052	-0.5143	0.0855	0.1646	-0.1072	0.0923	0.3056	0.0581	-0.3276	-0.2077	-0.0212
Cheno-am	0.3476	-0.2058	-0.0032	0.2126	-0.0184	0.1770	0.2245	0.0138	0.0973	-0.1356	0.1352	-0.1459	0.3728
Cheno-am af.	-0.0521	-0.0101	-0.0959	0.1437	-0.0061	0.0512	0.2547	0.2498	-0.2714	0.3502	-0.5154	-0.0036	0.1529
Asteraceae hs.	-0.2238	0.1108	-0.0017	-0.0849	0.0019	-0.0615	-0.0342	-0.0148	-0.0306	0.0489	-0.0332	0.0386	-0.1209
Asteraceae Is	-0.1409	0.1354	-0.0073	-0.0133	-0.0126	0.0148	0.1275	-0.0235	0.0132	-0.0091	0.0439	-0.0435	0.0516
Artemisia	-0.1365	0.2022	0.0214	-0.0442	0.0076	-0.0790	-0.3437	0.0291	-0.3372	0.4152	0.3643	-0.2688	0.2485
Cactaceae	0.6290	0.0661	-0.0048	-0.0335	-0.0073	-0.0125	0.0623	-0.0186	-0.0095	0.0062	0.0157	-0.0123	-0.0094
Cylindropuntia	-0.1729	0.0311	0.0063	0.1179	0.0024	-0.0695	-0.0193	-0.0361	0.4838	0.4615	0.0526	0.1806	-0.1214
Platyopuntia	0.0639	0.0139	-0.0052	0.2728	-0.0550	0.0012	0.1771	-0.0630	-0.0575	-0.1665	0.0250	0.1940	-0.2201
Ephedra	0.0063	0.2510	0.0012	-0.1176	0.0266	-0.0721	-0.0103	-0.1637	-0.0930	-0.0690	-0.0935	0.7338	0.3698
Nyctaginaceae	-0.0540	0.1078	0.0125	0.1310	-0.0438	0.6802	-0.0052	-0.0603	-0.1589	0.0494	0.0882	0.0812	-0.2932
Indeterminate	-0.1030	-0.0101	0.0000	-0.0076	0.0004	-0.0072	-0.0068	-0.0011	-0.0026	0.0066	-0.0041	0.0059	-0.0143
Sphaeralcea	0.0182	-0.1188	-0.0038	0.0822	0.0078	-0.5022	-0.0083	0.0225	0.0114	-0.0522	0.0274	0.0211	0.1948
Zea mays	-0.3994	-0.3499	0.0085	0.2685	0.0006	0.1881	0.0526	0.0569	0.1035	-0.1409	0.0831	-0.1026	0.3563
Cucurbitaceae	-0.1649	0.0047	-0.0020	-0.2632	0.0179	-0.0360	-0.0891	0.0341	-0.4526	-0.4404	-0.1364	-0.1377	-0.0202
Wt/area	-0.0396	-0.0409	0.0005	0.0203	-0.0008	0.0082	0.0034	0.0021	0.0031	-0.0074	0.0079	-0.0028	0.0190
Vales in Boldface >0.2500 in first 8 axes	2500 in first 8	axes											

C: PCA case sc	ores							
	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8
LA 265-1480	0.2680	-1.3276	-0.0130	-0.9832	-0.3651	-0.1455	0.0612	-0.1649
LA 265-1486	-0.2383	-0.0203	-0.2177	-0.1518	-0.0240	0.5700	0.6728	0.5007
LA 265-1488	-0.2865	0.1081	-0.1649	0.1078	-0.0950	0.0620	-0.0219	-0.2240
LA 265-1698	-0.4382	0.1947	-0.1372	0.0153	-0.0076	0.0775	-0.0772	0.0010
LA 265-1699	-0.4865	0.2195	-0.3074	0.1099	-0.1462	0.1932	0.1234	-0.4036
LA 6169-375	-0.2185	0.2391	-0.1308	0.0172	0.0727	0.0118	-0.1627	0.1259
LA 6169-387	-0.3863	0.1286	-0.1171	0.0653	-0.0487	0.0772	-0.0824	-0.0704
LA 6169-396	-0.4750	0.6749	1.4607	-0.3605	-0.2482	-0.1086	0.0802	0.0019
LA 6169-398	-0.2959	0.0543	-0.0515	0.0901	0.1702	0.0514	-0.1232	0.3017
LA 6169-1046	0.5265	0.2351	-0.0172	-0.4495	1.3035	-0.1269	0.0968	-0.1999
LA 6169-1047	2.5467	0.5913	-0.0781	0.0005	-0.3994	0.1577	-0.0827	0.0003
LA 6169-1210	0.0935	-0.3172	-0.0856	-0.0490	0.0844	-0.3300	-0.2454	0.4865
LA 115862-158	-0.4677	0.0996	-0.2110	-0.1188	-0.1027	0.0572	-0.6564	0.1487
LA 115862-159	-0.2020	-0.0933	-0.1251	0.1505	-0.1366	0.1369	0.0474	-0.2975
LA 115862-160	0.4724	-1.0886	0.6748	1.0121	0.2624	0.1583	-0.0233	-0.0347
LA 115862-161	-0.0312	0.1989	-0.3136	0.4196	-0.2246	-0.9394	0.4119	0.0380
LA 115862-181	-0.3810	0.1029	-0.1652	0.1245	-0.0951	0.0972	-0.0185	-0.2099
	Axis 9	Axis 10	Axis 11	Axis 12	Axis 13	Axis 14	Axis 15	Axis 16
LA 265-1480	Axis 9 -0.0306	Axis 10 -0.0025	Axis 11 0.1247	Axis 12 0.0294	Axis 13 -0.0108	Axis 14 0.0094	Axis 15 -0.0014	Axis 16 0.0000
LA 265-1486	-0.0306 0.0448		0.1247 -0.0683	0.0294 -0.0431	-0.0108 -0.0050	0.0094 0.0073		0.0000 -0.0001
	-0.0306	-0.0025 -0.2166 0.0151	0.1247	0.0294	-0.0108	0.0094	-0.0014	0.0000 -0.0001 -0.0029
LA 265-1486	-0.0306 0.0448	-0.0025 -0.2166	0.1247 -0.0683	0.0294 -0.0431	-0.0108 -0.0050	0.0094 0.0073	-0.0014 -0.0017	0.0000 -0.0001
LA 265-1486 LA 265-1488	-0.0306 0.0448 -0.3135	-0.0025 -0.2166 0.0151	0.1247 -0.0683 -0.2739 0.0822 0.0810	0.0294 -0.0431 0.0801	-0.0108 -0.0050 0.0266	0.0094 0.0073 0.1515 -0.0384 0.0152	-0.0014 -0.0017 0.0194	0.0000 -0.0001 -0.0029
LA 265-1486 LA 265-1488 LA 265-1698	-0.0306 0.0448 -0.3135 -0.0776	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627	0.1247 -0.0683 -0.2739 0.0822	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750	-0.0108 -0.0050 0.0266 -0.1748	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446	-0.0014 -0.0017 0.0194 0.0519	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008
LA 265-1486 LA 265-1488 LA 265-1698 LA 265-1699	-0.0306 0.0448 -0.3135 -0.0776 0.6740	-0.0025 -0.2166 0.0151 0.1007 0.2342	0.1247 -0.0683 -0.2739 0.0822 0.0810	0.0294 -0.0431 0.0801 0.1016 -0.0220	-0.0108 -0.0050 0.0266 -0.1748 0.0246	0.0094 0.0073 0.1515 -0.0384 0.0152	-0.0014 -0.0017 0.0194 0.0519 0.0069	0.0000 -0.0001 -0.0029 0.0124 -0.0045
LA 265-1486 LA 265-1488 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0018	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008
LA 265-1486 LA 265-1488 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0018 -0.0236	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008 -0.0189
LA 265-1486 LA 265-1488 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0018 -0.0236 -0.0003	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008 -0.0189 0.0000
LA 265-1486 LA 265-1488 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396 LA 6169-398 LA 6169-1046 LA 6169-1047	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935 0.0331 0.0124	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067 0.2371 -0.1033 0.0118	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317 0.2819	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094 0.3448 -0.0004 0.0305	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415 0.0000 -0.0063	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002 -0.0045 -0.0040 -0.0030	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0018 -0.0236 -0.0003 -0.0068 -0.0010 -0.0005	0.0000 -0.0029 0.0124 -0.0045 -0.0008 -0.0189 0.0000 -0.0011 0.0000 0.0002
LA 265-1486 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396 LA 6169-398 LA 6169-1046 LA 6169-1047 LA 6169-1210	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935 0.0331 0.0124 0.1920	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067 0.2371 -0.1033	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317 0.2819 -0.0361	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094 0.3448 -0.0004 0.0305 -0.1019	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415 0.0000 -0.0063 0.0029	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002 -0.0045 -0.0040 -0.0030 -0.0128	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0018 -0.0236 -0.0003 -0.0003 -0.0068 -0.0010 -0.0005 0.0018	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008 -0.0189 0.0000 -0.0011 0.0000 0.0002 0.0000
LA 265-1486 LA 265-1488 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396 LA 6169-398 LA 6169-1046 LA 6169-1047 LA 6169-1210 LA 115862-158	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935 0.0331 0.0124 0.1920 0.2206	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067 0.2371 -0.1033 0.0118 0.4028 -0.5936	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317 0.2819 -0.0361 0.0147 -0.3795 -0.0164	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094 0.3448 -0.0004 0.0305 -0.1019 -0.0012	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415 0.0000 -0.0063 0.0029 0.0247	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002 -0.0045 -0.0045 -0.0040 -0.0030 -0.0128 0.0025	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0236 -0.0003 -0.0003 -0.0068 -0.0010 -0.0005 0.0018 -0.0001	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.008 -0.0189 0.0000 -0.0011 0.0000 0.0002 0.0000 0.0000
LA 265-1486 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396 LA 6169-398 LA 6169-1046 LA 6169-1047 LA 6169-1210 LA 115862-158 LA 115862-159	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935 0.0331 0.0124 0.1920 0.2206 -0.2770	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067 0.2371 -0.1033 0.0118 0.4028 -0.5936 -0.0290	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317 0.2819 -0.0361 0.0147 -0.3795 -0.0164 -0.1628	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094 0.3448 -0.0004 0.0305 -0.1019	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415 0.0000 -0.0063 0.0029 0.0247 0.1689	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002 -0.0045 -0.0045 -0.0040 -0.0030 -0.0128 0.0025 -0.1159	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0236 -0.0003 -0.0003 -0.0068 -0.0010 -0.0005 0.0018 -0.0001 0.0223	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008 -0.0189 0.0000 -0.0011 0.0000 0.0002 0.0000 0.0000 0.0000 0.0005
LA 265-1486 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396 LA 6169-398 LA 6169-1046 LA 6169-1047 LA 6169-1210 LA 115862-158 LA 115862-159 LA 115862-160	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935 0.0331 0.0124 0.1920 0.2206 -0.2770 0.0734	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067 0.2371 -0.1033 0.0118 0.4028 -0.5936	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317 0.2819 -0.0361 0.0147 -0.3795 -0.0164 -0.1628 0.0559	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094 0.3448 -0.0004 0.0305 -0.1019 -0.0012 -0.1140 -0.0161	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415 0.0000 -0.0063 0.0029 0.0247 0.1689 -0.0308	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002 -0.0045 -0.0045 -0.0040 -0.0030 -0.0128 0.0025	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0236 -0.0003 -0.0003 -0.0068 -0.0010 -0.0005 0.0018 -0.0001	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008 -0.0189 0.0000 -0.0011 0.0000 0.0002 0.0000 0.0000 0.0005 0.0000
LA 265-1486 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396 LA 6169-398 LA 6169-1046 LA 6169-1047 LA 6169-1210 LA 115862-158 LA 115862-159 LA 115862-160 LA 115862-161	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935 0.0331 0.0124 0.1920 0.2206 -0.2770 0.0734 0.0199	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067 0.2371 -0.1033 0.0118 0.4028 -0.5936 -0.0290 -0.0979 -0.2293	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317 0.2819 -0.0361 0.0147 -0.3795 -0.0164 -0.1628 0.0559 0.0807	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094 0.3448 -0.0004 0.0305 -0.1019 -0.0012 -0.1140 -0.0161 0.0217	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415 0.0000 -0.0063 0.0029 0.0247 0.1689 -0.0308 0.0005	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002 -0.0045 -0.0040 -0.0030 -0.0128 0.0025 -0.1159 0.0128 -0.0020	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0018 -0.0236 -0.0003 -0.0068 -0.0010 -0.0005 0.0018 -0.0001 0.0223 0.0014 -0.0001	0.0000 -0.0001 -0.0029 0.0124 -0.0045 -0.0008 -0.0189 0.0000 -0.0011 0.0000 0.0002 0.0000 0.0005 0.0000 -0.0001
LA 265-1486 LA 265-1698 LA 265-1699 LA 6169-375 LA 6169-387 LA 6169-396 LA 6169-398 LA 6169-1046 LA 6169-1047 LA 6169-1210 LA 115862-158 LA 115862-159 LA 115862-160	-0.0306 0.0448 -0.3135 -0.0776 0.6740 -0.2307 -0.2174 0.0464 -0.0935 0.0331 0.0124 0.1920 0.2206 -0.2770 0.0734	-0.0025 -0.2166 0.0151 0.1007 0.2342 0.1627 0.0446 -0.0067 0.2371 -0.1033 0.0118 0.4028 -0.5936 -0.0290 -0.0979	0.1247 -0.0683 -0.2739 0.0822 0.0810 0.3832 -0.0383 -0.0317 0.2819 -0.0361 0.0147 -0.3795 -0.0164 -0.1628 0.0559	0.0294 -0.0431 0.0801 0.1016 -0.0220 -0.3750 0.0627 -0.0094 0.3448 -0.0004 0.0305 -0.1019 -0.0012 -0.1140 -0.0161	-0.0108 -0.0050 0.0266 -0.1748 0.0246 0.0083 -0.1537 0.0132 0.1415 0.0000 -0.0063 0.0029 0.0247 0.1689 -0.0308	0.0094 0.0073 0.1515 -0.0384 0.0152 0.0446 -0.0594 -0.0002 -0.0045 -0.0040 -0.0030 -0.0128 0.0025 -0.1159 0.0128	-0.0014 -0.0017 0.0194 0.0519 0.0069 -0.0018 -0.0236 -0.0003 -0.0068 -0.0010 -0.0005 0.0018 -0.0001 0.0223 0.0014	0.0000 -0.0029 0.0124 -0.0045 -0.0008 -0.0189 0.0000 -0.0011 0.0000 0.0002 0.0000 0.0000 0.0005 0.0000

Table 24.10. Continued.

Axes 17-27 contained only 0

371

D:Simpsons Inde	ex Log ₁₀ , Po Blanca F		mples, Peña
			Number of
Cat #	Index	Evenness	Species
LA 6169-1210	0.1617	0.1741	14
LA 265-1480	0.2592	0.2755	17
LA 265-1486	0.0201	0.0224	10
LA 265-1488	0.2797	0.3729	4
LA 265-1698	0.0057	0.0069	6
LA 265-1699	0.0006	0.0007	9
LA 6169-375	0.2716	0.4075	3
LA 6169-387	0.0844	0.1013	6
LA 6169-396	0.2857	0.3572	5
LA 6169-398	0.1291	0.1614	5
LA 6169-1046	0.5011	0.5325	17
LA 6169-1047	0.5899	0.6246	18
LA 115862-158	0.0074	0.0087	7
LA 115862-159	0.0519	0.0606	7
LA 115862-160	0.202	0.2203	12
LA 115862-161	0.0444	0.0493	10
LA 115862-181	0.0081	0.0097	6

Table 2	4.11. Pivot Tak	Table 24.11. Pivot Table 1, Mean Pollen	len Concenti	ation Values	s sorted by Nort	Concentration Values sorted by Northing, Pena Bla ñca Project, Sandoval County, New Mexico	ñca Project, S	andoval Cou	unty, New I	Mexico
Arboreal Pollen	ollen									
Elevation	Site	P. pond.	P. edulis	Juniperus	Picea	Salix	Ulmus	Quercus	Carya	Prosopis
5330	LA 249	160.812	683.797	58.051	4.06	5.244	2.03	15.953	0	2.03
5275	LA 6169	34.654	362.238	0	1.034	0	2.201	0	0	0
5226	LA 6170	62.623	200.696	1.392	0.83	0	0	1.765	0	0.259
5233	LA 6171	19.633	166.076	6.09	0	3.857	0	1.723	1.286	0
5300	LA 265	32.123	152.501	3.401	0.82	1.734	0	1.749	0	0.495
5280	LA 115862	10.738	81.192	0	0.626	0	0	0	0	0
Non-Arboreal Pollen	eal Pollen									
					Asteraceae	Asteraceae				
Elevation	Site	Sarcobatus	Poaceae	Cheno-am	hs.	s	Artemisia			
5330	LA 249	0	41.611	745.477	136.23	163.376	27.293			
5275	LA 6169	2	23.315	1200.187	52.298	97.826	22.092			
5226	LA 6170	0.143	27.356	1053.633	39.115	119.868	40.463			
5233	LA 6171	3.45	60.032	1454.896	73.586	101.377	14.695			
5300	LA 265	0	38.321	1191.755	65.159	136.557	19.006			
5280	LA 115862	0	22.595	408.245	20.024	70.696	0			

/ Mex
, Nev
ounty
val C
Sando
oject,
ca Pr
Blañ
Pena
thing,
y Nor
rted b
les so
אווע ר
itratio
oncen
llen C
ean Po
1, Me
Table
Pivot.
4.11.
able 24
Ë

P. pond. P. edulis Juniperus 25 0 211.304 0 0 12.217 31.765 0 0 12.217 31.765 0 0 12.217 31.765 0 0 12.217 31.765 0 0 5921 198.062 4.004 0 0 206.809 0 59.922 196.922 3.336 0 25 32.616 276.679 0 0 43.2 259.2 0 3.336 0 33.939 274.494 0 0 0 68.419 360.328 1.709 3.475 33.023 198.207 3.234 3.236 3.475					AP					NAP	٩
unknown 403.244 1685.13 19 AD 1100-1325 0 211.304 AD 700-1200 12.217 31.765 AD 700-900 67.921 198.062 AD 500- 650 67.921 198.062 AD 1200-1325 59.22 196.922 AD 1100-1200 43.2 259.2 AD 1100-1200 68.419 360.328 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207			P. edulis	Juniperus	Picea	Salix	Quercus	Prosopis	Poaceae	Cheno-am	Cheno-am Cheno-am af.
AD 1100-1325 0 211.304 AD 700-1200 12.217 31.765 AD 700-900 67.921 198.062 AD 500- 650 67.921 198.062 AD 1200-1325 32.616 276.679 AD 1100-1200 43.2 259.2 AD 1100-1200 68.419 360.328 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207		03.244	1685.13	198.947	14.21	18.355	35.526	7.105	110.724	1019.605	0
AD 700-1200 12.217 31.765 AD 700-900 67.921 198.062 AD 500- 650 67.921 198.062 AD 1200-1325 59.922 196.922 AD 1100-1325 32.616 276.679 AD 1100-1200 43.2 259.2 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207	1100-1325	0	211.304	0	0	0	0	0	0	598.696	17.609
AD 700-900 67.921 198.062 AD 500- 650 0 206.809 AD 1200-1325 59.922 196.922 AD 1100-1200 43.2 259.2 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207	700-1200	12.217	31.765	0	0	0	0	0	47.647	349.412	2.443
AD 500- 650 0 206.809 AD 1200-1325 59.922 196.922 AD 1200-1325 32.616 276.679 AD 1100-1200 43.2 259.2 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 AD 700-900 27.434 172.609 AD 700-900 27.434 172.609		67.921	198.062	4.004	2.183	0	0	0.964	61.035	1540.706	1.925
59.922 196.922 AD 1200-1325 32.616 276.679 AD 1100-1200 43.2 259.2 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 AD 700 000 27.473 198.207	500-650	0	206.809	0	0	0	34.468	0	34.468	3205.532	0
AD 1200-1325 32.616 276.679 AD 1100-1200 43.2 259.2 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207 AD 700 600 10.472 130.055		59.922	196.922	3.336	1.819	0.938	1.436	0.804	55.222	1485.115	2.44
AD 1100-1200 43.2 259.2 33.939 274.494 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207 AD 700 600 40.472 130.055		32.616	276.679	0	0	0	0	0	19.908	792.673	10.437
33.939 274.494 AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207 AD 700 600 10.472 130.055	1100-1200	43.2	259.2	0	0	0	0	0	21.6	1144.8	0
AD 1100-1200 68.419 360.328 AD 700-900 27.434 172.609 33.023 198.207 AD 700 600 10.472 130.055		33.939	274.494	0	0	0	0	0	20.12	836.689	9.133
AD 700-900 27.434 172.609 33.023 198.207 AD 700 600 10.472 130.055		68.419	360.328	1.709	0	0	4.513	0.632	27.798	1322.923	2.778
3.023 198.207 AD 700 800 40.472 138 055		27.434	172.609	3.475	0.443	2.54	1.878	0	31.589	1104.531	3.329
10170		33.023	198.207	3.234	0.382	2.193	2.237	0.086	31.072	1134.312	3.254
10.414	AD 700-900	10.472	139.055	0	0	0	0	0	34.997	605.953	11.738
Structure Total 10.472 139.055 0		10.472	139.055	0	0	0	0	0	34.997	605.953	11.738

Sandoval County New Mexico Ď à 25 ò ŕ Ů j 10/1 ÷ + Č Ž c _ È Ö ç ç 4 Ĥ

				7N	NAP		
		Asteraceae					Non-
Structure Type Age	Age	hs	Asteraceae Is	Artemisia	Ephedra	Economic	economic
Extramural	Unknown	313.816	299.605	42.632	14.211	38.05	4261.23
	AD 1100-1325	123.261	70.435	0	0	2.71	1018.6
	AD 700-1200	31.765	142.941	15.882	63.529	0	730.59
	AD 700-900	78.023	125.465	21.009	25.459	156.59	2292.89
	AD 500-650	103.404	172.34	0	34.468	0	3860.43
Extramural Total		77.662	122.501	18.169	25.299	130.76	2195.88
Pit room	AD 1200-1325	37.738	42.336	0.432	25.154	30.71	1262.1
	AD 1100-1200	43.2	21.6	43.2	21.6	54	1911.6
Pit Room Total		38.421	39.744	5.778	24.709	33.63	1343.29
Pit Structure	AD 1100-1200	81.495	141.532	36.157	31.608	76.1	2188.61
	AD 700-900	48.515	128.547	25.091	18.8	93.16	1652.97
Pit Structure Total	al	53.012	130.318	26.6	20.546	90.83	1726.01
Structure	AD 700-900	50.998	60.189	13.846	20.911	46.41	1014.91
Structure Total		50.998	60.189	13.846	20.911	46.41	1014.91

Continued	
Ц	
24.	
able	
\vdash	

				F	Table 24.12. Continued	. Continue	ed.					
							Economic Taxa	: Таха				
		Onagra-	Faba-	Solana-	Polygo-	Eriogo-	Brassica-		Cylindro-	Platy-	Sphaer-	
Structure Type	Age	ceae	ceae	ceae	unu	unu	ceae	Cactaceae	puntia	opuntia	alcea	Zea mays
Extramural	unknown	0	7.105	7.105	0	7.105	7.105	1.875	0	0	0	7.751
	AD 1100-1325	0	0	0	0	0	0	0	0	0	0	2.709
	AD 700-1200	0	0	0	0	0	0	0	0	0	0	0
	AD 700-900	0.184	0	0.321	0	0.805	1.328	15.875	77.806	0.321	2.343	57.604
	AD 500-650	0	0	0	0	0	0	0	0	0	0	0
Extramural Total		0.153	0	0.268	0	0.671	1.107	13.385	64.838	0.268	1.953	48.116
Pit room	AD 1200-1325	0.432	0	0	0	2.543	0	4.364	3.602	0	0	19.774
	AD 1100-1200	0	0	0	0	21.6	0	9.257	9.257	0	4.629	9.257
Pit Room Total		0.378	0	0	0	4.925	0	4.976	4.309	0	0.579	18.459
Pit structure	AD 1100-1200	0	0.769	0	0.632	2.951	0	38.452	19.026	0	3.72	10.547
	AD 700-900	0.98	0	1.356	0.823	0.0	0.499	19.048	17.939	0.515	2.152	49.244
Pit Structure Total		0.847	0.105	1.171	0.797	0.92	0.431	21.694	18.088	0.444	2.366	43.967
	AD 700-900	0.157	0	4.39	0	0	0	1.098	3.462	0	1.754	35.551
Structure Total		0.157	0	4.39	0	0	0	1.098	3.462	0	1.754	35.551

Age						AP				Z	NAP
	Site	Structure	P. pond.	P. edulis	Juniperus	Picea	Salix	Quercus	Prosopis	Poaceae	Chenc
Unknown	LA 249	Extramural	403.224	1685.13	198.947	14.211	18.355	35.526	7.105	110.72	1019.6
AD 1200-1325	LA 6169	Pit room 10	0	117.391	0	0	0	0	0	0	821.75
		Pit room 15	24.545	147.273	0	0	0	0	0	0	1448. *
		Pit room 16	49.133	392.709	0	0	0	0	0	34.84	816.05
		Pit room 70	7.232	101.25	0	0	0	0	0	0	14.46
	LA 6169 Total	[otal	32.616	276.679	0	0	0	0	0	19.908	792.67
AD 1100-1325	LA 6169	Extramural	0	211.304	0	0	0	0	0	0	598.65
AD 1100-1200	LA 249	Pit structure 6	63.847	283.263	1.692	0	0	8.123	0	13.967	635.82
	LA 6169	Pit structure 76 w/l 47	0	1230	0	0	0	0	0	60	276
	LA 6170	Extramural	53.115	132.787	0	0	0	0	5.691	26.557	2363.6
		Structure 5A	95.541	241.015	2.308	0	0	0	0	38.466	1582.7
	LA 6170 Total	[otal	84.935	213.958	1.731	0	0	0	1.423	35.488	177
T ₀	폐		65.897	350.215	1.538	0	0	4.062	0.569	27.179	1305.1
AD 700-1200	LA 6171	Extramural	12.217	31.765	0	0	0	0	0	47.647	349.4
	LA 11586	LA 115862 Extramural	0	47.647	0	0	0	0	0	0	285.86
		Pit structure 1	17.896	103.556	0	1.043	0	0	0	37.658	489.8
	LA 115862 Total	2 Total	10.738	81.192	0	0.626	0	0	0	22.595	408.24
	LA 265	Extramural	35.768	100.581	6.368	0	0	3.99	0	52.093	1874.2
		Extramural:SU1	69.218	266.396	2.957	3.616	0	0	2.411	63.287	1300.6
		Pit structure 1	15.253	157.873	0.316	0.234	5.202	0.949	0	16.14	556.6
		Pit structure 13	0	67.5	7.864	0	0	0	0	0	536.46
		Pit structure 4	0	110.455	0	0	0	0	0	24.545	762.27
	LA 265 Total	otal	32.123	152.501	3.401	0.82	1.734	1.749	0.495	38.321	1191.7

Table 24.13 Pivot Table 3. Mean Concentration Values of Selected Taxa by Age. Site. and Structure. Peña Blanca Project. Sandoval County. New Me

						AP				Ż	NAP
Age	Site	Structure	P. pond.	P. edulis	Juniperus	Picea	Salix	Quercus	Prosopis	Poaceae	Cheno-am
	LA 6169	Pit structure 4	120.501	782.36	0	7.759	0	0	0	34.38	3107.716
		Pit structure 47:circular	12.624	122.7	0	0	0	0	0	20.4	719.992
	LA 6169 Total		48.583	342.587	0	2.586	0	0	0	25.06	1515.9
	LA 6170	Extramural	174.886	242.464	3.682	7.364	0	0	0	32.344	560.079
		Pit structure 2:ovoid	80.56	494.841	5.018	1.765	0	3.529	0	19.135	1641.984
		Pit structure 5	52.238	252.498	0	0	0	7.941	0	41.837	1124.381
		Pit structure 50	31.813	107.487	0.63	0	0	0	0	18.958	716.629
	LA 6170 Total		57.665	197.748	1.317	1.014	0	2.157	0	25.549	892.664
	LA 6171	Extramural	37.957	221.252	9.811	0	0	0	0	97.445	3025.781
		Pit structure 60	24.101	181.295	18.186	0	19.29	0	0	79.082	1240.122
		Structure 18	9.592	165.122	0	0	0	0	0	41.336	818.05
		Structure 2	0	142.105	0	0	0	0	0	56.842	397.895
		Structure 26	0	83.793	0	0	0	0	0	9.31	158.276
		Structure 9	23.143	99.995	0	0	0	0	0	21.069	403.581
	LA 6171 Total		21.135	171.274	6.767	0	4.286	0	0	62.14	1419.054
AD 700-900 Total	otal		35.074	175.017	3.234	0.801	1.683	1.244	0.224	38.794	1153.79
AD 500-650	LA 6171	Extramural	0	206.809	0	0	0	34.468	0	34.468	3205.532
Grand Total			43 725	225 097	6402	0.901	1 68	2 344	0.363	37 509	1148 321

	
0	
Ð	
Ē	
=	
<u> </u>	
÷.	
<u> </u>	
~	
<u> </u>	
()	
\sim	
Ć	
<u> </u>	
۰.	
	
~	
\sim	

					NAP		
			Cheno-am	Asteraceae	Asteraceae		
Age	Site	Structure	af.	hs.	ls	Artemisia	Ephedra
Unknown	LA 249	Extramural	0	313.816	299.605	42.632	14.211
AD 1200-1325	LA 6169	Pit room 10	0	0	0	0	0
		Pit room 15	0	171.818	0	0	73.636
		Pit room 16	16.457	23.087	74.089	0.756	25.61
		Pit room 70	7.232	0	0	0	0
	LA 6169 Tot	al	10.437	37.738	42.336	0.432	25.154
AD 1100-1325	LA 6169	Extramural	17.609	123.261	70.435	0	0
AD 1100-1200	LA 249	Pit structure 6	0.846	65.196	108.885	21.158	1.692
	LA 6169	Pit structure 76 w/l 47	0	120	150	60	180
	LA 6170	Extramural	0	239.016	239.016	79.672	26.557
		Structure 5A	6.923	30.554	120.649	41.05	30.351
	LA 6170 Tot	al	5.192	82.669	150.241	50.706	29.403
AD 1100-1200 To	tal		2.5	77.666	129.539	36.861	30.607
AD 700-1200	LA 6171	Extramural	2.443	31.765	142.941	15.882	63.529
AD 700-900	LA 115862	Extramural	0	0	127.059	0	31.765
		Pit structure 1	0	33.373	33.121	0	46.547
	LA 115862 T	otal	0	20.024	70.696	0	40.634
	LA 265	Extramural	3.688	72.001	242.084	29.054	10.946
		Extramural:SU1	0	94.249	113.683	26.253	22.864
		Pit structure 1	1.86	39.114	53.79	5.798	6.183
		Pit structure 13	13.5	75.364	37.092	0	0
		Pit structure 4	15	60	126.818	24.545	12.273
	LA 265 Tota	I	3.406	65.159	136.557	19.006	11.31
	LA 6169	Pit structure 4	8.438	84.52	303.702	134.176	34.623
		Pit structure 47:circular	0	27	85.8	0	7.5
	LA 6169 Tot	al	2.813	46.173	158.434	44.725	16.541
	LA 6170	Extramural	5.523	45.23	81.256	9.205	25.773
		Pit structure 2:ovoid	5.018	65.507	64.571	12.077	198.604
		Pit structure 5	7.941	22.058	122.64	103.551	0
		Pit structure 50	0	22.015	125.393	23.06	4.604
	LA 6170 Tot	al	2.936	29.436	113.119	38.187	27.488
	LA 6171	Extramural	0	114.3	105.561	15.123	42.237
		Pit structure 60	6.429	76.518	160.688	19.448	32.82
		Structure 18	21.128	68.803	76.822	24.923	26.899
		Structure 2	0	56.842	85.263	0	0
		Structure 26	0	46.552	18.621	0	0
		Structure 9	0	5.786	26.854	0	26.854
	LA 6171 Tot		7.298	74.253	95.125	15.446	29.481
AD 700-900 Total			3.882	55.637	120.677	22.965	20.569
AD 500-650	LA 6171	Extramural	0	103.404	172.34	0	34.468
Grand Total			4.185	62.145	119.953	22.665	22.014

Table 24.12. Continued.

					Econor	nic Taxa		
Age	Site	Structure	Onagraceae	Fabaceae	Solanaceae	Polygonum		Brassicaceae
Unknown	LA 249	Extramural	0	7.105	7.105	0	7.105	7.105
	LA 6169	Pit room 10	0	0	0	0	0	0
		Pit room 15	0	0	0	0	0	0
		Pit room 16	0.756	0	0	0	4.451	0
		Pit room 70	0	0	0	0	0	0
	LA 6169 T	otal	0.432	0	0	0	2.543	0
AD 1100-132	5 LA 6169	Extramural	0	0	0	0	0	0
	LA 249	Pit structure 6	0	0	0	0	0	0
	LA 6169	Pit structure 76 w/l 47	0	0	0	0	0	0
	LA 6170	Extramural	0	0	0	5.691	26.557	0
		Structure 5A	0	2.308	0	0	7.2	0
	LA 6170 T	otal	0	1.731	0	1.423	12.039	0
AD 1100-1200) Total		0	0.692	0	0.569	4.816	0
AD 700-1200	LA 6171	Extramural	0	0	0	0	0	0
	LA 11586	2 Extramural	0	0	0	0	0	0
		Pit structure 1	0	0	0	0	0	0
	LA 11586	2 Total	0	0	0	0	0	0
	LA 265	Extramural	0	0	0	0	0	0
		Extramural:SU1	0	0	0.804	0	1.092	0
		Pit structure 1	1.404	0	0	0	0	0
		Pit structure 13	0	0	0	0	0	0
		Pit structure 4	4.269	0	0	0	0	0
	LA 265 To	otal	0.687	0	0.165	0	0.224	0
	LA 6169	Pit structure 4	1.164	0	0	7.322	12.414	0
		Pit structure 47:circular	5.473	0	0	0	0	0
	LA 6169 T	otal	4.037	0	0	2.441	4.138	0
	LA 6170	Extramural	1.841	0	0	0	3.682	0
		Pit structure 2:ovoid	0	0	0	0	3.253	0
		Pit structure 5	0.67	0	0	0	0	0
		Pit structure 50	0.22	0	7.728	2.942	0	0
	LA 6170 T	otal	0.476	0	4.293	1.635	0.771	0
	LA 6171	Extramural	0	0	0	0	0	5.311
		Pit structure 60	0	0	0	0.711	0.711	7.105
		Structure 18	0.282	0	7.902	0	0	0
		Structure 2	0	0	0	0	0	0
		Structure 26	0	0	0	0	0	0
		Structure 9	0	0	0	0	0	0
	LA 6171 T	otal	0.078	0	2.195	0.158	0.158	3.054
AD 700-900 T	otal		0.709	0	1.433	0.545	0.585	0.639
AD 500-650	LA 6171	Extramural	0	0	0	0	0	0
Grand Total			0.593	0.196	1.273	0.487	1.208	0.641

Table 24.13. Continued.

					conomic Tax		
				Cylindr-	Platy-	Sphaer-	
Age	Site	Structure	Cactaceae	opuntia	opuntia	alcea	Zea mays
Unknown	LA 249	Extramural	1.875	0	0	0	7.75
AD 1200-1325	LA 6169	Pit room 10	10.836	0	0	0	27.0
		Pit room 15	0	0	0	0	
		Pit room 16	4.928	6.304	0	0	26.99
		Pit room 70	0	0	0	0	3.33
	LA 6169 To	otal	4.364	3.602	0	0	19.77
AD 1100-1325	LA 6169	Extramural	0	0	0	0	2.70
AD 1100-1200	LA 249	Pit structure 6	12.69	8.141	0	0	0.97
	LA 6169	Pit structure 76 w/l 47	270	60	0	0	6
	LA 6170	Extramural	5.691	53.115	0	26.557	5.69
		Structure 5A	5.393	8.892	0	3.851	11.
	LA 6170 To	otal	5.468	19.948	0	9.527	9.82
AD 1100-1200	Total		35.532	18.049	0	3.811	10.41
AD 700-1200	LA 6171	Extramural	0	0	0	0	
AD 700-900		Extramural	0	0	0	0	
		Pit structure 1	9.391	4.696	0	1.043	2.08
	LA 115862		5.635	2.817	0	0.626	1.25
	LA 265	Extramural	35,193	21.372	0	1.773	95.59
	2,1200	Extramural:SU1	36.874	186.39	0.804	5.398	127.42
		Pit structure 1	34.23	21.601	0.004	1.755	62.75
		Pit structure 13	01.20	50.592	13.5	0	10.97
		Pit structure 4	10	38.538	0	0	21.40
	LA 265 Tot		32.12	57.676	0.857	2.329	83.03
	LA 6169	Pit structure 4	5.431	19.784	1.164	23.082	61.05
	LA 0100	Pit structure 47:circular	5.4	6.673	0	20.002	12.
	LA 6169 To		5.41	11.043	0.388	7.694	28.9
	LA 6170	Extramural	0	29.711	0.500	1.841	57.32
	LA 0170	Pit structure 2:ovoid	8.271	45.819	0	1.841	30.65
		Pit structure 5	6.271 5.424	6.328	0	0	30.65 17.9
						-	
	LA 6170 To	Pit structure 50	0.345	7.257	0	0	20.40
			2.316	13.83	0	0.205	25.09
	LA 6171	Extramural	4.5	0	0	0	00.05
		Pit structure 60	6.429	0	0	6.429	22.25
		Structure 18	1.976	6.231	0	3.158	57.87
		Structure 2	0	0	0	0	
		Structure 26	0	0	0	0	
		Structure 9	0	0	0	0	15.28
	LA 6171 To	otal	3.227	1.731	0	2.306	22.7
AD 700-900 Tot			16.432	30.347	0.416	2.155	49.75
AD 500-650	LA 6171	Extramural	0	0	0	0	
Grand Total			16.692	26.07	0.331	2.069	42.03

Table 24.13. Continued.

	Asteraceae Asteraceae	<u>s</u>	22.19	35.6	69.51	42.44
	Asteraceae	hs	22.19	17.8	24.18	21.39
NAP	Cheno-am	af	0	35.6	30.22	21.94
		Cheno-am	1198.36	729.89	673.99	867.41
		P. edulis Poaceae Cheno-am	44.38	35.6	3.02	27.67
0		P. edulis	399.45	267.03	622.61	429.7
AP		P. pond.	44.38	106.81	45.34	65.51
		Feature	102	103	104	
			Pit room 16			Total
		Site	LA 6169			
		Type	AD 1200-1325 Basin:mealing LA 6169 Pit room 16			
		Age	AD 1200-1325			

0
0
Ð
-
=
.=
÷
<u> </u>
=
()
()
\mathbf{U}
_
4
-
<u> </u>
· .
4
\sim
d)
•
_
\sim
<u> </u>
Ж
ab
Tak

NAP	٩					Economic	nic				
					Cylindro-	Zea				Noneco-	
Artemisia	Ephedra	Artemisia Ephedra Onagraceae Eriogc	unu	Cactaceae	puntia	mays	Arboreal	NAP	Economic	nomic	Total
0	22.19	0	0	5.12	22.19	22.19	22.19 443.84	1403.2	49.5	1792.41	1841.92
0	17.8	0	17.8	8.55	0	53.41	373.85	952.06	79.75	1237.61	1317.36
3.02	48.36	3.02	0	6.04	3.02	30.22	670.97	906.72	42.31	1535.37	1577.69
1.01	29.45	1.01	5.93	6.57	8.4	35.27	496.22	1087.33	57.19	1521.8	1578.99

		Aster-	aceae Is	21.6	43.2	32.4		Sphaeral-	cea	4.63	0	2.31				Total	1966	1490	1728
	NAP	Aster-	aceae hs	43.2	108	75.6	mic	Cylindro-	puntia	9.26	4.8	7.03			Non-	economic	1911.6	1442.4	1677
res	'Z		Cheno-am	1144.8	842.4	993.6	Economic		Cactaceae	9.26	21.6	15.43		Economic		Economic	54	48	51
xa, Bin Featu			Poaceae	21.6	21.6	21.6			Eriogonum Cactaceae	21.6	0	10.8	1	Ecor		NAP	1393.2	1171.2	1282.2
elected Ta	0		P. edulis	259.2	280.8	270	Р		Ephedra	21.6	0	10.8				Arboreal	302.4	324	313.2
/alues of S	AP		P. pond.	43.2	43.2	43.2	NAP		Feature Artemisia	43.2	0	21.6				Feature Zea mays	9.26	21.6	15.43
Intration \			Feature	9	121				Feature	9	121			-		Feature	9	121	
Table 24.15. Pivot Table 5, Mean Concentration Values of Selected Taxa, Bin Features			Structure	Structure 5A	Pit structure 47: circular				Structure	Structure 5A	Pit structure 47:cir					Structure	Structure 5A	Pit structure 47:cir	
4.15. Pivot T			Site	LA 6170	LA 6169				Site	LA 6170	LA 6169					Site	LA 6170	LA 6169	
Table 2			Type	Bin:mealing:adobe lined	Bin:storage				Type	Bin:mealing:adobe lined	Bin:storage	,				Type	Bin:mealing:adobe- LA 6170 lined	Bin:storage	
			Age	AD1100-1200	AD 700- 900	Bin Total			Age	AD1100-1200	AD 700-900	Bin Total				Age	AD 1100-1200	AD 700-900	Bin Total

Еé
Bin
Таха,
f Selected
/alues o
Concentration \
Mean (
Table 5,
5. Pivot
L)

		-				AP				NAP	
											Cheno-am
Age	Type	Site	Structure	Feature	P. pond.	P. edulis	Juniperus	P. pond. P. edulis Juniperus Sarcobatus Poaceae		Cheno-am	af.
AD 700-1200	Burial: human LA 6171	LA 6171	Extramural	85	12.22	31.76	0	15.88	47.65	349.41	2.44
AD 700-900	Burial: turkey	LA 265	Extramural	19 in 15	55.86	279.31	27.93	0	111.72	3519.31	0
						~	NAP			Economic	mic
					Aster-	Aster-					Cylindro-
Age	Type	Site	Structure	Feature	aceae hs.	aceae Is	aceae ls Artemisia	Ephedra		Cactaceae	puntia
AD 700-1200	Burial: human LA 6171	LA 6171	Extramural	85	31.76	142.94	15.88	63.53		0	0
AD 700-900	Burial: human LA 265	LA 265	Extramural	19 in 15	195.5	614.48	27.93	0		12.41	83.79
								Economic			
					Sphaer-					Non-	
Age	Type	Site	Structure	Feature	alcea	Zea mays	Zea mays Arboreal	NAP	Economic	economic	Total
AD 700-1200	Burial: human LA 6171	LA 6171	Extramural	85	0	0	43.98	701.27	0	730.59	730.59
AD 700-900	Burial: turkey LA 265	LA 265	Extramural	19 in 15	24.83	55.86	363.1	4813.45	176.9	4962.41	5139.31

Table 24.16. Pivot Table 6, Mean Concentration Values, Selected Taxa, Burial Features

	Та	Table 24.17. Pivot	Pivot Table 7, Mean Concentration Values,	Icentration		Selected Taxa,	, Floor Features	itures			
900	Twee	Cito Sito	Stricture	Fastura	puca d	D adulis	Inninarie	AP	Caliv	Ollarollo	Droconie
Age	i ype	Olle	olluciule	realule	r. pula.	L. euuis	aninperus	LICES	OdilX	Auer cus	ri usupis
AD1200-1325	Floor	LA 6169	Pit room 16	16	0	281.74	0	0	0	0	0
			Pit room 70	70	7.23	101.25	0	0	0	0	0
		LA 6169 Total		3.62	191.49	0	0	0	0	0	0
	Floor:contact	LA 6169	Pit room 10	10	0	117.39	0	0	0	0	0
	Pit room	LA 6169	Pit room 15	15	24.55	147.27	0	0	0	0	0
AD1200-1325 Total				7.94	161.91	0	0	0	0	0	0
AD1100-1200	Floor	LA 249	Pit structure 6	0	0	13.06	0	0	0	13.06	0
				9	79.81	350.81	2.11	0	0	6.89	0
			Pit structure 6 Total	63.85	283.26	1.69	0	0	8.12	0	0
		LA 6170	Structure 5A	5A	121.71	231.92	3.46	0	0	0	0
	Floor Total				80.38	268.59	2.2	0	0	5.8	0
	Floor	LA 6169	Pit structure 76	76 in 47	0	1230	0	0	0	0	0
			w/i 47								
AD1100-1200 Total					70.33	388.77	1.92	0	0	5.08	0
AD 700-900	Floor	LA 265	Pit structure 4	0	0	0	0	0	0	0	0
		LA 6169	Pit structure 4	4	80.69	670.34	0	6.21	0	0	0
		LA 6170	Pit structure	2	80.56	494.84	5.02	1.76	0	3.53	0
			2:ovoid								
			Pit structure 5		104.48	418.4	0	0	0	15.88	0
			Pit structure 50	50	0	26.13	0	0	0	0	0
		LA 6170 Total			61.68	313.12	1.67	0.59	0	6.47	0
		LA 6171	Pit structure 60	60	25.71	308.57	51.43	0	77.1	0	0
			Structure 18	18	0	0	0	0	0	0	0
			Structure 2	26	0	142.11	0	0	0	0	0
			Structure 9	6	23.14	<u>99.99</u>	0	0	0	0	0
		LA 6171 Total			14.4	130.13	10.29	0	15.4	0	0
	Floor Total				40.21	246.13	4.73	0.75	5.93	2.99	0
	Floor:contact	LA 6169	Pit structure 47: circular	47	0	60	0	0	0	0	0
	Floor:under	LA 6171	Pit structure 60	60	56.84	163.42	21.32	0	0	0	0
	Floor:under	LA 6171	Pit structure 60	60	13.85	124.62	0	0	0	0	0
AD 700-900 Total	pallet				37.09	221.74	5,17	0.61	4.82	2,43	0

			I able 24.17	I able 24.17. Continued					
							NAP		
				_			0	Cheno-am Asteraceae	Asteraceae
Age	Type	Site	Structure	Feature	Sarcobatus	Poaceae	Cheno-am	af.	hs.
AD1200-1325	Floor	LA 6169	Pit room 16	16	0	56.35	662.09	0	28.17
			Pit room 70	70	0	0	14.46	7.23	0
		LA 6169 Total		0	28.17	338.28	3.62	14.09	
	Floor:contact	LA 6169	Pit room 10	10	0	0	821.74	0	0
	Pit room	LA 6169	Pit room 15	15	0	0	1448.18	0	171.82
AD1200-1325 Total				0	14.09	736.62	1.81	50	
AD1100-1200	Floor	LA 249	Pit structure 6	0	0	0	13.06	0	0
				9	0	17.46	791.52	1.06	81.49
			Pit structure 6 Total	0	13.97	635.83	0.85	65.2	
		LA 6170	Structure 5A	5A	0	46.9	1801.79	10.38	24.23
	Floor Total				0	23.38	968.96	3.57	53.49
	Floor	LA 6169	Pit structure 76 w/l 47	76 in 47	30	60	2760	0	120
AD1100-1200 Total				3.75	27.95	1192.84	3.12	61.81	
AD 700-900	Floor	LA 265	Pit structure 4	0	0	0	069	30	120
		LA 6169	Pit structure 4	4	0	43.45	1557.93	0	93.1
		LA 6170	Pit structure	2	0	19.14	1641.98	5.02	65.51
			2:ovoid						
			Pit structure 5		0	12.66	1451.99	15.88	28.54
			Pit structure 50	50	0	13.5	198.58	0	0
		LA 6170 Total		0	15.1	1097.52	6.97	31.35	
		LA 6171	Pit structure 60	60	0	180	2185.71	25.71	77.14
			Structure 18	18	0	0	105.88	0	0
			Structure 2	26	0	56.84	397.89	0	56.84
			Structure 9	ი	0	21.07	403.58	0	5.79
		LA 6171 Total		0	55.8	699.33	5.14	29.11	
	Floor Total				0	31.77	948.44	7.5	42.06
	Floor:contact	LA 6169	Pit structure	47	0	60	1020	0	0
	Floor:under	LA 6171	Pit structure 60	60	0	71.05	1257.63	0	56.84
	metate								
	Floor:under	LA 6171	Pit structure 60	60	0	13.85	360	0	69.23
AD 700-900 Total	pallet				0	34.87	935.46	6.09	42.05

AgeTypeSiteStructureReturns $Altron-1325$ FloorLd 6169Pit room 1616 $Altron-1325$ FloorLd 6169Pit room 1070 $Altron-1325$ FloorLd 6169Pit room 1010 $Altron-1325$ Pit roomLd 6169Pit room 1516 $Altron-1325$ PitorLd 6169Pit room 1610 $Altron-1325$ FloorLd 6169Pit structure 66 $Altron-1200$ FloorLd 6170Structure 66 $Altron-1200$ FloorLd 6170Pit structure 62 $Altron-1200$ FloorLd 6170Pit structure 56 $Altron-1200$ FloorLd 6170Pit structure 56 $Altron-1200$ FloorLd 6170Pit structure 56 $Altron-1200$ Pit structure 5Pit structure 59 $Altron-1200$ Pit structure 5Pit structure 66 $Altron-1200$ Pit structure 66 $Altron-1200$ Pit structure 66 $Altron-1200$ Pit structure 67 $Altron-1200$ Pit		Asteraceae				Poly-	Erio-
FloorLA 6169Pit room 16Pit room 70LA 6169Pit room 10Pit roomLA 6169Pit room 10Pit roomLA 6169Pit room 15Pit roomLA 6169Pit room 15Pit roomLA 6169Pit structure 6FloorLA 6170Structure 6FloorLA 6170Structure 5AFloorLA 6169Pit structure 6FloorLA 6170Pit structure 5FloorLA 6170Pit structure 5Pit structure 5Pit structure 60Structure 5Pit structure 60LA 6171Pit structure 60Structure 60Pit structure 60FloorLA 6171Pit structure 60Pit structure 60FloorLA 6171FloorLA 6171Pit structure 60Structure 60FloorLA 6171Pit structure 60Pit stru		e	Artemisia	Ephedra	Fabaceae	gonum	gonum
Interpret to the form of		169.04	0	14.09	0	0	0
LA 6169 Floor:contactLA 6169 LA 6169Pit room 10TotalPit roomLA 6169Pit structure 6FloorLA 6170Pit structure 6FloorLA 6170Structure 5FloorLA 6170Structure 5FloorLA 6170Pit structure 6FloorLA 6171Pit structure 60metateLA 6171Pit structure 60FloorLA 6171Pit structure 60FloorLA 6171Pit structure 60		0	0	0	0	0	0
Floor:contactLA 6169Pit room 10TotalPit roomLA 6169Pit structure 6FloorLA 249Pit structure 6FloorLA 6170Pit structure 6FloorLA 6170Structure 6FloorLA 6170Pit structure 6FloorLA 6171Pit structure 60metateLA 6171Pit structure 60FloorFloorLA 6171FloorPit structure 60FloorPit structure 60FloorPit 6171FloorPit 6171FloorPit 6171FloorPit 6171FloorPit 6171FloorPit 6171FloorPit 6171FloorPit 6171FloorPit 6171FloorPit 6171Floor <t< td=""><td></td><td>84.52</td><td>0</td><td>7.04</td><td>0</td><td>0</td><td>0</td></t<>		84.52	0	7.04	0	0	0
Total Fit room LA 6169 Fit room 15 Floor LA 249 Pit structure 6 Pit structure 6 Floor Total LA 6170 Structure 5A Pit structure 6 Floor Total LA 6170 Structure 5A Pit structure 6 Floor Total LA 6170 Pit structure 6 Pit structure 6 Floor Total LA 6170 Pit structure 6 Pit structure 6 Floor Total LA 6170 Pit structure 6 Pit structure 6 Floor Total Floor Pit structure 6 Pit structure 6 Floor Total LA 6170 Pit structure 6 Pit structure 6 Floor Total Pit structure 6 Pit structure 6 Pit structure 6 Floor Total LA 6171 Pit structure 6 Pit structure 6 Floor Total LA 6171 Pit structure 6 Pit structure 6 Floor Total LA 6171 Pit structure 6 Pit structure 6 Floor totade LA 6171 Pit structure 6 Pit structure 60		0	0	0	0	0	0
Total Floor LA 249 Pit structure 6 Floor Total Pit structure 6 Total Floor LA 6170 Structure 5A MI 47 Floor LA 6170 Pit structure 4 Pit structure 4 Floor LA 6170 Pit structure 5 Pit structure 5 Total Floor LA 6170 Pit structure 60 Pit structure 5 Pit structure 5 Pit structure 5 Pit structure 6 Pit structure 60 Pit structure 60 Pit structure 7 Pit structure 60 Pit structure 60 Floor LA 6171 Pit structure 60 Fit structure 6 Structure 6 Pit structure 60 Floor LA 6171 Pit structure 60 Floor LA 6171 Pit structure 60 Rourunder LA 6171 Pit structure 60		0	0	73.64	0	0	0
Floor LA 249 Pit structure 6 Total Pit structure 6 Floor LA 6170 Structure 5A Floor LA 6170 Structure 5A Floor LA 6169 Pit structure 4 India LA 6169 Pit structure 4 India LA 6169 Pit structure 5 Pit structure 5 Pit structure 6 Pit structure 6 India LA 6170 Pit structure 5 Pit structure 5 Pit structure 6 Pit structure 60 Pit structure 6 Pit structure 6 Pit structure 60 Pit structure 7 Pit structure 6 Pit structure 60 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 9 Pit structure 6 Pit structure 6 Floor rontact LA 6171 Pit structure 60 Rontact LA 6171 Pit structure 60 Rontact LA 6171 Pit structure 60 Retate LA 6171 Pit structure 60		42.26	0	21.93	0	0	0
Monthal Pit structure 6 Floor Total LA 6170 Structure 5A Floor Total LA 6170 Pit structure 4 Pit structure 4 LA 6170 Pit structure 4 LA 6170 Pit structure 4 Pit structure 5 Pit structure 5 Pit structure 6 Pit structure 6 LA 6170 Pit structure 6 Pit structure 6 LA 6170 Pit structure 6 Structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 60 Pit structure 7 Pit structure 6 Pit structure 6 Floor Total Pit structure 6 Pit structure 6 Floor Total Pit structure 6 Pit structure 60 metate LA 6171 Pit structure 60 Floor Total Pit structure 60		13.06	0	0	0	0	0
Pit structure 6 Floor Total LA 6170 Structure 5A Floor Total LA 6169 Pit structure 76 Polor Total LA 6169 Pit structure 4 Polor Total LA 6169 Pit structure 4 Polor Total LA 6170 Pit structure 6 Pit structure 5 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 60 Pit structure 6 Pit structure 6 Pit structure 60 Pit structure 6 Pit structure 6 Pit structure 60 Pit structure 7 Pit structure 6 Pit structure 60 Pit structure 9 Pit structure 6 Pit structure 60 Floor Total Floor Total Pit structure 60 Floor Total Pit structure 60 Pit structure 60 metate LA 6171 Pit structure 60 Floor Total Pit structure 60	9	132.84	26.45	2.11	0	0	0
Image: Floor Total Floor Total Floor Total Floor Total LA 6169 Pit structure 76 w/l 47 00 Total Floor LA 6169 Pit structure 4 Pit structure 4 LA 6170 Pit structure 4 Pit structure 5 LA 6170 Pit structure 5 Pit structure 5 Pit structure 5 Pit structure 5 Pit structure 60 LA 6170 Pit structure 60 Pit structure 5 Pit structure 5 Pit structure 60 Pit structure 60 Pit structure 60 Pit structure 60 Pit structure 60 Floor Total Pit structure 60 Structure 9 Floor Total Pit structure 60 Structure 60 Floor Total Pit structure 60 Structure 60 Floor Total Pit structure 60 Pit structure 60 Floor Total Pit structure 60 Pit structure 60	⊃it structure 6 Γotal	108.88	21.16	1.69	0	0	0
Floor Total LA 6169 Pit structure 76 00 Total Floor LA 6169 Pit structure 4 1A 6169 Pit structure 4 Pit structure 5 1A 6170 Pit structure 5 Pit structure 5 1A 6170 Pit structure 6 Pit structure 6 1A 6170 Pit structure 6 Pit structure 6 1A 6170 Pit structure 6 Pit structure 6 1A 6171 Pit structure 6 Pit structure 60 1A 6171 Pit structure 6 Pit structure 60 1A 6171 Pit structure 6 Pit structure 6 1A 6171 Pit structure 6 Pit structure 9 1A 6171 Pit structure 9 Pit structure 9 1A 6171 Pit structure 6 Pit structure 60 1A 6171 Pit structure 60 Pit structure 60 1A 6171 Pit structure 60 Pit structure 60 1A 6171 Pit structure 60 Pit structure 60	ture 5A	170.17	39.98	34.73	3.46	0	0
Floor LA 6169 Pit structure 76 00 Total Floor LA 265 Pit structure 4 LA 6169 Pit structure 4 Pit structure 5 LA 6170 Pit structure 5 Pit structure 5 LA 6170 Pit structure 60 2:ovoid LA 6170 Pit structure 60 2:ovoid Pit structure 5 Pit structure 60 2:ovoid Pit structure 60 Pit structure 60 2:ovoid Floor Total Pit structure 60 2:oroutar Floor Total Pit structure 60 2:oroutar Floor.under LA 6171 Pit structure 60 metate LA 6171 Pit structure 60		126.4	26.53	11.13	0.99	0	0
00 Total Floor LA 265 Pit structure 4 LA 6170 Pit structure 4 LA 6170 Pit structure 5 Pit structure 5 Pit structure 5 Pit structure 5 Pit structure 5 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 6 Pit structure 60 Structure 9 LA 6171 Total Floor Total Floor Total Floor.contact LA 6169 Pit structure 60 metate Floor.under LA 6171 Pit structure 60 metate	cture 76	7 150	60	180	0	0	0
FloorLA 265Pit structure 4LA 6169Pit structure 4LA 6170Pit structure 5Pit structure 52:ovoidPit structure 5Pit structure 5Pit structure 5Pit structure 50LA 6171Pit structure 60Structure 18Structure 9Floor TotalLA 6171 TotalFloor TotalStructure 9Floor TotalPit structure 60Floor TotalPit structure 60Floor UnderLA 6171Floor:underLA 6171Floor:underLA 6171Floor:underLA 6171Floor:underPit structure 60metateFloor:underFloor:underLA 6171Floor:underLA 6171	WI 47	129.35	30.72	32.24	0.87	0	0
LA 6169 Pit structure 4 LA 6170 Pit structure 5 Pit structure 5 2:ovoid Pit structure 5 Pit structure 5 Pit structure 50 2:ovoid LA 6170 Pit structure 50 LA 6171 Pit structure 50 LA 6171 Pit structure 60 Structure 18 Structure 18 Structure 2 Structure 9 Floor Total Floor 10tal Floor Total Pit structure 60 metate A 6171 Floor:under LA 6171 Pit structure 60		180	0	C	C	C	C
LA 6170 Pit structure 5 2: ovoid Pit structure 5 Pit structure 50 LA 6170 Total Pit structure 60 LA 6171 Pit structure 60 Structure 18 Structure 2 Structure 9 LA 6171 Total Structure 9 LA 6171 Pit structure 60 ander LA 6171 Pit structure 60		328.97	192.41	18.62	0	6.21	24.83
2: ovoid Pit structure 5 Pit structure 50 LA 6170 Total LA 6171 Pit structure 60 Structure 18 Structure 2 Structure 2 Structure 9 LA 6171 Total Total Total Total LA 6171 Total Total LA 6171 Pit structure Structure 60 ender LA 6171 Pit structure 60 ender LA 6171 Pit structure 60		64.57	12.08	198.6	0	0	3.25
Pit structure 5 Pit structure 50 LA 6170 Total LA 6171 Pit structure 60 Structure 18 Structure 2 Structure 9 LA 6171 Total Total Total Total LA 6171 Total Total LA 6171 Pit structure ander LA 6171 Pit structure 60 Pit structure 60							
Pit structure 50 LA 6170 Total LA 6171 Pit structure 60 Structure 18 Structure 9 LA 6171 Total Total Total Total LA 6171 Total Total LA 6171 Pit structure ander LA 6171 Pit structure 60	Pit structure 5	136.24	47.65	0	0	0	0
LA 6170 Total LA 6171 Pit structure 60 Structure 18 Structure 2 Structure 2 Structure 9 LA 6171 Total Total Cotal Cotal LA 6171 Total Fit structure 60 Pit structure 60 Pit structure 60		0	0	13.5	0	0	0
LA 6171 Pit structure 60 Structure 18 Structure 2 Structure 9 LA 6171 Total Total Total Total LA 6171 Total Total LA 6171 Pit structure A7:circular ander LA 6171 Pit structure 60		66.94	19.91	70.7	0	0	1.08
Structure 18 Structure 2 Structure 9 LA 6171 Total Total Cotal LA 6171 Total Pit structure 47:circular ander LA 6171 Pit structure 60		282.86	0	102.86	0	0	0
Structure 2 Structure 9 LA 6171 Total Total Contact LA 6169 Pit structure ander LA 6171 Pit structure 60 Pit structure 60		84.71	0	0	0	0	0
Structure 9 LA 6171 Total Total contact LA 6169 Pit structure ander LA 6171 Pit structure 60 e LA 6171 Pit structure 60		85.26	0	0	0	0	0
LA 6171 Total Total contact LA 6169 Pit structure 47:circular ander LA 6171 Pit structure 60 e ander LA 6171 Pit structure 60		26.85	0	26.85	0	0	0
Total contact LA 6169 Pit structure 47:circular under LA 6171 Pit structure 60 ander LA 6171 Pit structure 60		101.31	0	31.31	0	0	0
contact LA 6169 Pit structure 47:circular under LA 6171 Pit structure 60 e under LA 6171 Pit structure 60		109.01	23.99	46.11	0	0.48	2.41
under LA 6171 Pit structure 60 e under LA 6171 Pit structure 60	Ð	06	0	30	0	0	0
e under LA 6171 Pit structure 60	e 60	227.37	63.95	28.42	0	2.84	2.84
		55.38	13.85	Ο	ο	0	0
pallet AD 700-900 Total		111.87	24.35	41.11	0	0.57	2.14

σ
Ð
Ē
=
<u>د</u> .
Ę
<u> </u>
0
()
0
× .
\sim
÷
~
\sim
d)
<u> </u>
<u> </u>
a,
H
•

			I able 24.17. Collulided	cu.					
					Economic	0			
					Brassic-	Cacta-	Cylindro-	Sphaer-	
Age	Type	Site	Structure	Feature	aceae	ceae	puntia	alcea	Zea mays
AD1200-1325	Floor	LA 6169	Pit room 16	16	0	0	0	0	2.17
			Pit room 70	70	0	0	0	0	3.34
		LA 6169 Total		0	0	0	0	2.75	0
	Floor:contact	LA 6169	Pit room 10	10	0	10.84	0	0	27.09
	Pit room	LA 6169	Pit room 15	15	0	0	0	0	0
AD1200-1325 Total					0	2.71	0	0	8.15
AD1100-1200	Floor	LA 249	Pit structure 6	0	0	0	0	0	0
				9	0	15.86	10.18	0	1.22
			Pit structure 6 Total		0	12.69	8.14	0	0.98
		LA 6170	Structure 5A	5A	0	3.46	8.71	3.46	12.17
	Floor Total				0	10.05	8.3	0.99	4.18
	Floor	LA 6169	Pit structure 76 w/l 47 76 in 47	76 in 47	0	270	60	0	60
AD1100-1200 Total					0	42.55	14.77	0.87	11.15
AD 700- 900	Floor	LA 265	Pit structure 4	0	0	20	60	0	30
		LA 6169	Pit structure 4	4	0	6.21	37.24	12.41	12.41
		LA 6170	Pit structure 2:ovoid	2	0	8.27	45.82	0	30.66
			Pit structure 5		0	10.85	12.66	0	35.82
			Pit structure 50	50	0	0	26.13	0	39.19
		LA 6170 Total			0	6.37	28.2	0	35.22
		LA 6171	Pit structure 60	60	0	25.71	0	0	23.74
			Structure 18	18	0	0	0	0	0
			Structure 2	26	0	0	0	0	0
			Structure 9	თ	0	0	0	0	15.28
		LA 6171 Total			0	5.14	0	0	10.86
	Floor Total				0	6.94	20.5	0.95	23.7
	Floor:contact	LA 6169	Pit structure 47:circula	47	0	0	0	0	30
	Floor:contact Total	Total			0	0	0	0	30
	Floor:under me	e LA 6171	Pit structure 60	60	28.42	0	0	0	0
	Floor:under pal	al LA 6171	Pit structure 60	60	0	0	0	0	13.85
AD 700-900 Total					1.78	5.63	16.65	0.78	21.99

				מווווומפמ.			Economic		
Age	Tvne	Site	Structure	Feature	Arboreal	NAP	Fconomic	Non- economic	Total
AD1200-1325	Floor	LA 6169	Pit room 16	16	281.74	1002.34	2.17	1279.75	1281.91
			Pit room 70	202	108.48	25.03	3.34	126.84	130.18
		LA 6169 Total			195.11	513.69	2.75	703.29	706.05
	Floor:contact	LA 6169	Pit room 10	10	117.39	906.62	37.93	948.16	986.09
	Pit room	LA 6169	Pit room 15	15	171.82	1742.73	0	1914.55	1914.55
AD1200-1325 Total					169.86	919.18	10.86	1067.32	1078.18
AD1100-1200	Floor	LA 249	Pit structure 6	0	26.13	26.13	0	52.26	52.26
				9	439.62	1143.73	27.26	1553.15	1580.41
			Pit structure 6 Total		356.93	920.21	21.81	1252.97	1274.78
		LA 6170	Structure 5A	5A	357.1	2230.68	31.27	2643.61	2674.88
	Floor Total				356.97	1294.63	24.51	1650.3	1674.81
	Floor	LA 6169	Pit structure 76 w/l 47	76 in 47	1230	3870	390	4710	5100
AD1100-1200 Total					466.1	1616.55	70.2	2032.76	2102.96
AD 700-900	Floor	LA 265	Pit structure 4	0	0	1190	110	1060	1170
		LA 6169	Pit structure 4	4	757.24	2408.28	99.31	3066.21	3165.52
		LA 6170	Pit structure	0	585.71	2118.22	88	2615.93	2703.93
			2:ovoid						
			Pit structure 5		538.76	1879.09	59.32	2834.74	2894.06
			Pit structure 50	50	26.13	290.9	65.32	277.84	343.16
		LA 6170 Total			383.53	1429.41	70.88	1909.5	1980.39
		LA 6171	Pit structure 60	60	462.86	3238.02	49.45	3627.69	3677.14
			Structure 18	18	0	211.76	0	211.76	211.76
			Structure 2	26	142.11	625.26	0	767.37	767.37
			Structure 9	თ	123.14	545.28	15.28	653.13	668.41
		LA 6171 Total			170.25	1033.12	16	1182.62	1198.62
	Floor Total				300.74	1333.87	54.97	1653.56	1708.53
	Floor:contact	LA 6169	Pit structure	47	60	1230	30	1260	1290
			4/:circular						
	Floor:contact Total				60	1230	30	1260	1290
	Floor:under	LA 6171	Pit structure 60	60	241.58	1817.53	34.11	2019.32	2053.42
	metate								
	Floor:under	LA 6171	Pit structure 60	60	138.46	526.15	13.85	650.77	664.62
	pallet				90 12C	01 7061	10 61	1500 15	1620 60
AU 100-300 10181					00.172	21.7001	40.0 1	CI-2021	0001

							AP	0		
Age	Type	Site	Structure	Feature	re P. pond.	P. edulis	Juniperus	s Picea	Quercus	Prosopis
AD 1100-1325	Pit:storage	LA 6169	Extramural	126		211.3	0	0	0	0
AD 700-900	Pit:	LA 6171	Pit structure	60 63	0	128.57	0	0	0	0
	Pit:ash	LA 115862	862 Pit structure	1 20		28.93		0	0	0
	Pit:bell shaped	LA 265	Extramural	229	9 247.12	27.46	0	0	0	0
			Pit structure 13	13 141	1	0	15.73		0	0
		LA 265 Total	Total	123.6	5 13.73	7.86	0	0	0	0
	Pit:bell shaped:in F 27	LA 265	Extramural:SU1	SU1 41	1 56.77	593.85	4.37	0	0	0
	Pit:bell; Shaped:roasting:3; Subfloor pits	LA 6171	Extramural	56	30	6	0	0	0	0
	Pit:bell shaped:storage	LA 265	Extramural:SU1	SU1 127	7 194.4	518.4	0	0	0	0
	Pit:bell shaped:storage w/ adult burial	LA 265	Extramural:SU1	sU1 24	4	50.63	0	0	0	0
	Pit:bell shaped:storage w/ dog burial	LA 265	Extramural:SU1	sU1 26	3 145.07	72.54	0	0	0	0
	Pit:bell shaped:storage w/ infant burial	LA 265	Extramural:SU1	sU1 23	3 144.64	405	0	28.93	0	0
	Pit:cist:wall of F 56	LA 265	Extramural	156	0	26.13	0	0	0	0
	Pit:floor:sealed	LA 265	Pit structure 4		0	220.91	0	0	0	0
	Pit:keyhole	LA 265	Extramural:SU1	SU1 27		62.31	0	0	0	0
	Pit:Ig:irregular	LA 265	Extramural	14	19.0	106.2	3.53	0	6.21	0
					0	29.45	29.45	0	0	0
	Pit:linear:floor:foot drum	LA 265	Pit structure	-	7 17.61	0	0	0	0	0
	Pit:oval:lg	LA 265		17	7 18	6	0	0	0	0
	Pit:roasting	LA 115862	62 Extramural		0	0		0	0	0
				11		95.29		0	0	0
	Pit:rodent damage	LA 6170		92		61.52		0	0	0
	Pit:small	LA 6171				202.5	g	0	0	0
	Pit:storage	LA 6171	Structure 18		39.5	39.51	0	0	0	0
				22	0	170.53		0	0	0
		Ť	Table 24.18. Continued.	ed.						
							AP			
Age	Type	Site	Structure	Feature	P. pond.	P. edulis	Juniperus	Picea (Quercus	Prosopis
	pit: storage: bell-shaped w/ subfloor pit	LA 6170	Extramural	69	349.77	423.41	7.36	14.73	0	0
	pit:storage: opening plastered over	LA 6170	Pit structure 50	156	0	24.18	0	0	0	0
				166	37.38	112.15	0	0	0	0
				171	141.83	236.38	6.3	0	0	0
				183	29.72	0	0	0	0	0
				184	0	26.27	0	0	0	0
			Pit structure 50 Total		41.79	79.8	1.26	0	0	o
	pit:subfloor	LA 6171	Extramural	59 in 56	132.79	663.93	26.56	0	0	0
	pit:subfloor:cist	LA 6171	Extramural	104 in 83	27	0	0	0	0	0
	pit: unburned: steep	LA 6171	Extramural	53	0	149.83	0	0	0	0
	pit: bell shaped: small	LA 265	Pit structure 1	191	0	193.43	0	0	0	0
AD 700-900 Total					41.96	142.5	3.8		1.3	0.45
AD 500-650	sub-cist:in bell shaped:burned	LA 6171	Extramural	93 in 92	0	206.81	0	0	34.5	0

390 Excavations along NM 22: Peña Blanca

		l able z	able 24.18. Continued.					
							NAP	
Age	Type	Site	Structure	Feature	Sarcobatus	Poaceae	Cheno-am	Cheno-am af.
AD 1100-1325	pit:storage	LA 6169	extramural	126	0	0	598.7	17.61
AD 700-900	pit:	LA 6171	pit structure 60	63	0	51.43	1157.14	0
	pit:ash	LA 115862	pit structure 1	20	0	57.86	405	0
	pit:bell shaped	LA 265	extramural	229	0	82.37	2196.61	27.46
			pit structure 13	141	0	0	235.92	0
	pit:bell shaped:in F 27	LA 265	extramural:SU1	41	0	61.13	1021.78	0
	pit:bellshaped:roasting:3 subfloor pits	LA 6171	extramural	56	0	30	1110	0
	pit:bell shaped:storage	LA 265	extramural:SU1	127	0	0	2268	0
	pit:bell shaped:storage w/ adult burial	LA 265	extramural:SU1	24	0	25.31	734.06	0
	pit:bell shaped:storage w/ dog burial	LA 265	extramural:SU1	26	0	48.36	1160.6	0
				60	0	135	925.71	0
	pit:bell shaped:storage w/ infant burial	LA 265	extramural:SU1	23	0	173.57	2719.29	0
	pit:cist:wall of F 56	LA 265	extramural	156	0	26.13	653.23	0
	pit:floor:sealed	LA 265	pit structure 4	76	0	49.09	834.55	0
	pit:keyhole	LA 265	extramural:SU1	27	0	31.15	623.08	0
				33	0	31.76	952.94	0
	pit:lg:irregular	LA 265	extramural	14	0	50.56	1831.24	2.69
				15	0	0	2650.91	0
	pit:linear:floor:foot drum	LA 265	pit structure 1	107	0	0	176.09	0
	pit:oval:lg	LA 265	extramural	17	0	54	738	0
	pit:roasting	LA 115862	extramural	6	0	0	349.41	0
				11	0	0	222.35	0
	pit:rodent damage	LA 6170	extramural	92	0	20.51	512.66	0
	pit:small	LA 6171	extramural	47	0	22.5	2227.5	0
	pit:storage	LA 6171	structure 18	24	0	19.76	138.29	0
				25	0	0	328.87	12.18

Conti
œ
<u>_</u>
24.
Ð
÷
2
Ĕ

						NAP		
Age	Type	Site	Structure	Feature	Asteraceae hs.	Asteraceae Is	Artemisia Ephedra	Ephedra
AD 1100-1325	pit:storage	LA 6169	extramural	126	123.26	70.43	0	0
AD 700-900	pit	LA 6171	pit structure 60	63	102.86	77.14	0	0
	pit:ash	LA 115862	pit structure 1	20	57.86	28.93	0	0
	pit bell shaped	LA 265	extramural	229	82.37	549.15	0	0
			pit structure 13	141	15.73	47.18	0	0
	pit:bell shaped:in F 27	LA 265	extramural:SU1	4	104.8	139.73	48.03	30.57
	pit bell shaped roasting 3 subfloor pits	LA 6171	extramural	56	8	8	0	
	pit:bell shaped:storage	LA 265	extramural:SU1	127	32.4	97.2	0	0
	pit:bell shaped:storage w/ adult burial	LA 265	extramural:SU1	24	25.31	25.31	25.31	
	pit:bell shaped:storage w/ dog burial	LA 265	extramural:SU1	26	24.18	96.72	24.18	
	• •			09	51.43	167.14	25.71	6.43
	pit:bell shaped:storage w/ infant burial	LA 265	extramural:SU1	33	202.5	289.29	86.79	
	pit:cist:wall of f56	LA 265	extramural	156	26.13	52.26	26.13	0
	pit:floor:sealed	LA 265	pit structure 4	76	0	73.64	49.09	24.55
	pit:keyhole	LA 265	extramural:SU1	27	218.08	62.31	0	0
				33	95.29	31.76	0	95.29
	pit:lg:irregular	LA 265	extramural	14	61.13	225.66	29.19	17.03
				15	117.82	88.36	0	0
	pit:linear:floor:foot drum	LA 265	pit structure 1	107	35.22	52.83	17.61	0
	pit:oval.lg	LA 265	extramural	17	36	54	6	0
	pit:roasting	LA 115862	extramural	ი	0	254.12	0	31.76
				11	0	0	0	31.76
	pit:rodent damage	LA 6170	extramural	92	20.51	41.01	0	0
	pit:small	LA 6171	extramural	47	22.5	45	22.5	67.5
	pit:storage	LA 6171	structure 18	24	9.88	69.15	0	9.88
	pit:storage:bell shaped w/ subfl pit	LA 6170	extramural	69	69.95	121.5	18.41	
	pit:storage:opening plastered over	LA 6170	pit structure 50	156	24.18	0	24.18	0
				166	0	87.23	0	0
				171	63.04	280.51	31.52	12.61
				183	29.72	237.8	74.31	0
				184	8.76	166.38	17.51	0
	pit:subfloor	LA 6171	extramural	59 in 56	398.36	371.8	53.11	106.23
	pit:subfloor:cist	LA 6171	extramural	104 in 83	27	81	0	0
	pit:unburned:steep	LA 6171	extramural	53	93.64	0	0	37.46
	pit:bell shaped:small	LA 265	pit structure 1	191	120.9	24.18	0	0
AD 700-900 Total	otal				64.41	134.55	20.86	16.5
AD 500-650	subcist:in bell shaped:burned	LA 6171	extramural	93 in 92	103.4	172.34	0	
							34.47	

						В С С	Economic	
Age	Type	Site	Structure	Feature	Onagraceae	Solanaceae	Solanaceae Polygonum	Eriogonum
AD1100-1325	pit:storage	LA 6169	extramural	126	0	0	0	0
AD 700-900	pit:	LA 6171	pit structure 60	83	0	0	0	0
	pit:ash	LA 115862	pit structure 1	20	0	0	0	0
	pit:bell shaped	LA 265	extramural	229	0	0	0	0
			pit structure 13	141	0	0	0	0
	pit:bell shaped:in F 27	LA 265	extramural: SU1	41	0	0	0	8.73
	pit:bell shaped: roasting:3, subfloor pits	LA 6171	extramural	56	0	0	0	0
	pit:bell shaped: storage	LA 265	extramural: SU1	127	0	0	0	0
	pit:bell shaped: storage w/ adult burial	LA 265	extramural: SU1	24	0	0	0	0
	pit bell shaped: storage w/ dog burial	LA 265	extramural: SU1	26	0	0	0	0
				09	0	6.43	0	0
	pit:bell shaped: storage w/ infant burial	LA 265	extramural: SU1	33	0	0	0	0
	pit:cist:wall of F 56	LA 265	extramural	156	0	0	0	0
	pit:floor:sealed	LA 265	pit structure 4	76	8.54	0	0	0
	pit:keyhole	LA 265	extramural: SU1	27 33	00	00	00	00
	bit la irregular	LA 265	extramural) 1 14	0 0			
				15	0	0	0	0
	pit:linear:floor:foot drum	LA 265	pit structure 1	107	0	0	0	0
	pit:oval:lg	LA 265	extramural	17	0	0	0	0
	pit:roasting	LA 115862	extramural	თ	0	0	0	0
				11	0	0	0	0
	pit:rodent damage	LA 6170	extramural	92	0	0	0	0
	pit:small	LA 6171	extramural	47	0	0	0	0
	pit:storage	LA 6171	structure 18	24	1.41	39.51	0	0
				25	0	0	0	0
	pit:storage:bell shaped w/ subfloor pit	LA 6170	extramural	60	3.68	0	0	7.36
	pit:storage: opening plastered over	LA 6170	pit structure 50	156	0	0	0	0
				166	0	0	0	0
				171	0	0	3.15	0
				183	2.2	74.31	0	0
				184	0	0	26.27	0
	pit:subfloor	LA 6171	extramural	59 in 56	0	0	0	0
	pit:subfloor:cist	LA 6171	extramural	104 in 83	0	0	0	0
	pit: unburned: steep	LA 6171	extramural	ß	0	0	0	0
	pit:bell shaped: small	LA 265	pit structure 1	191	0	0	0	0
AD 700-900 Total	al				0.37	2.8	0.68	0.37
	subrist in hall shanad humad	I A 6171	evtramural	03 in 00	c	c	C	¢

		Table	Table 24.18. Continued					
						Eco	Economic	
Age	Type	Site	Structure	Feature	Brassicaceae	Cactaceae	Cactaceae Cylindropuntia	Platyopuntia
AD1100-1325	pit:storage	LA 6169	extramural	126	0	0	0	0
AD 700-900	pit:	LA 6171	Pit structure 60	63	0	0	0	0
	pit:ash	LA 115862	Pit structure 1	20	0	0	0	0
	pit:bell shaped	LA 265	extramural	229	0	0	0	0
			Pit structure 13	141	0	0	47.18	0
	pit:bell shaped:in F 27	LA 265	extramural:SU1	41	0	4.37	43.67	0
	pit:bell shaped: roasting: 3, subfloor pits	LA 6171	extramural	56	0	0	0	0
	pit:bell shaped: storage	LA 265	extramural:SU1	127	0	129.6	486	0
	pit:bell shaped: storage w/ adult burial	LA 265	extramural:SU1	24	0	0	50.63	0
	pit:bell shaped: storage w/ dog burial	LA 265	extramural:SU1	26	0	24.18	145.07	0
				60	0	45	488.57	6.43
	pit:bell shaped: storage w/ infant burial	LA 265	extramural:SU1	23	0	28.93	57.86	0
	pit:cist:wall of F 56	LA 265	extramural	156	0	0	5.6	0
	pit:floor:sealed	LA 265	Pit structure 4	76	0	0	17.08	0
	pit:keyhole	LA 265	extramural:SU1	27	0	31.15	155.77	0
				33	0	31.76	63.53	0
	pit:lg:irregular	LA 265	extramural	14	0	40.27	23.31	0
				15	0	117.82	0	0
	pit:linear:floor:foot drum	LA 265	Pit structure 1	107	0	0	17.61	0
	pit:oval:lg	LA 265	extramural	17	0	0	0	0
	pit:roasting	LA 115862	extramural	თ	0	0	0	0
				11	0	0	0	0
	pit:rodent damage	LA 6170	extramural	92	0	0	41.01	0
	pit:small	LA 6171	extramural	47	0	22.5	0	0
	pit:storage	LA 6171	structure 18	24	0	9.88	0	0
				25	0	0	0	0
	pit: storage: bell shaped w/ subfloor pit	LA 6170	extramural	69	0	0	18.41	0
	pit:storage:opening plastered over	LA 6170	Pit structure 50	156	0	3.45	0	0
				166	0	0	1.92	0
				171	0	0	6.3	0
				183	0	0	0	0
				184	0	0	2.69	0
	pit:subfloor	LA 6171	extramural	59 in 56	26.56	0	0	0
	pit:subfloor:cist	LA 6171	extramural	104 in 83	0	0	0	0
	pit:unburned:steep	LA 6171	extramural	53	0	0	0	0
	pit:bell shaped: small	LA 265	Pit structure 1	191	0	11.16	0	0
AD 700-900 Total	tal				0.62	19.12	43.23	0.15
AD 500-650	subcist: in bell shaped: burned	LA 6171	extramural	93 in 92	0	0	0	0

Ace	Tvne	Site	Stricture	Feature	Snhaeralrea	Tea mai/s Ar	Arhoraal	NAP
AD1100-1325	bit:storade	LA 6169	extramural	126	0	2.71	211.3	812.71
AD 700-900	pit:	LA 6171	pit structure 60	ខ	25.71	51.43	154.29	1517.14
	pit:ash	LA 115862	pit structure 1	20	0	0	28.93	694.29
	pit:bell shaped	LA 265	extramural	229	0	0	274.58	3212.54
			pit structure 13	141	0	15.73	15.73	377.48
	pit:bell shaped:in F 27	LA 265	extramural:SU1	4	17.47	43.67	654.99	1571.97
	pit:bell shaped: roasting: 3 subfloor pits	LA 6171	extramural	56	0	0	120	1230
	pit:bell shaped:storage	LA 265	extramural:SU1	127	0	259.2	712.8	3304.8
	pit: bell shaped: storage w/ adult burial	LA 265	extramural:SU1	24	0	50.63	50.63	1012.5
	pit: bell shaped: storage w/ dog burial	LA 265	extramural:SU1	26	0	22.32	217.61	1642.32
				00	25.71	630	289.29	2610
	pit: bell shaped: storage w/ infant burial	LA 265	extramural:SU1	33	0	0	578.57	3789.64
	pit:cist:wall of F56	LA 265	extramural	156	0	0	26.13	893.99
	pit:floor:sealed	LA 265	pit structure 4	76	0	12.81	220.91	1192.06
	pit:keyhole	LA 265	extramural:SU1	27	0	0	62.31	1277.31
				g	0	13.61	190.59	1506.55
	pit:lg:irregular	LA 265	extramural	14	0	139.24	135.91	2493.21
				15	0	11.33	58.91	3015.69
	pit:linear:floor:foot drum	LA 265	pit structure 1	107	0	0	17.61	352.17
	pit:oval:lg	LA 265	extramural	17	0	18	108	1026
	pit:roasting	LA 115862	extramural	თ	0	0	0	730.59
				1	0	0	95.29	317.65
	pit:rodent damage	LA 6170	extramural	92	0	41.01	61.52	697.22
	pit:small	LA 6171	extramural	47	0	0	225	2452.5
	pit:storage	LA 6171	structure 18	24	1.41	<u>88.9</u>	79.02	498.14
				<u>5</u> 2	0	1.74	170.53	476.78
	pit:storage:bell shaped w/ subfloor pit	LA 6170	extramural	69	3.68	73.64	795.27	1067.73
	pit: storage: opening plastered over	LA 6170	pit structure 50	156	0	0	24.18	172.71
				166	0	24.92	149.54	163.92
				171	0	3.15	384.51	1235.49
				183	0	0	29.72	819.63
				184	0	17.51	26.27	423.02
	pit:subfloor	LA 6171	extramural	59 in 56	0	0	823.28	13066.2
	pit:subfloor.cyst	LA 6171	extramural	104 in 83		0	27	270
	pit:unburned:steep	LA 6171	extramural	53	0	0	149.83	561.85
	pit:bell shaped:small	LA 265	pit structure 1	191	0	0	193.43	1606.98
AD 700-900 Total					1.72	61.23	191.61	1795.95
AD 500-650	subcist:in bell shaped:burned	LA 6171	extramural	93 in 92	0	0	241.28	3619.15

Site Structure Eature Economic Non-economic LA6160 extramural 126 271 10186 LA6171 pt structure 60 63 77.14 1936.20 LA6173 pt structure 60 63 75.14 1936.6 LA6171 pt structure 60 63 77.14 1594.29 LA15682 pt structure 13 20 75.214 150.66 LA565 extramural:SU1 27 164.604 330.25 torage windut bural LA 255 extramural:SU1 26 137.5 164.604 LA 265 extramural:SU1 27 108.16 1341.43 144.43 storage windut bural LA 265 extramural:SU1 27 184.143 144.43 storage windo bural LA 265 extramural:SU1 27 164.604 271.14 1116.14 LA 265 extramural:SU1 27 173.12 124.14 236.13 246.28 246.28 246.28 246.13 246.28 246.28			l able 24.18. Continued	o. Collilladu.				
55 pit: storage LA6160 extramural 125 2.71 1018.6 pit: LA355 pit structure 13 141 229 0 752.14 pit: LA355 pit structure 13 141 229 0 7531.69 pit: LA355 extramural SU1 279 0 7531.69 pit: LA355 extramural SU1 27 0 7531.69 pit: bit sheet croage M dot burial LA255 extramural SU1 27 0 753.65 pit: pit: LA255 extramural SU1 24 101.25 961.84 pit: pit: LA255 extramural SU1 23 963.91 1263.14 pit: pit: LA255 extramural SU1 27 74.8 213.64 pit: pit: LA255 extramural SU1 27 961.8 213.64 pit: pit: LA255 extramural SU1 27 971.4 921.43 <	Age	Type	Site	Structure	Feature	Economic	Non-economic	Total
pt: LA6171 pt structure 60 63 77.14 159.429 pttash pttash LA15862 pt structure 13 20 752.14 pttash pttash LA15862 pt structure 13 141 82.91 3761.83 pttable shaped: croading: LA555 extramutal:SU1 21 17.14 159.25 pttbell shaped: croading: JA555 extramutal:SU1 24 17.19 2100.06 pttbell shaped: croading: JA555 extramutal:SU1 24 17.17 17.83 3855.6 pttbell shaped: croading: JA255 extramutal:SU1 24 17.17 154.14 pttbell shaped: croade Modp bural LA255 extramutal:SU1 24.14 24.14 pttbell shaped: croade LA255 extramutal:SU1 24 101.25 164.04 pttbell shaped: croade LA255 extramutal:SU1 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 </td <td>AD1100-1325</td> <td>pit:storage</td> <td>LA 6169</td> <td>extramural</td> <td>126</td> <td>2.71</td> <td>1018.6</td> <td>1021</td>	AD1100-1325	pit:storage	LA 6169	extramural	126	2.71	1018.6	1021
ptrant LA 115862 pit structure 1 20 752.14 ptrbell shaped in F27 LA 265 extramual 229 0 751.65 ptrbell shaped in F27 LA 265 extramual 25 0 330.25 ptrbell shaped in F27 LA 265 extramual SU1 75 141 117.9 2100.06 ptrbell shaped isorating: 3 author pits LA 265 extramual SU1 26 0 330.23 ptrbell shaped isorating: 3 author pits LA 265 extramual SU1 27 164.04 ptrbell shaped isorate Minant burial LA 265 extramual SU1 27 1941.45 ptrbell shaped isorate Minant burial LA 265 extramual SU1 27 1941.45 ptrbell shaped isorate Minant burial LA 265 extramual SU1 27 1941.45 ptrbell shaped isorate Minant burial LA 265 extramual SU1 27 200.85 ptrbell shaped isorate Minant burial LA 265 extramual SU1 27 284.43	AD 700-900	pit:	LA 61 71	pit structure 60	ß	77.14	1594.29	1671
pitbell shaped in F 27 LA 265 extramural 229 0 3761.66 pitbell shaped storage pitbell shaped storage watamural SU1 17 2100.05 pitbell shaped storage watamural SU1 17 2100.05 0 1350 pitbell shaped storage watamural SU1 27 R14 3355.6 0 1350 pitbell shaped storage widatt burial LA 265 extramural SU1 27 874.8 3855.6 pitbell shaped storage widatt burial LA 265 extramural SU1 26 941.45 pitbell shaped storage widatt burial LA 265 extramural SU1 27 845.4 pitbell shaped storage widatt burial LA 265 extramural SU1 27 84.4 pitbell shaped storage widatt burial LA 265 extramural SU1 27 84.4 236.1 pittell shaped storage widatt burial LA 265 extramural SU1 27 2456.2 236.1 pittell shaped storage LA 265 extramural SU1		pit:ash	LA 115862	pit structure 1	20	0	752.14	752.1
pit bell shaped in F 27LA 265pit structure 1314182.91330.29pit bell shaped in structure 13pit bell shaped in structure 13LA 265extramural SU1177910906pit bell shaped isotrage w adult burialLA 265extramural SU124101.25961.88pit bell shaped isotrage w adult burialLA 265extramural SU124101.25961.88pit bell shaped isotrage w adult burialLA 265extramural SU124101.25961.88pit bell shaped isotrage w infant burialLA 265extramural SU127194.43961.86pit bell shaped isotrage w infant burialLA 265extramural SU127194.62906.88pit floor:sealedLA 265pit structure 47638.421132.66pit isotrageLA 265extramural SU127186.921132.66pit insarrifor:root drumLA 265extramural SU127186.921132.66pit inoartingLA 265extramural SU127186.921132.66pit inoartingLA 265extramural SU127186.921132.66pit inoartingLA 265extramural SU127186.921132.66pit inoartingLA 265extramural SU127186.921136.66pit inoartingLA 265extramural SU127186.921136.66pit inoartingLA 265extramural SU127166203.43pit inoartingpit inoartingLA 265extr		pit:bell shaped	LA 265	extramural	229	0	3761.69	3762
pittbell shaped: roactingIA1172109.06pittbell shaped: roactingI.A 565extramural5601350pittbell shaped: storage wind thurialI.A 265extramural5601350pittbell shaped: storage wind thurialI.A 265extramural55961.88pittbell shaped: storage wind thurialI.A 265extramural101.25961.84pittbell shaped: storage wind thurialI.A 265extramural1941.43pittbell shaped: storage wind theI.A 265extramural195271941.43pittbell shaped: storage wind theI.A 265extramural1562008.922136.61pittbell shaped: storage wind theI.A 265extramural1562435.232435.23pittlegularI.A 265pittructure 47638.41136.1137.11pittlegularI.A 265extramural1427186.922435.23pittlegularI.A 265extramural1427186.922435.23pittlegularI.A 265pit structure 1171611132.11pittlegularI.A 265extramural17182136.132136.13pittlegularI.A 265pit structure 117162136.132136.13pittlegularI.A 265pit structure 117171762334.13pittlegularI.A 265extramural1427186.922655pittlegularI.A 265ex				pit structure 13	141	62.91	330.29	393.2
pit: beli shaped storage $A 6171$ extramural 56 0 1350 pit:beli shaped storage w dog burial $A 265$ extramural:SU1 27 8748 38556 pit:beli shaped storage w dog burial $A 265$ extramural:SU1 27 814.3 38556 pit:beli shaped storage w/ dog burial $A 265$ extramural:SU1 26 191.57 814.3 pit:beli shaped storage w/ infant burial $A 265$ extramural:SU1 28 825.6 908.92 pit:bor:sealed $LA 265$ extramural:SU1 27 86.92 135.42 pit:floor:sealed $LA 265$ extramural:SU1 27 86.92 135.63 pit:loor:sealed $LA 285$ extramural <su1< td=""> 27 186.92 2326.23 pit:loor:sealed $LA 285$ extramural<su1< td=""> 27 186.92 2326.23 pit:loor:sealed $LA 285$ extramural<su1< td=""> 27 282.45 234.62 pit:loor:sealed $LA 285$ extramural 17 120.22 2326.23 pit:loor:sealed<td></td><td>pit:bell shaped:in F 27</td><td>LA 265</td><td>extramural:SU1</td><td>41</td><td>117.9</td><td>2109.06</td><td>2227</td></su1<></su1<></su1<>		pit:bell shaped:in F 27	LA 265	extramural:SU1	41	117.9	2109.06	2227
pt:bell shaped:storageLA 265extramural:SU1127874.83855.6pt:bell shaped:storage w adult burialLA 265extramural:SU124101.25961.88pt:bell shaped:storage w dog burialLA 265extramural:SU123961.86908.92pt:bell shaped:storage w intent burialLA 265extramural:SU123961.96908.92pt:bell shaped:storage w intent burialLA 265extramural:SU123961.94908.92pt:bell shaped:storage w intent burialLA 265extramural:SU12386.794281.45pt:tholeLA 265extramural:SU127166.921135.06pt:thorsrealedLA 265extramural151552934.13pt:trogularLA 265extramural16177.61352.17pt:timearfloor:foot drumLA 265extramural1718116pt:timearfloorLA 265extramural1718116pt:troastingLA 115662extramural1718116pt:troastingLA 115662extramural90730.59pt:troastingLA 6170extramural2222.64244.16pt:troastingpt:troastingLA 6170extramural22234.16pt:troastingLA 6170extramural2223.65243.62pt:troastingpt:trouture23177.1623.65244.11pt:troastingLA 6170extramural2224.1617.		pit: bell shaped:roasting: 3 subfloor pits	LA 6171	extramural	56	0	1350	1350
ptrbell shaped:storage w adut burial LA 265 extramural:SU1 24 101.25 96188 ptrbell shaped:storage w / adg burial LA 265 extramural:SU1 25 96183 ptrbell shaped:storage w / adg burial LA 265 extramural:SU1 23 191.43 ptroten:vall of f56 LA 265 extramural:SU1 23 96.79 4281.43 ptriftoor:resaled LA 265 extramural:SU1 23 103.51 1574.62 ptriftoor:resaled LA 265 extramural:SU1 27 168.92 1152.63 ptriftor:resaled LA 265 extramural:SU1 27 168.92 1154.52 ptrigrinegular LA 265 extramural:SU1 27 168.92 1154.62 ptrigrimegular LA 265 extramural 17 1761 352.17 ptrigrimegular LA 265 extramural 17 161.11 476.17 ptrigrimegular LA 265 ptrumural 17 17.61 352.17 ptrigrimegular LA 265 ptrumural		pit:bell shaped:storage	LA 265	extramural:SU1	127	874.8	3855.6	4730
pit:bell shaped storage w/ infant burial LA 265 extramural: SU1 26 191 57 1646.04 pit:bell shaped storage w/ infant burial LA 265 extramural: SU1 26 191 57 1646.04 pit:bell shaped storage w/ infant burial LA 265 extramural: SU1 23 86.79 4281.43 pit:fororsealed LA 265 extramural: SU1 27 186.92 1157.65 pit:fororsealed LA 265 extramural: SU1 27 186.92 1157.65 pit:fororsealed LA 265 extramural: SU1 27 186.92 1157.65 pit:forousitig LA 265 extramural: SU1 76 38.42 1157.65 pit:forousitig LA 265 extramural: SU1 77 176 32.17 pit:onalig LA 265 extramural: SU1 77 176 32.17 pit:onalig pit:onalig extramural: SU1 77 176 32.17 pit:onalig pit:onalig extramural: SU1 77 176 32.65 pit:onalig		pit:bell shaped:storage w/ adult burial	LA 265	extramural:SU1	24	101.25	961.88	1063
pt:bell shaped storage w infant burial LA 265 extramural SU1 23 66.73 4281.43 pt:cost:wall of f56 LA 265 extramural SU1 27 66.79 4281.43 pt:cost:wall of f56 LA 265 extramural SU1 27 166.92 1152.69 pt:toist:wall of f56 LA 265 extramural SU1 27 166.92 1152.69 pt:toist:wall of f56 LA 265 extramural SU1 27 166.92 1152.69 pt:toist:regular LA 265 extramural SU1 27 166.92 1152.69 pt:tovating LA 265 extramural SU1 27 166.92 1154.62 pt:tovating LA 265 extramural SU1 27 166.92 1154.62 pt:tovating LA 265 extramural SU1 17 17 161 352.17 pt:tovating LA 265 extramural SU1 17 17 161 352.17 pt:tovating LA 265 extramural SU1 17 17 17 17 11		pit:bell shaped:storage w/ dog burial	LA 265	extramural:SU1	26	191.57	1646.04	1838
pittbell shaped storage w infant burial LA 265 extramural: SU1 23 86.79 428143 pit/serval of f56 LA 265 extramural: SU1 23 86.79 428143 pit/serval If 56 6.6 908.92 1155.66 908.92 1155.66 908.92 1155.66 908.92 1155.66 908.92 1155.66 908.92 1155.66 908.92 1155.66 908.92 1155.66 908.92 1155.62 908.91 157.462 225.83 2426.52 1155.62 248.41 116 9 0 730.59 1116 274.62 235.217 116 352.17 116 235.25 248.41 116 276.71 235.52 2365.51 235.52 235.53 1116 276.71 235.52 235.52 235.52 235.52 235.52 235.52 235.52 235.52 235.55 235.55 235.55 235.55 235.55 235.55 235.55 235.55 235.55 235.55 235.55 235.55 235.55 235.55 2					09	1202.14	1941.43	3144
pit/textual of f56 LA 265 extramural 156 5.6 908.92 pit/telorersealed LA 265 extramuralsU1 27 186.92 1356.13 pit/telorersealed LA 265 extramuralsU1 37 186.92 1157.86 pit/telorersealed LA 265 extramuralsU1 37 186.92 1157.86 pit/telorersealed LA 265 extramural 14 202.83 2426.29 pit/telorerseating LA 1585 extramural 14 202.83 2426.29 pit/tolent formet LA 255 extramural 17 17 17.61 35.17 pit/tolent damage LA 175 extramural 9 0 730.59 pit/toroacting LA 6177 extramural 92 82.14.16 111.6 pit/toroage LA 6177 extramural 92 0.6.77 1766.25 pit/toroage LA 6177 extramural 92 0.6.77 1766.25 pit/storage pit/storage 147 22.5		pit:bell shaped:storage w/ infant burial	LA 265	extramural:SU1	23	86.79	4281.43	4368
pit/floor:sealed LA265 pit structure 4 76 38.42 1336.13 pit/seyhole LA265 extramural:SU1 27 186.62 1152.69 pit/seyhole LA265 extramural:SU1 27 186.62 1152.69 pit/seyhole LA265 extramural 15 128.15 2934.13 pit/serifloor:foot drum LA265 pit structure 1 107 17.61 352.17 pit/serifloor LA265 pit structure 1 107 17.61 352.17 pitroasting LA15862 extramural 17 18 1116 pitroasting LA15862 extramural 17 1761 352.17 pitroasting LA15862 extramural 17 17 116 0 700.54 pitroasting LA6170 extramural 24 141.11 431.81 pitroasting pitstorage open is subfloor pit LA6170 pit structure 50 166 268.4 284.7 pitstorage pit structure 16		pit:cist:wall of f56	LA 265	extramural	156	5.6	908.92	914.5
pit/legitregular LA265 extramural:SU1 27 186.92 1152.69 pit/lg:irregular LA265 extramural 14 202.83 2426.29 pit/lg:irregular LA265 extramural 17 15 229.13 pit/lg:irregular LA265 pit structure 1 107 17.61 352.17 pitroasting LA3265 extramural 17 18 1116 pitroasting LA115862 extramural 17 18 1116 pitroasting LA115862 extramural 17 18 1116 pitroasting LA6170 extramural 9 0 505.54 pitstorage LA6170 extramural 47 22.5 2655 pitstorage LA6170 extramural 47 23.54 24.16 pitstorage LA6170 extramural 24 14.11 431.81 pitstorage LA6170 extramural 24 17.14 64.38.2 pitstorage		pit:floor:sealed	LA 265	pit structure 4	76	38.42	1336.13	1375
pit/igriregular LA 265 extramural 13 108.91 1574.62 pit/igriregular LA 265 extramural 14 2203.83 2426.29 pit/inear-floor:foot drum LA 265 pit structure 1 17 17.61 352.17 pit/ovalig LA 115862 extramural 17 17 17.61 352.17 pitrovating LA 115862 extramural 17 18 117.61 352.17 pitrovating LA 115862 extramural 9 0 730.59 pitrorage LA 115862 extramural 27 12.61 143.18 pitrorage LA 6170 extramural 27 22.5 2665 pit storage:opening plastered over LA 6170 extramural 24 141.11 431.81 pit storage:opening plastered over LA 6170 extramural 25 1.74 643.82 pit storage:opening plastered over LA 6170 extramural 25 1.71.4 643.16 pit storage:opening pla		pit:keyhole	LA 265	extramural:SU1	27	186.92	1152.69	1340
pit/lg:irregular LA 265 extramural 14 202.83 2426.2934.13 pit/ineating 15 129.15 2934.13 1761 352.17 pit/ineating LA 265 extramural 17 1761 352.17 pit/ineating LA 15862 extramural 17 18 1116 pit/ineating LA 15862 extramural 17 18 1116 pit/indamage LA 6171 extramural 9 0 730.59 pit/indamage LA 6171 extramural 47 22.5 2665 pit/indamage LA 6170 extramural 47 22.5 2665 pit/storage pit structure 18 24 14.111 43181 pit storage LA 6170 extramural 69 106.77 1756.23 pit storage pit structure 50 156 3.45 214.16 173.18 pit storage pit structure 50 156 3.45 214.16 174.16 pit structure					33	108.91	1574.62	1684
15 129.15 2334.13 pit:linear:floor:foot drum LA 265 pit structure 1 17 17.61 352.17 pit:ovailig LA 265 extramural 17 18 1116 pit:ovailig LA 115862 extramural 17 18 1116 pit:ovailig LA 115862 extramural 9 0 730.59 pit:roasting LA 115862 extramural 9 0 730.59 pit:roating LA 6170 extramural 92 82.03 676.71 pit:storage LA 6171 structure 18 24 14.11 431.81 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16<		pit:lg:irregular	LA 265	extramural	14	202.83	2426.29	2629
pit:linear:floor:foot drum LA 265 pit structure 1 107 17.61 352.17 pit:roasting LA 265 extramural 17 18 1116 pit:roasting LA 6170 extramural 9 0 505.24 pit:roasting LA 6170 extramural 92 82.03 676.71 pit:roasting LA 6171 extramural 92 82.03 676.71 pit:roage LA 6171 extramural 92 82.03 676.71 pit:storage LA 6171 extramural 47 22.5 2655 pit:storage LA 6170 extramural 63 17.4 643.82 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:subfloor LA 6171 extramural 63 3.45 214.16 pit:subfloor LA 6171 extramural 63 166.17 170.64 pit:subfloor LA 6171 extramural 58 166.17 1770.64 <td></td> <td></td> <td></td> <td></td> <td>15</td> <td>129.15</td> <td>2934.13</td> <td>3063</td>					15	129.15	2934.13	3063
pit:ovatilg LA265 extramural 17 18 1116 pit:ovatilg LA115862 extramural 9 0 730.59 pit:roasting LA115862 extramural 9 0 730.59 pit:roating LA6170 extramural 92 82.03 676.71 pit:small LA6171 structure 18 24 141.11 431.81 pit:storage LA6170 extramural 92 82.03 676.71 pit:storage LA6171 structure 18 24 141.11 431.81 pit:storage:opening plastered over LA6170 extramural 69 106.77 1756.23 pit:storage:opening plastered over LA6170 pit structure 50 156 214.16 pit:storage:opening plastered over LA6170 extramural 69 106.77 1756.23 pit:storage:opening plastered over LA6170 pit structure 50 156 214.16 pit:storage:opening plastered over LA6170 pit structure 50 156 <t< td=""><td></td><td>pit:linear:floor:foot drum</td><td>LA 265</td><td>pit structure 1</td><td>107</td><td>17.61</td><td>352.17</td><td>369.8</td></t<>		pit:linear:floor:foot drum	LA 265	pit structure 1	107	17.61	352.17	369.8
pitroasting LA115862 extramural 9 0 730.59 pitrodent damage LA6170 extramural 92 82.03 676.71 pitrodent damage LA6171 extramural 92 82.03 676.71 pitrodent damage LA6171 extramural 92 82.03 676.71 pitrsonage LA6171 extramural 92 82.03 676.71 pitrsonage LA6171 extramural 92 82.03 676.71 pitrstorage LA6170 extramural 69 106.77 1756.23 pitrstorage:opening plastered over LA6170 pit structure 50 156 24.41.16 pit:storage:opening plastered over LA6170 pit structure 50 156 26.84 284.7 pit:storage:opening plastered over LA6171 extramural 69 106.77 1756.23 pit:storage:opening plastered over LA6171 extramural 56 284.7 pit:storage:opening plastered over LA6171 extramural 770.64 </td <td></td> <td>pit:oval:lg</td> <td>LA 265</td> <td>extramural</td> <td>17</td> <td>18</td> <td>1116</td> <td>1134</td>		pit:oval:lg	LA 265	extramural	17	18	1116	1134
ntrodent damage LA 6170 extramural 11 0 508.24 pit:rodent damage LA 6171 extramural 92 82.03 676.71 pit:storage LA 6171 extramural 92 82.03 676.71 pit:storage LA 6171 structure 18 24 141.11 431.81 pit:storage LA 6170 extramural 63 106.77 1756.23 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 26.56 1360.23 pit:storage:opening plastered over LA 6171 extramural 59 in 56 26.56 1360.12 pit:storage:opening plastered over LA 6171 extramural 53 0 770.64 pit:storage:steep pit:structure 1 104 83 65.6 13862.25 pit:structure		pit:roasting	LA 115862	extramural	თ	0	730.59	730.6
pit:rodent damage LA 6170 extramural 92 82.03 676.71 pit:storage LA 6171 extramural 92 82.03 676.71 pit:storage LA 6171 extramural 47 22.5 2655 pit:storage LA 6170 extramural 69 106.77 1756.23 pit:storage:bell shaped w/ subfloor pit LA 6170 extramural 69 106.77 1756.23 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:subfloor LA 6170 pit structure 50 156 2.6.84 2.84.7 pit:subfloor LA 6171 extramural 69 106.77 170.64 pit:subfloor LA 6171 extramural 59 in 56 26.56 1386.295 pit:unburmed:steep LA 6171 extramural 53 0 770.64 pit:unburmed:steep LA 6171 extramural 53 in 56 2656 1386.54 pit:unburmed:steep LA 265 pit structure </td <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>0</td> <td>508.24</td> <td>508.2</td>					11	0	508.24	508.2
pit:storage LA6171 extramural 47 22.5 2655 pit:storage LA6171 structure 18 24 141.11 431.81 pit:storage LA6170 extramural 69 106.77 1756.23 pit:storage pit:storage 3.45 214.16 pit:storage LA6170 pit structure 50 156 3.45 214.16 pit:storage LA6170 pit structure 50 156 3.45 214.16 pit:storage LA6170 pit structure 50 156 3.45 214.16 pit:subfloor LA6171 extramural 69 106.77 1756.23 pit:subfloor LA6171 extramural 50 56.56 1864.24 pit:subfloor LA6171 extramural 59 0 706.4 pit:subfloor LA6171 extramural 53 0 711.68 pit:subfloor LA6171 extramural 53 0 71778.09<		pit:rodent damage	LA 61 70	extramural	92	82.03	676.71	758.7
pit:storage LA6171 structure 18 24 141.11 431.81 25 1.74 643.82 pit:storage:bell shaped w/ subfloor pit LA6170 extramural 69 106.77 1756.23 pit:storage:opening plastered over LA6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA6170 pit structure 50 156 3.45 214.16 pit:subfloor LA6170 pit structure 50 156 26.84 284.7 pit:subfloor LA6171 extramural 59 76.51 770.64 pit:subfloor LA6171 extramural 59 0 701.2 pit:subfloor:oyst LA6171 extramural 59 0 711.68 pit:unburned:steep LA6171 extramural 53 0 711.68 pit:bell shaped:small LA6171 extramural 53 0 711.68 of subcist:in bell LA6171 extramural 53 0 711.68 of shaped:burned LA6171 extramural 53 0 711.68 of shaped:burned LA6171 extramural 53 0 711.68		pit:small	LA 61 71	extramural	47	22.5	2655	2678
25 1.74 643.82 pit:storage:bell shaped w/ subfloor pit LA 6170 extramural 69 106.77 1756.23 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:subfloor 166 26.84 284.7 770.64 183 76.51 770.64 pit:subfloor LA 6171 extramural 59 166 26.56 13862.95 pit:subfloor LA 6171 extramural 59 0 711.68 pit:unburned:steep LA 6171 extramural 53 0 711.68 of structure 1 104 in 83 0 711.68 1778.09 of subcist:in bell LA 6171 extramural 53 0 711.68 of shaped:burned LA 6171 extramural 53 0 7178.09 of shaped:burned LA 6171 extramural 53 0 71778.09 of shaped:burned LA 6171 extramural 93 in		pit:storage	LA 61 71	structure 18	24	141.11	431.81	572.9
pit:storage:bell shaped w subfloor pit LA 6170 extramural 69 106.77 1756.23 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 pit:subfloor 171 12.61 1604.24 183 76.51 770.64 pit:subfloor LA 6171 extramural 59 56 26.56 13862.95 pit:subfloor:oyst LA 6171 extramural 53 0 711.68 pit:unburned:steep LA 6171 extramural 53 0 711.68 of structure 1 191 11.16 1778.09 1365.54 of shaped:small LA 6171 extramural 53 0 711.68 of shaped:tin bell LA 6171 extramural 53 0 7178.09 of shaped:tin bell LA 6171 extramural 93 in 92 0 3860.43					25	1.74	643.82	645.6
pit:storage:opening plastered over LA 6170 pit structure 50 156 3.45 214.16 166 26.84 284.7 171 12.61 1604.24 171 12.61 1604.24 183 76.51 770.64 171 12.61 1604.24 183 76.51 770.64 183 76.51 770.64 184 46.48 400.12 171 bit:subfloor LA 6171 extramural 59 in 56 26.56 13862.95 171 bit:subfloor:cyst LA 6171 extramural 53 0 711.68 171 bit:unburned:steep LA 6171 extramural 53 0 711.68 171 subcist:in bell LA 265 pit structure 191 11.16 1778.09 170tal subcist:in bell LA 6171 extramural 93 in 92 0 3860.43		pit:storage:bell shaped w/ subfloor pit	LA 6170	extramural	60	106.77	1756.23	1863
166 26.84 284.7 171 12.61 1604.24 173 76.51 770.64 183 76.51 770.64 184 46.48 400.12 184 46.48 400.12 184 46.48 400.12 184 46.48 400.12 185 56 in 56 26.56 13862.95 184 104 in 83 0 711.68 175 extramural 53 0 711.68 175 bit:bell shaped:small LA 265 pit structure 1 191 11.16 1778.09 170tal subcist:in bell LA 6171 extramural 53 0 711.68 130.29 1886.54 130.22 1886.54 130.23 1886.54		pit:storage:opening plastered over	LA 6170	pit structure 50	156	3.45	214.16	217.6
171 12.61 1604.24 183 76.51 770.64 183 76.51 770.64 184 46.48 400.12 184 46.48 400.12 184 46.48 400.12 185 76.51 770.64 184 46.48 400.12 184 46.48 400.12 185 13862.95 0 184 26171 extramural 59 104 in 83 0 711.68 104 in bell 53 0 711.68 1778.09 1778.09 1365.54 1386.54 170tal subcist:in bell LA 6171 extramural 53 0 711.68 130.29 1886.54 130.22 1886.54 1365.54 1365.54					166	26.84	284.7	311.5
183 76:51 770:64 183 76:51 770:64 184 46:48 400:12 184 46:48 400:12 184 46:48 400:12 185 56 13862:95 184 104 in 83 0 185 265 13862:95 184 104 in 83 0 185 265 pit:unburned:steep 171.68 53 0 171.68 53 0 171.68 111.16 1778.09 170tal subcist:in bell 130.29 1886.54 1886.54 93 in 92 0 3860.43					171	12.61	1604.24	1617
nt:subfloor 184 46.48 400.12 pit:subfloor LA6171 extramural 59 in 56 26.56 13862.95 pit:subfloor:cyst LA6171 extramural 59 in 56 26.56 13862.95 pit:subfloor:cyst LA6171 extramural 53 0 297 pit:unburned:steep LA6171 extramural 53 0 711.68 pit:ublell shaped:small LA265 pit structure 1 191 11.16 1778.09 Total subcist:in bell LA6171 extramural 93 in 92 0 3860.43					183	76.51	770.64	847.2
pit:subfloor LA 6171 extramural 59 in 56 26.56 13862.95 pit:subfloor:oyst LA 6171 extramural 104 in 83 0 297 pit:subfloor:oyst LA 6171 extramural 53 0 711.68 pit:unburned:steep LA 6171 extramural 53 0 711.68 pit:unburned:steep LA 265 pit structure 1 191 11.16 1778.09 Total subcist:in bell LA 265 pit structure 1 191 11.16 1778.09 rotal subcist:in bell LA 265 pit structure 1 191 11.16 1778.09 of shaped:burned LA 6171 extramural 93 in 92 0 3860.43					184	46.48	400.12	446.6
pit:subfloor:cyst LA 6171 extramural 104 in 83 0 297 pit:unburned:steep LA 6171 extramural 53 0 711.68 pit:unburned:steep LA 6171 extramural 53 0 711.68 pit:unburned:steep LA 265 pit structure 1 191 11.16 1778.09 Total subcist:in bell 130.29 1886.54 1306.54 1306.29 1886.54 o shaped:burned LA 6171 extramural 93 in 92 0 3860.43		pit:subfloor	LA 61 71	extramural	59 in 56	26.56	13862.95	13890
pit:unburned:steep LA 6171 extramural 53 0 711.68 pit:bell shaped:small LA 265 pit structure 1 191 11.16 1778.09 Total subcist:in bell 130.29 1886.54 e shaped:burned LA 6171 extramural 93 in 92 0 3860.43		pit:subfloor:cyst	LA 6171	extramural	104 in 83	0	297	297
pit:bell shaped:small LA 265 pit structure 1 191 11.16 Total subcist:in bell 130.29 130.29 o shaped:burned 23 in 92 0		pit:unburned:steep	LA 61 71	extramural	53	0	711.68	711.7
Total subcist:in bell 130.29 to stramural 93 in 92 0 to the stramural 93 in 92 0 to the stramural 130.29		pit:bell shaped:small	LA 265	pit structure 1	191	11.16	1778.09	1789
shaped:burned LA 61 71 extramural 93 in 92 0	AD 700-900 Tots	subcist:in b				130.29	1886.54	2017
	AD 500-650	shaped:burned	LA 6171	extramural	93 in 92	0	3860.43	3860

						AP			NAP	
				I						Cheno-am
Age	Type	Site	Structure	Feature	Feature P. pond.	P. edulis	Picea	Poaceae	Cheno-am	af.
AD 700-900	pit:posthole: remodeled	LA 6171	structure 18	19	0	591.92	0	186.92	3458.08	93.46
	posthole	LA 6170	pit structure 5	14	0	155.77	0	124.62	1401.92	0
	posthole:double	LA 6171	structure 18	31	8.45	23.65	0	0	59.12	0
			structure 26	31	0	83.79	0	9.31	158.28	0
		LA 6171 Total			4.22	53.72	0	4.66	108.7	0
	posthole:main roof support	LA 6170	pit structure 50	160	20.77	41.54	0	0	643.85	0
				173	30.57	305.66	0	61.13	4615.47	0
			pit structure 50 Total		25.67	173.6	0	30.57	2629.66	0
	posthole:main structure NW1/4	LA115862	pit structure 1	17	11.43	0	0	12.86	64.29	0
	posthole:main structure SW1/4	LA 115862	pit structure 1	16	42.26	281.74	3.13	42.26	1000.17	0
	posthole:sealed by floor	LA 6170	pit structure 5	39	0	17.42	0	17.42	191.61	0
AD 700-900 Total	otal				12.61	166.83	0.35	50.5	1288.09	10.38

Posthole Features
Selected Taxa,
on Values,
Concentratio
e 9, Mean
Pivot Table
9.24.19. F

						NAP		
Age Ty	Type	Site	Structure	Feature	Asteraceae Asteraceae Artemisia Ephedra	Asteraceae I /	Artemisia	Ephedra
AD 700-900 pi	pit:posthole:remodeled	LA 6171	structure 18	19	249.23	218.08	124.62	124.6
ğ	posthole	LA 6170	pit structure 5	14	31.15	218.08	249.23	0
ğ	posthole:double	LA 6171	structure 18	31	11.82	0	0	0
			structure 26	31	46.55	18.62	0	0
		LA 6171 Total			29.19	9.31	0	0
ğ	posthole:main roof support							
Ľ	LA 6170	pit structure 50		160	62.31	83.08	83.08	0
				173	0	366.79	0	0
			pit structure 50 Total		31.15	224.93	41.54	0
ğ	posthole:main structure NW1/4	LA 115862	pit structure 1	17	0	0	0	12.86
ğ	posthole:main structure SW1/4	LA 115862	pit structure 1	16	42.26	70.43	0	126.8
ğ	posthole:sealed by floor	LA 6170	pit structure 5	39	0	0	69.68	0
AD 700-900 Total	la				49.26	108.34	58.51	29.36

						Ecor	Economic	
					Onagra-	Cact-	Onagra- Cact- Cylindr- Sphaer-	Sphaer-
Age	Type	Site	Structure	Feature	ceae	aceae	aceae opuntia	alcea
AD 700-900	pit:posthole:remodeled	LA 6171	structure 18	19	0	0	31.15	14.38
	posthole	LA 6170	pit structure 5	14	0	0	0	0
	posthole:double	LA 6171	structure 18	31	0	0	0	0
			structure 26	31	0	0	0	0
		LA 6171 Total	tal		0	0	0	0
	posthole:main roof support	LA 6170	pit structure 50	160	0	0	2.97	0
				173	0	0	0	0
			pit structure 50 Total		0	0	1.48	0
	posthole:main structure NW1/4	LA 115862	pit structure 1	17	0	0	0	0
	posthole:main structure SW1/4	LA 115862	pit structure 1	16	0	28.2	14.09	3.13
	posthole:sealed by floor	LA 6170	pit structure 5	39	2.68	0	0	0
AD 700-900 Total	al				0.3	3.13	5.36	1.95

led.
ntinu
ů.
. 19
24
ble
Tal

									Non-	
	Type	Site	Structure	Feature	Feature <i>Zea may</i> s	Arboreal	NAP	Economic	economic	Total
A.D. 700-900	pit:posthole:remodeled	LA 6171	structure 18	19	186.92	591.92	4967.84	232.46	5312.93	5545.38
	posthole	LA 6170	pit structure 5	14	0	155.77	2211.92	0	2523.46	2523.46
	posthole double	LA 6171	structure 18	31	11.82	32.1	94.6	11.82	106.42	118.25
			structure 26	31	0	83.79	270	0	353.79	353.79
		LA 6171 Total			5.91	57.94	182.3	5.91	230.11	236.02
	posthole:main roof support	LA 6170	pit structure 50	160	41.54	62.31	958.35	44.51	1035.49	1080
				173	0	336.23	5043.4	0	5715.85	5715.85
			pit structure 50 Total		20.77	199.27	3000.8	22.25	3375.67	3397.9
	posthole:main structure NW1/4	LA 115862	pit structure 1	17	0	11.43	6	0	8	06
	posthole:main structure SW1/4	LA 115862	pit structure 1	16	6.26	327.13	1404	51.65	1666.96	1718.6
	posthole:sealed by floor	LA 6170	pit structure 5	90 90	0	17.42	333.65	2.68	363.13	365.81
A.D. 700-900 Total	otal				27.39	179.79	1708.2	38.12	1907.56	1945.68

Age Type Site S AD 700-900 sipapu LA 6170 p unknown (blank) LA 265 p AD 700-900 niche:stab covered LA 265 p AD 700-900 niche:wall LA 265 p AD 700-900 vent shaft:bell-shaped LA 265 p AD 700-900 vent shaft:bell-shaped LA 265 p AD 700-900 sipapu LA 265 p AD 700-900 sipapu LA 265 p AD 700-900 niche:wall LA 265 p AD 700-900 niche:wall LA 265 p AD 700-900 niche:wall LA 265 p AD 700-900 vent shaft:bell shaped LA 265 AD 700-900 vent shaft:bell shaped LA 265 AD 700-900 vent shaft:bell shaped LA 265 AD 700-900 sipapu LA 265 AD 700-900 sipapu LA 265 AD 700-900 niche:stab covered LA 265 AD 700-900 niche:stab covered LA 249 AD 700-900 niche:stab covered LA 249 AD 700-900 niche:stab covered LA 249 AD 700-900 niche:stab covered <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Type Site sipapu LA 6170 (blank) LA 265 niche:slab covered LA 265 niche:wall Total niche:wall Total niche:wall LA 265 sipapu LA 265 n (blank) n (blank) n (blank) 900 sipapu n (blank) n (blank) n (blank) n (blank) n blank) n blank) n (blank) n blank) n blank) n blank) n blank) n LA 265 niche:wall LA 265 niche:wall Total 900 vent shaft:bell shaped 1900 vent shaft:bell shaped 100 vent shaft:bell shaped 100 inche:wall 100 inche:wall 1170 LA 265 1170 LA 265 1170 LA 265		ļ			AP	L			
sipapu LA 6170 (blank) LA 249 niche:slab covered LA 265 niche:wall Total LA 6169 niche:wall Total LA 265 vent shaft:bell-shaped LA 265 no (blank) LA 249 900 niche:slab covered LA 265 niche:wall Total LA 6169 niche:wall Total LA 6169 niche:wall Total Site 900 vent shaft:bell shaped LA 265 niche:wall total Site 1900 sipapu LA 6169 niche:wall total Site 1900 vent shaft:bell shaped LA 265 niche:wall total total LA 265 niche:wall total tot	Structure	Feature <i>F</i>	P. pond. P.	P. edulis Jun	Juniperus F	Picea	Salix Qu	Quercus	Prosopis
(blank) LA 249 niche:slab covered LA 265 niche:wall LA 265 niche:wall Total vent shaft:bell-shaped LA 265 900 sipapu LA 249 900 sipapu LA 249 900 sipapu LA 249 900 sipapu LA 249 900 sipapu LA 265 n (blank) LA 265 n (blank) LA 265 n (blank) LA 265 n (blank) LA 265 n niche:wall TA 249 000 sipapu LA 265 niche:wall Total LA 265 n niche:wall Cotal 000 sipapu LA 265 n (blank) LA 249 0.900 sipapu LA 249 0.900 sipapu LA 249 0.900 sipapu LA 265 n (blank) LA 265 niche:wall LA 265 niche:wall LA 265	pit structure 50	182	57.86	276.43	0	0	0	0	0
niche:slab covered LA 265 niche:wall Total LA 6169 niche:wall Total LA 265 vent shaft:bell-shaped LA 265 Type Site 6170 n (blank) LA 249 900 sipapu LA 6170 n (blank) LA 249 900 niche:slab covered LA 265 niche:wall Total LA 6160 niche:wall Total Site 249 000 vent shaft:bell shaped LA 265 niche:wall Covered	extramural	0	738.95 31	3055.26 39	397.89 2	28.42 1	14.21 7	71.05	14.21
niche:wall Total vent shaft:bell-shaped LA 265 vent shaft:bell-shaped LA 265 Type Site 900 sipapu LA 6170 n (blank) LA 249 niche:slab covered LA 265 niche:wall Total 200 vent shaft:bell shaped LA 265 niche:wall Total 200 sipapu LA 616 LA 616 LA 616 niche:slab covered LA 265 niche:wall total 1900 sipapu LA 265 niche:wall Cotal 2900 sipapu LA 265 niche:wall Cotal 2900 niche:slab covered LA 265 niche:wall Cotal 1900 niche:slab covered LA 265 niche:wall LA 265 niche:wall Cotal	pit structure 13	207	0	135	0	0	0	0	0
niche:wall Total vent shaft:bell-shaped LA 265 Type Site 900 sipapu LA 6170 n (blank) LA 249 900 niche:slab covered LA 265 niche:wall Total Niche:wall Total 2900 vent shaft:bell shaped LA 265 niche:wall covered LA 265 niche:wall covered LA 265 niche:wall covered LA 265 niche:wall Covered LA 265 niche:wall LA 616	pit structure 4	41	160.31	894.38	0	9.31	0	0	0
niche:wall Total vent shaft:bell-shaped LA 265 Type Site 900 sipapu LA 6170 n (blank) LA 249 900 niche:slab covered LA 265 niche:wall Total 900 vent shaft:bell shaped LA 265 niche:wall Total 900 vent shaft:bell shaped LA 265 niche:wall total 900 sipapu LA 249 niche:wall total 17pe Site 14 249 LA 249 LA 249 LA 249 LA 265 LA 265 LA 265 LA 265 LA 265 LA 265 LA 265 LA 265 niche:wall total 100 sipapu LA 265 niche:wall total 100 sibapu LA 265 niche:wall total 100 sibapu LA 265 LA	pit structure 47:circular	163	7.3	0	0	0	0	0	0
vent shaft:bell-shaped LA 265 Type Site 900 sipapu LA 6170 0 (blank) LA 249 900 niche:slab covered LA 265 niche:slab covered LA 265 niche:wall Total Diche:wall Total Niche:wall Total Site LA 616 LA 616 LA 616 LA 616 LA 617 Niche:wall Covered LA 265 niche:wall Covered LA 265 niche:wall Covered LA 265 niche:wall Covered LA 265 niche:wall LA 616 Niche:wall LA 616			83.8	447.19		4.66	0	0	0
Type Si sipapu LA sipapu LA (blank) LA niche:slab covered LA niche:slab covered LA niche:wall LA niche:wall LA niche:slab covered LA niche:wall LA niche:slab covered LA niche:slab covered LA niche:slab covered L niche:slab covered L niche:slab covered L	pit structure 1	125	0	147.27	0	0	0	0	0
Type Si sipapu LA sipapu LA (blank) LA niche:slab covered LA niche:slab covered LA niche:wall LA niche:wall LA niche:wall LA niche:wall LA niche:slab covered LA vent shaft:bell shaped LA viche:slab S niche:slab S niche:slab L	Table 2	Table 24.20. Continued	led.						
Type Si sipapu LA sipapu LA (blank) LA niche:slab covered LA niche:wall LA niche:wall Total vent shaft:bell shaped LA Type Si restab Si niche:slab LA					NAP	٩			
Type Si sipapu LA (blank) LA niche:slab covered LA niche:wall La vent shaft:bell shaped La viche:slab S niche:slab Covered niche:slab L					Cheno-	am Ast	Cheno-am Asteraceae Asteraceae	Astera	ceae
sipapu LA (blank) LA niche:slab covered LA niche:wall Total LA vent shaft:bell shaped LA vent shaft:bell shaped LA vent shaft:bell shaped LA (blank) L (blank) L	Structure	Feature	Poaceae	Cheno-am	n af.		hs.	<u>s</u>	
(blank) LA niche:slab covered LA niche:wall Total vent shaft:bell shaped LA Type S 0 sipapu L (blank) L niche:slab covered L niche:wall Covered L	70 pit structure 50) 182	19.29	231.43		0	32.14	32.	32.14
niche:slab covered LA niche:wall Total vent shaft:bell shaped LA Type S 0 sipapu L (blank) L 0 niche:slab covered L niche:wall L	49 extramural	0	198.95	1364.21			582.63	554.21	21
niche:wall Total niche:wall Total vent shaft:bell shaped LA Type S 0 sipapu L 0 niche:slab covered L niche:wall covered L	35 pit structure 13	3 207	0	837	27	7	135		27
niche:wall Total vent shaft:bell shaped LA Type S 0 sipapu L (blank) L niche:slab covered L	69 pit structure 4	41	25.31	4657.5	16.88	ω	75.94	278.44	44
niche:wall Total vent shaft:bell shaped LA Type S 0 sipapu L (blank) L 0 niche:slab covered L niche:wall LA	pit structure	163	0	87.57		0	0		0
niche:wall Total vent shaft:bell shaped LA Type S 0 sipapu L (blank) L 0 niche:slab covered L niche:wall LA	47:circular								
vent shaft:bell shaped LA Type S 0 sipapu L (blank) L 0 niche:slab covered L niche:wall L			12.66	2372.53	8.44	4	37.97	139.22	22
Type South and the second second second second second second research and the second second second the second seco	55 pit structure 1	125	29.45	2474.18		0	88.36	117.82	82
Type S 00-900 sipapu L nown (blank) L 00-900 niche:slab covered L niche:wall L	Table 2	Table 24.20. Continued.	led.						
Type S 00-900 sipapu L nown (blank) L 00-900 niche:slab covered L niche:wall L			NAP			Ec	Economic		
Type S 00-900 sipapu L nown (blank) L 00-900 niche:slab covered L niche:wall L					Onagra-	Faba-	- Solana-		Poly-
sipapu (blank) L niche:slab covered L niche:wall L	Structure	Feature	Artemisia	Ephedra	ceae	ceae	ceae		gonum
(blank) L 00 niche:slab covered L niche:wall L	170 pit structure 50	0 182	0	6.43	0		0 2.97	97	0
niche:slab covered L niche:wall L	:49 extramural	0	85.26	28.42	0	14.21	1 14.21	21	0
_	65 pit structure 13	3 207	0	0	0		0	0	0
	169 pit structure 4	41	75.94	50.63	2.33		0	0	8.44
	pit structure 47:circular	163	0	0	21.89		0	0	0
niche:wall Total			37.97	25.31	12.11		0	0	4.22
AD 700-900 vent shaft:bell shaped LA 265	165 pit structure 1	125	0	0	13.59		0	0	0

onial Easturae Č Salartad Tovo entration Values 5 N Tahla 24 20 Divint Tahla 10

										Economic	nic	
							•		Bra	Brassica-	Cacta-	Cylindro-
Age	Type	эе	S	Site S	Structure		Feature	Eriogonum		ceae	ceae	puntia
AD 700-900		sipapu	ב	_A 6170 p	pit structure	e 50	182	0		0	0	6.43
Unknown	-	(blank)	ב	LA 249 e.	extramural		0	14.21	~	14.21	0	0
AD 700-900		niche:slab covered	ב	LA 265 p	pit structure 13	e 13	207	0		0	0	54
	nic	niche:wall	ב	LA 6169 p	pit structure	e 4	41	0		0	4.66	2.33
				. œ.	pit structure	a)						
				4	47:circular		163	0		0	0	21.89
	nio	niche:wall Total						0		0	2.33	12.11
AD 700-900		vent shaft:bell shaped		LA 265 p	pit structure 1	e 1	125	0		0	0	88.36
				Table	Table 24.20. Continued	ontinued						
										Economic	nic	I
								1 —	Platyo-	Sphaer-		
Age		Type		Site	Structure	a)		Feature	puntia	alcea	Zea mays	S
AD 7	AD 700-900	sipapu		LA 6170	pit structure 50	ure 50			0	0	38.57	
Unkn	Unknown	(blank)		LA 249	extramural	ral		0	0	0	15.5	10
AD 7	AD 700-900	niche:slab covered	ered	LA 265	pit structure 13	ure 13		207	27	0	6.23	~
		niche:wall		LA 6169	pit structure 4	ure 4		41	2.33	33.75	109.69	•
					pit struct	oit structure 47:circular	sircular	163	0	0	0	~
		niche:wall Total	_						1.16	16.88	54.84	-
AD 7	AD 700-900	vent shaft:bell shaped	shaped	LA 265	pit structure 1	ure 1		125	0	0	58.91	_
				Table 2	Table 24.20. Continued	ntinued.						
											Non-	
Age	Type	S	Site	Structure	ш	eature /	Feature Arboreal	NAP	Ecor	Economic e	economic	Total
AD 700-900	sipapu	L	LA 6170	pit structure	ire 50	182	334.29	369.4		47.97	652.75	700.71
Unknown	(blank)	L	LA 249	extramural	le	0	4334.21	3028.13		72.34	7288.71	7361.1
AD 700-900	niche:sl	niche:slab covered L/	LA 265	pit structure 13	ire 13	207	135	1194.23		87.23	1235.77	1323
	niche:wall		LA 6169	pit structure 4	ire 4	41	1064	5403.2		163.51	6282.74	6446.3
				pit structure	re	163	7.3	131.35		43.78	87.57	131.35
				47:circular	L					1		
	niche:wall Total						535.65			103.65	3185.15	3288.8
AD 700-900	vent shá	vent shaft:bell shaped L/	LA 265	pit structure 1	ire 1	125	147.27	2929.59		0.87	2902.41	3063.3

Age AD 700-900						4	AP			NAP
006-002 (Type	Site	Structure	Feature	ure P. pond.	P. eduli	Salix	Prosopis	Poaceae	te Cheno-am
	Dump:ash/refuse L	LA 6169	Pit structure 47: circular		152 (0 150		0	0	930
Unknown	ration	LA 249	Extramural		3 67.5	5 315	22.5	0	22.5	675
	assoc ash stain Activity area	1 4 6170	Evtraminal	Ľ	55 53 11	132 70	C	7 60	JE EE	7363 6
0071-0011-0								0	00.04	
			Table 24.20. Continued.	0. Continu	ed.					
							NAP			
							Cheno-ar	Cheno-am Asteraceae		Asteraceae
Age	Type	Site	Structure	Feature	Poaceae	Cheno-am	af.	hs.		s
AD 700-900	sipapu	LA 6170	pit structure 50	182	19.29	231.43	0	32.14		32.14
Unknown	(blank)	LA 249	extramural	0	198.95	1364.21	0	582.63		554.21
AD 700-900	niche:slab covered	LA 265	pit structure 13	207	0	837	27	~	135	27
	niche:wall	LA 6169	pit structure 4	41	25.31	4657.5	16.88		75.94 2	278.44
			pit structure	163	0	87.57	0		0	0
			47:circular							
	niche:wall Total				12.66	2372.53	8.44	37.		139.22
AD 700-900	vent shaft:bell shaped LA	I LA 265	pit structure 1	125	29.45	2474.18	0	88.	88.36 1	117.82
			Table 24.20. Continued). Continue	.bé					
					NAP			Economic	mic	
							Onagra-	Faba-	Solana-	Poly-
Age	Type	Site		Feature	Artemisia	Ephedra	сеае	сеае	сеае	gonum
AD 700-900) sipapu	LA 6170	pit structure 50	182	0	6.43	0	0	2.97	0
Unknown	(blank)	LA 249	extramural	0	85.26	28.42	0	14.21	14.21	0
AD 700-900) niche:slab covered	LA 265	pit structure 13	207	0	0	0	0	0	0
	niche:wall	LA 6169	pit structure 4	41	75.94	50.63	2.33	0	0	8.44
			pit structure 47 circular	163	0	0	21.89	0	0	0
	niche:wall Total				37.97	25.31	12.11	0	0	4.22

						oim
Age	Type	Site	Structure	Feature	Feature Sphaeralcea Zea mays	Zea mays
AD 700-900	dump:ash/refuse	LA 6169	LA 6169 pit structure 47: circular	152	0	0
Unknown	cobble conc assoc ash stain	LA 249	extramural	с	0	0
AD 1100-1200 activity	activity area	LA 6170	LA 6170 extramural	5B	26.56	5.69

.
e
Ц
Ē
Б
S
•
Ņ
4
2
<u>e</u>
<u>0</u>
Та

Table 24.21. Continued.

Age	Type	Site	Structure	Feature	Feature Arboreal	NAP	Economic	NAP Economic Non-economic	Total
AD 700-900	Dump:ash/refuse	LA 6169	LA 6169 Pit structure 47: circular	152	180	1140	0	1320	1320
Unknown	Cobble concentration assoc ash stain	LA 249	LA 249 Extramural	ო	405	836.25	3.75	1233.75	1237.5
AD 1100-1200	Activity area	LA 6170	LA 6170 Extramural	5B	191.6	3203.96	123.3	3435.39	3558.69

Таха
Selected
A 265, S
s from L/
Table 12, Column Samples
Column
12,
able 24.22. Pivot Table
сi Ы
e 24.22.
e
Tab

						AP					NAP	
												Cheno-
Site	Type	Feature	Stratum	P. pond.	P. edulis	Stratum P. pond. P. edulis Juniperus	Picea	Salix	Quercus	Poaceae	Cheno-am	am af.
LA 265 Column	Column	0	Ļ	42.49	376.76	1.37	1.02	10.35	4.11	5.48	360.85	0
			2.1	0	0	0	0	0	0	0	49.09	0
			2.2	0	60	0	0	0	0	30	360	0
			2.3	0	30.86	0	0	0	0	0	216	0
			2.4	27.09	218.08	0	0	0	0	0	467.31	0
			2.5	0	21.6	0	0	0	0	0	432	0
			ო	0	94.06	0	0	10.45	0	31.35	167.23	0
			3.1	26.13	156.77	0	0	26.13	0	78.39	627.1	0
	Column Total			18.07	171.16	0.41	0.3	6.76	1.23	15.62	340.13	0
	Pit: lg: irregular	14	-	31.76	31.76	31.76	0	0	0	31.76	1143.53	0
	1		7	0	132.79	0	0	0	0	0	1115.41	0
			۷	55.86	279.31	0	0	0	55.86	55.86	3910.34	0
			ო	0	152.83	0	0	0	0	0	1100.38	0
			4	43.78	197.03	0	0	0	0	197.03	6742.7	0
			S	0	16.2	0	0	0	0	0	291.6	0
			9	48.36	48.36	0	0	0	0	24.18	967.16	24.18
			7	0	53.11	0	0	0	0	79.67	610.82	0
			ω	0	44.38	0	0	0	0	66.58	599.18	0
		14 Total		19.97	106.2	3.53	0	0	6.21	50.56	1831.24	2.69

				NAP			Economic	
			Asteraceae	Asteraceae				Cylindro-
Site Type	Feature	Stratum	hs	s	Artemisia	Onagraceae	Cactaceae	puntia
Column	0	~	46.12	61.95	4.11	1.02	18.47	4.88
		2.1	0	0	0	0	0	0
		2.2	30	30	30	0	210	30
		2.3	30.86	30.86	15.43	0	30.86	46.29
		2.4	0	62.31	0	0	62.31	62.31
		2.5	64.8	64.8	0	0	64.8	21.6
		ო	0	52.26	0	1.61	10.45	0
		3.1	0	78.39	0	0	0	0
Column Total			26.4	50.44	5.78	0.47	43.38	17.48
Pit: lg: irregular	14	~	0	95.29	0	0	63.53	0
		7	79.67	0	0	0	79.67	0
		۷	0	279.31	0	0	0	0
		ო	152.83	91.7	0	0	0	0
		4	87.57	853.78	262.7	0	43.78	43.78
		5	48.6	48.6	0	0	32.4	16.2
		9	48.36	120.9	0	0	120.9	96.72
		7	0	53.11	0	0	0	53.11
		8	133.15	488.22	0	0	22.19	0
	14 Total		61.13	225.66	29.19	0	40.27	23.31

						Economic			
									Non-
Site Type	Feature	Stratum	Sphaeralcea	Zea mays	Total	Arboreal	NAP	Economic	economic
LA 265 Column	0	~	7.61	38.47	1019.96	436.09	619.79	70.44	949.52
		2.1	0	0	49.09	0	49.09	0	49.09
		2.2	0	300	1110	60	1050	540	570
		2.3	0	15.43	432	30.86	401.14	92.57	339.43
		2.4	0	218.08	1121.54	245.17	903.46	342.69	778.85
		2.5	0	108	777.6	21.6	756	194.4	583.2
		ო	0	0	407.61	104.52	304.7	12.06	395.55
		3.1	0	0	1045.16	209.03	836.13	0	1045.16
Column Total			2.28	75.69	800.29	197.94	615.99	139.3	660.98
Pit: lg: irregular	14	~	0	0	1429.41	95.29	1334.12	63.53	1365.88
		0	0	26.56	1487.21	132.79	1354.43	106.23	1380.98
		۷	0	279.31	5139.31	391.03	4748.28	279.31	4860
		ო	0	0	1558.87	152.83	1406.4	0	1558.87
		4	0	853.78	9676.22	240.81	9435.41	941.35	8734.86
		2	0	16.2	469.8	16.2	453.6	64.8	405
		9	0	24.18	1595.82	96.72	1499.1	241.79	1354.03
		7	0	53.11	929.51	53.11	876.39	106.23	823.28
		œ	0	0	1375.89	44.38	1331.51	22.19	1353.7
	14 Total		0	139.24	2629.12	135.91	2493.21	202.83	2426.29

Site, Age, Structure and Feature Type by Economic Pollen	Feature Onagraceae Fabaceae Solanaceae <i>Polygonum Eriogonum</i>	0 0 0 6	11 0 0 0 0 0	20 0 0 0 0	cture 17 0 0 0 0 0	16 0	0 0 0	cobble concentration assoc ash stain 3 0 0 0 0	0 0 14.21 14.21 0 14.21	19 in 15 0 0 0 0 0	229 0 0 0 0 0	156 0 0 0 0 0	0 0 0	15 0 0 0 0 0	0	41 0	C	shaped:storage w/ adult burial 24 0 0 0 0 0		0 0 6.43 0	age w/ infant burial 23 0 0 0 0 0	27 0 0 0 0 0	II 191 0 0 0 0 0 0		125 13.59 0 0 0	d 207 0 0 0 0 0	141 0 0 0 0 0	0 0 0 0	
Type by Econom		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13.59	0	0	0	
nd Feature	Feature	ი	11	8	17	16	9	ო	0	19 in 15	229	156	14	15	17	41	127	24	26	00	33	27	191	107	125	207	141	0	26
te, Age, Structure					cture	cture		on assoc ash stain								t 27	Je	rage w/ adult burial	age		age w/ infant burial		_	ot drum(?)	ped	q			
24.23. Pivot Table 13, Si	Type	pit:roasting		pit:ash	posthole:main structure	posthole main structure	floor	cobble concentrati	(blank)	burial:turkey	pit:bell shaped	pit:cist:wall of F 56	pit:lg:irregular		pit:oval:lg	pit:bell shaped:in Feat 27	pit:bell shaped:storage	pit:bell shaped:sto	pit:bell shaped:storage	w/ dog burial	pit:bell shaped:storage w/ infant burial	pit:keyhole	pit:bell shaped:smal	pit: linear: floor: foot drum(?)	vent shaft:bell shaped	niche:slab covered	pit:bell shaped	floor	لم الم من من الم الم الم
Table 24.23. Pivot Table 13, Si	Structure Type	Extramural pit:roasting		Pit structure 1 pit:ash		SW posthole main stru	tructure 6		-	Extramural burial:turkey	pit:bell shaped	pit:cist:wall of F 56	pit:lg:irregular		pit:oval:lg	Extramural:SU pit:bell shaped:in Fea	pit:bell shaped:storac	pit:bell shaped:sto	pit:bell shaped:stor	w/ dog burial	pit:bell shaped:stor	pit:keyhole	pit:bell shaped:sma	pit: linear: floor: fo	vent shaft:bell sha	Pit structure 13 niche:slab covere	pit:bell shaped	Pit structure 4 floor	لم الم من من النابية من المالية م
Table 24.23. Pivot Table 13, Si							tructure 6				pit:bell shaped	pit:cist:wall of F 56	pit:lg:irregular		pit:oval:lg	_	pit:bell shaped:storac	pit:bell shaped:sto	pit:bell shaped:stor	w/ dog burial	pit:bell shaped:stor	pit:keyhole	pit:bell shaped:sma	pit: linear: floor: fo	vent shaft:bell sha	-	pit:bell shaped		

			Table 24.23. Continued	ntinued.					
Site	Age	Structure	Type	Feature	Onagraceae	Fabaceae	Solanaceae	Polygonum	Eriogonum
LA 6169	AD 700-900	Pit structure 4	floor	4	0	0	0	6.21	24.83
			niche:wall	41	2.33	0	0	8.44	0
		Pit structure 47	bin:storage	121	0	0	0	0	0
		Circular	dump:ash/refuse	152	0	0	0	0	0
			floor.contact	47	0	0	0	0	0
			niche:wall	163	21.89	0	0	0	0
	AD 1100-1200	Pit structure 76	floor	76 in 47	0	0	0	0	0
	AD 1100-1325	Extramural	pit:storage	126	0	0	0	0	0
	AD 1200-1325	Pit room 10	floor:contact	10	0	0	0	0	0
		Pit room 15	pit room	15	0	0	0	0	0
		Pit room 16	basin:mealing	102	0	0	0	0	0
				103	0	0	0	0	17.8
				104	3.02	0	0	0	0
			floor	16	0	0	0	0	0
		Pit room 70	floor	20	0	0	0	0	0
LA 6170	LA 6170 AD 700-900	extramural	pit:rodent damage	92	0	0	0	0	0
			pit:storage:bell shaped subfloor	69	3.68	0	0	0	7.36
		Pit structure 2	floor	ы	0	0	0	0	3.25
		Pit structure 5	floor	bs 5	0	0	0	0	0
			posthole	14	0	0	0	0	0
			posthole:sealed by floor	39	2.68	0	0	0	0
		Pit structure 50	floor	50	0	0	0	0	0
			pit:storage:opening plastered over	156	0	0	0	0	0
				166	0	0	0	0	0
				171	0	0	0	3.15	0
				183	2.2	0	74.31	0	0
				184	0	0	0	26.27	0
			posthole:main roof support	160	0	0	0	0	0
				173	0	0	0	0	0
			sipapu	182	0	0	2.97	0	0

ő.	
tinue	
Sont	
ຕ ເ	
24.2	
~	

Site	Age	Structure	Type	Feature	Onagraceae	Fabaceae	Solanaceae Polygonum		Eriogonum
	AD 1100-1200 extramural	extramural	activity area	5B	0	0	0	5.69	26.6
		Structure 5A	bin:mealing:adobe lined	9	0	0	0	0	21.6
			floor	5A	0	3.46	0	0	0
LA 6171	LA 6171 AD 500-650	extramural	subcist:in bell shaped:burn	93 in 92	0	0	0	0	0
	AD 700-900	extramural	pit:bell shaped:roasting:3	56	0	0	0	0	0
			pit:small	47	0	0	0	0	0
			pit:subfloor	59 in 56	0	0	0	0	0
			pit:subfloor:cist	104 in 83	0	0	0	0	0
			pit:unburned:steep	53	0	0	0	0	0
		Pit structure 60	floor	60	0	0	0	0	0
			floor:under metate	60	0	0	0	2.84	2.84
			floor:under pallet	60	0	0	0	0	0
			pit	63	0	0	0	0	0
		Structure 18	floor	18	0	0	0	0	0
			pit:posthole:remodeled	19	0	0	0	0	0
			pit:storage	24	1.41	0	39.51	0	0
				25	0	0	0	0	0
			posthole:double	31	0	0	0	0	0
		Structure 2	floor	26	0	0	0	0	0
		Structure 26	posthole:double	31	0	0	0	0	0
		Structure 9	floor	6	0	0	0	0	0
	AD 700-1200	extramural	burial:human	85	0	0	0	0	0

	Platyo-	puntia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6.43	0	0	0	0	0	0	27	0	0	0
	Cylindro-	puntia	0	0	0	0	14.09	8.14	0	0	83.79	0	5.6	23.31	0	0	43.67	486	50.63	145.07	488.57	57.86	155.77	63.53	0	17.61	88.36	54	47.18	60	17.08
		Cactaceae	0	0	0	0	28.17	12.69	3.75	0	12.41	0	0	40.27	117.82	0	4.37	129.6	0	24.18	45	28.93	31.15	31.76	11.16	0	0	0	0	20	0
	Brassic-	aceae	0	0	0	0	0	0	0	14.21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		reature	თ	11	20	17	16	9	ო	0	19 in 15	229	156	14	15	17	41	127	24	26	60	23	27	33	191	107	125	207	141	0	76
Table 24.23. Continued	T	I ype	pit:roasting		pit:ash	posthole:main structure	posthole:main structure	floor	cobble conc assoc ash stain	(blank)	burial:turkey	pit:bell shaped	pit:cist:wall of f56	pit:lg:irregular		pit:oval:lg	pit:bell shaped:in feat 27	pit:bell shaped:storage	pit:bell shaped:storage w/ adult burial	pit:bell shaped:storage w/ dog burial		pit:bell shaped:storage w/ infant burial	pit:keyhole		pit:bell shaped:small	pit:linear:floor:?foot drum	vent shaft:bell shaped	niche:slab covered	pit:bell shaped	floor	pit:floor:sealed
		structure	Extramural		Pit structure 1	NN	SW	Pit structure 6	Extramural		Extramural						Extramural:SU											Pit structure 13		Pit structure 4	
		Age	LA 115862 AD 700-900					AD 1100-1200	Unknown		AD 700-900																				
	0110	olte	LA 115862					LA 249			LA 265																				

Site	Але	Structure	Tvne	Feature	Brassic- aceae	Cacta-ceae	Cylindro- nuntia	Platv-onuntia
	5 B. 1			0.0000	05005	0000	barred.	number from t
LA 6169	AD 700-900	Pit structure 4	floor	4	0	6.21	37.24	0
			niche:wall	41	0	4.66	2.33	2.33
		Pit structure 47	bin:storage	121	0	21.6	4.8	0
		circular	dump:ash/refuse	152	0	0	0	0
			floor:contact	47	0	0	0	0
			niche:wall	163	0	0	21.89	0
	AD 1100-1200	Pit structure 76	floor	76 in 47	0	270	60	0
	AD 1100-1325	extramural	pit:storage	126	0	0	0	0
	AD 1200-1325	Pit room 10	floor:contact	10	0	10.84	0	0
			pit room	15	0	0	0	0
		Pit room 16	basin:mealing	102	0	5.12	22.19	0
				103	0	8.55	0	0
				104	0	6.04	3.02	0
			floor	16	0	0	0	0
		Pit room 70	floor	70	0	0	0	0
LA 6170	AD 700-900	extramural	pit:rodent damage	92	0	0	41.01	0
			pit:storage:bell shaped subfloor	69	0	0	18.41	0
		Pit structure 2	floor	7	0	8.27	45.82	0
		Pit structure 5	floor	p s 5	0	10.85	12.66	0
			posthole	14	0	0	0	0
			posthole:sealed by floor	39	0	0	0	0
		Pit structure 50	floor	50	0	0	26.13	0
			pit:storage:opening plastered over	156	0	3.45	0	0
				166	0	0	1.92	0
				171	0	0	6.3	0
				183	0	0	0	0
				184	0	0	2.69	0
			posthole:main roof support	160	0	0	2.97	0
				173	0	0	0	0
			sipapu	182	0	0	6.43	0

<u> </u>
(1)
≚
_
_
_ <u></u>
÷
Ċ
-
0
~
U.
-
•
33
à í
()
4
Ň
ω.
_
0
_
ര
-

	Platyo-	puntia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Cylindo-	puntia	53.11	9.26	8.71	0	0	0	0	0	0	0	0	0	0	0	31.15	0	0	0	0	0	0	0
		Cactaceae	5.69	9.26	3.46	0	0	22.5	0	0	0	25.71	0	0	0	0	0	9.88	0	0	0	0	0	0
		Brassic-aceae	0	0	0	0	0	0	26.56	0	0	0	28.42	0	0	0	0	0	0	0	0	0	0	0
ontinued.		Feature Br	5B	9	5A	93 in 92	56	47	59 in 56	104 in 83	53	60	60	60	63	18	19	24	25	31	26	31	6	85
Table 24.23. Continued.		Type	activity area	bin:mealing:adobe lined	floor	subcist:in bell shaped:burn	pit:bell shaped:roasting:3	pit:small	pit:subfloor	pit:subfloor:cyst	pit:unburned:steep	floor	floor:under metate	floor:under pallet	pit:	floor	pit:posthole:remodeled	pit:storage		posthole:double	floor	posthole:double	floor	burial:human
		Structure	extramural	Structure 5A		extramural	extramural					Pit structure 60				Structure 18					Structure 2	Structure 26	Structure 9	extramural
		Age	AD 1100-1200			LA 6171 AD 500-650	AD 700-900																	AD 700-1200
		Site				LA 6171																		

				O ILLI ILLEU.						
					Sphaeral-	Zea				
Site	Age	Structure	Type	Feature	сеа	mays	Total	Arboreal	NAP	Economic
LA 115862	LA 115862 AD 700-900	Extramural	pit:roasting	6	00.0	00.0	730.59	0.00	730.59	00.0
				11	00.0	00.0	508.24	95.29	317.65	00.0
		Pit structure 1	pit:ash	8	00.0	00.0	752.14	28.93	694.29	00.0
		NN	posthole:main structure	17	00.0	00.0	<u> 00[.]06</u>	11.43	90.06	00.0
		SW	posthole:main structure	16	3.13	6.26	1718.61	327.13	1404.00	51.65
LA 249	AD 1100-1200	Pit structure 6	floor	9	00.0	0.98	1274.78	356.93	920.21	21.81
	Unknown	Extramural	cobble conc assoc ash stain	ო	00.0	00.0	1237.50	405.00	836.25	3.75
			(blank)	0	00.0	15.50	7361.05	4334.21	3028.13	72.34
LA 265	AD 700-900	Extramural	burial:turkey	19 in 15	24.83	55.86	5139.31	363.10	4813.45	176.90
			pit:bell shaped	229	0.0	00.0	3761.69	274.58	3212.54	00.0
			pit:cist:wall of f56	156	00.0	00.0	914.52	26.13	893.99	5.60
			pit:lg:irregular	14	00.0	139.24	2629.12	135.91	2493.21	202.83
				15	0.00	11.33	3063.27	58.91	3015.69	129.15
			pit:oval:lg	17	00.0	18.00	1134.00	108.00	1026.00	18.00
		Extramural:SU	pit:bell shaped:in feat 27	41	17.47	43.67	2226.95	654.99	1571.97	117.90
			pit:bell shaped:storage	127	00.0	259.20	4730.40	712.80	3304.80	874.80
			pit:bell shaped:storage w/ adult burial	24	00.0	50.63	1063.13	50.63	1012.50	101.25
			pit:bell shaped:storage w/ dog burial	26	00.0	22.32	1837.61	217.61	1642.32	191.57
				00	25.71	630.00	3143.57	289.29	2610.00	1202.14
			pit:bell shaped:storage w/ infant burial	33	00.0	00.0	4368.21	578.57	3789.64	86.79
			pit:keyhole	27	00.0	00.0	1339.62	62.31	1277.31	186.92
				33	00 [.] 0	13.61	1683.53	190.59	1506.55	108.91
			pit:bell shaped:small	191	00 [.] 0	00.0	1789.25	193.43	1606.98	11.16
			pit:linear:floor:?foot drum	107	00.0	00.0	369.78	17.61	352.17	17.61
			vent shaft:bell shaped	125	00.0	58.91	3063.27	147.27	2929.59	160.87
		Pit structure 13	Pit structure 13 niche:slab covered	207	00.0	6.23	1323.00	135.00	1194.23	87.23
			pit:bell shaped	141	00 [.] 0	15.73	393.20	15.73	377.48	62.91
		Pit structure 4	floor	0	00.0	30.00	1170.00	00.0	1190.00	110.00
			pit:floor:sealed	76	00.00	12.81	1374.55	220.91	1192.06	38.42

						Zea				
Site	Age	Structure	Type	Feature	Sphaeralcea	mays	Total	Arboreal	NAP	Economic
	AD 1100-1200 extramural	extramural	activity area	5B	26.56	5.69	3558.69	191.59	3203.96	123.3
		Structure 5A	bin:mealing:adobe lined	9	4.63	9.26	1965.6	302.4	1393.2	54
			floor	5A	3.46	12.17	2674.88	357.1	2230.68	31.27
LA 6171	LA 6171 AD 500-650	extramural	subcist: in bell shaped:burn	93 in 92	0	0	3860.43	241.28	3619.15	0
	AD 700-900	extramural	pit: bell shaped:roasting:3	56	0	0	1350	120	1230	0
			pit:small	47	0	0	2677.5	225	2452.5	22.5
			pit:subfloor	59 in 56	0	0	13889.51	823.28	13066.23	26.56
			pit:subfloor:cist	104 in 83	0	0	297	27	270	0
			pit:unburned:steep	53	0	0	711.68	149.83	561.85	0
		Pit structure 60 floor	floor	60	0	23.74	3677.14	462.86	3238.02	49.45
			floor:under metate	60	0	0	2053.42	241.58	1817.53	34.11
			floor:under pallet	60	0	13.85	664.62	138.46	526.15	13.85
			pit:	63	25.71	51.43	1671.43	154.29	1517.14	77.14
		Structure 18	floor	18	0	0	211.76	0	211.76	0
			pit:posthole:remodeled	19	14.38	186.92	5545.38	591.92	4967.84	232.46
			pit:storage	24	1.41	88.9	572.93	79.02	498.14	141.11
				25	0	1.74	645.56	170.53	476.78	1.74
			posthole:double	31	0	11.82	118.25	32.1	94.6	11.82
		Structure 2	floor	26	0	0	767.37	142.11	625.26	0
		Structure 26	posthole:double	31	0	0	353.79	83.79	270	0
		Structure 9	floor	თ	0	15.28	668.41	123.14	545.28	15.28
	AD 700-1200	extramural	burial:human	85	0	0	730.59	43.98	701.27	0

					Sphaer-	Zea				
Site	Age	Structure	Type	Feature	alcea	mays	Total	Arboreal	NAP	Economic
LA 6169	AD 700-900	Pit structure 4	floor	4	12.41	12.41	3165.5	757.24	2408.28	99.31
			niche:wall	41	33.75	109.69	6446.3	1064	5403.2	163.51
		Pit structure 47	bin:storage	121	0	21.6	1490.4	324	1171.2	48
		circular	dump:ash/refuse	152	0	0	1320	180	1140	0
			floor:contact	47	0	30	1290	60	1230	30
			niche:wall	163	0	0	131.35	7.3	131.35	43.78
	AD 1100-1200	Pit structure 76	floor	76 in 47	0	09	5100	1230	3870	390
	AD 1100-1325	extramural	pit:storage	126	0	2.71	1021.3	211.3	812.71	2.71
	AD 1200-1325	Pit room 10	floor.contact	10	0	27.09	986.09	117.39	906.62	37.93
		Pit room 15	pit room	15	0	0	1914.6	171.82	1742.73	0
		Pit room 16	basin:mealing	102	0	22.19	1841.9	443.84	1403.2	49.5
				103	0	53.41	1317.4	373.85	952.06	79.75
				104	0	30.22	1577.7	670.97	906.72	42.31
			floor	16	0	2.17	1281.9	281.74	1002.34	2.17
		Pit room 70	floor	70	0	3.34	130.18	108.48	25.03	3.34
LA 6170	LA 6170 AD 700-900	extramural	pit:rodent damage	92	0	41.01	758.73	61.52	697.22	82.03
			pit:storage:bell shaped subfloor	69	3.68	73.64	1863	795.27	1067.73	106.77
		Pit structure 2	floor	2	0	30.66	2703.9	585.71	2118.22	88
		Pit structure 5	floor	ps5	0	35.82	2894.1	538.76	1879.09	59.32
			posthole	14	0	0	2523.5	155.77	2211.92	0
			posthole:sealed by floor	39	0	0	365.81	17.42	333.65	2.68
		Pit structure 50	floor	50	0	39.19	343.16	26.13	290.9	65.32
			pit:storage:opening plastered over	156	0	0	217.61	24.18	172.71	3.45
				166	0	24.92	311.54	149.54	163.92	26.84
				171	0	3.15	1616.9	384.51	1235.49	12.61
				183	0	0	847.16	29.72	819.63	76.51
				184	0	17.51	446.59	26.27	423.02	46.48
			posthole:main roof support	160	0	41.54	1080	62.31	958.35	44.51
				173	0	0	5715.9	336.23	5043.4	0
			sipapu	182	0	38.57	700.71	334.29	369.4	47.97

			Pinus	Pinus					Cheno-		Non-		
Burial	Site	Feature	Feature ponderosa	edulis	Picea	Abies	Juniperus	Poaceae	am	Economic	economic	Cactaceae	Cylindropuntia
Adult	LA 265	24	0	5.51	0	0	0	0	24.79	0	33.05	0	0
Child	LA 115862	9	0	0.48	0	0	0	0	2.86	0.48	6.19	0	0
	LA 6169	49	29.86	61.13	0.2	0.11	0.23	1.57	81.44	1.73	192.1	0.34	0.11
Child Total			19.91	40.91	0.13	0.07	0.15	1.05	55.25	1.31	130.13	0.23	0.07
Female	LA 6169	7	0.29	7.54	0.67	0	0	0	0.78	0.68	14.51	0	0
Male	LA 6169	81	2.17	12.49	0	0	0	1.9	17.11	1.43	42.83	0	0
Unknown	LA 115862	7	0.3	4.4	0.24	0	0	1.1	6.59	2.71	23.84	0.2	0
	LA 265	22	1.09	6.87	0	0	0	0.98	25.41	9.6	50.72	0.87	5.56
		24	0	0	0	0	0	0	6.65	1.73	11.58	0.42	0.42
		244	0	0.16	0	0	0	0.02	1.01	0.03	2.05	0.02	0.005
	LA 265 Total		0.27	1.8	0	0	0	0.25	8.52	2.85	16.6	0.33	0.15
Unknown Total	a		0.29	3.1	0.12	0	0	0.68	7.55	2.78	20.22	0.27	0.75

Table 24.24. Continued.

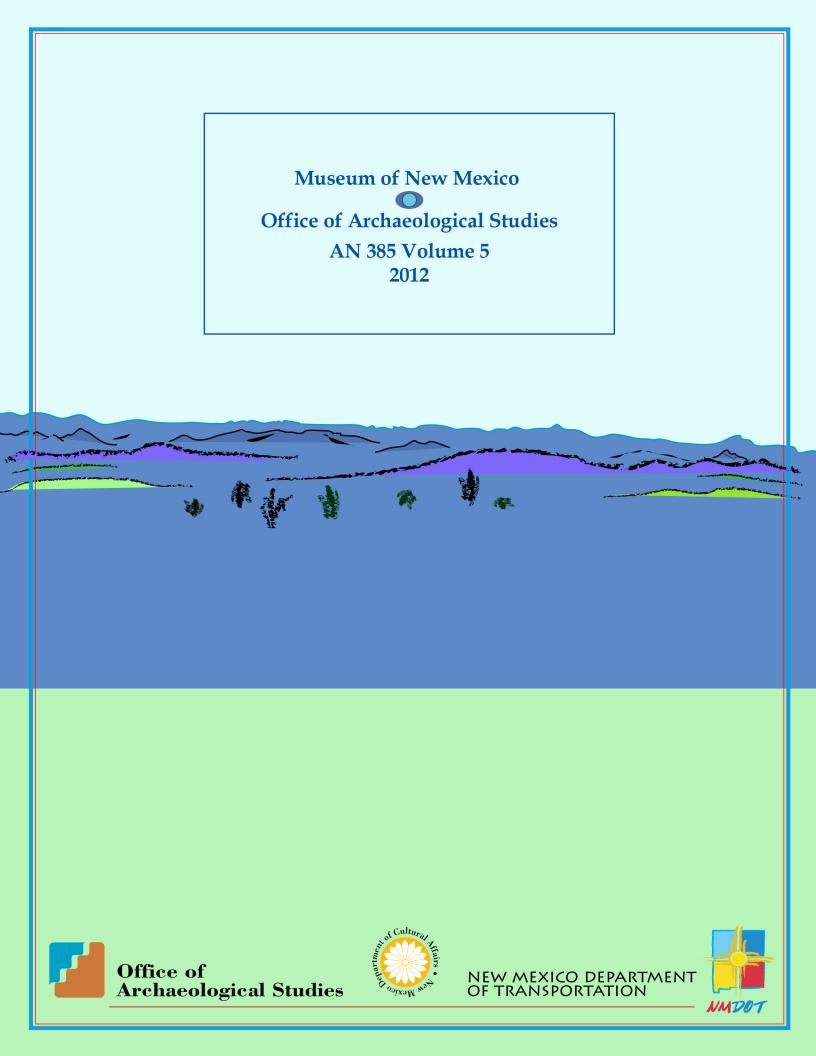

			Platy-							
Burial	Site	Feature opuntia	opuntia	Sphaeralcea	Cucurbitaceae Zea mays	Zea mays	Solanaceae	Rosaceae	Polygonum	Eriogonum
Adult	LA 265	24	0	0	0	0	0	0	0	0
Child	LA 115862	9	0	0	0	0.48	0	0	0	0
	LA 6169	49	0	0	0	0.91	0	0.231	0.145	0
Child total		0	0	0	0.77	0	0.154	0.097	0	0
	LA 6169	0	0	0	0	0.13	0	0.558	0	0
	LA 6169	81	0.27	0.27	0	0.81	0	0	0	0.072
	LA 115862	7	0	0.46	0	1.55	0	0	0	0.105
	LA 265	22	0.22	0	0.21	2.61	0	0	0	0.109
		24	0	0	0	0.06	0.83	0	0	0
		244	0	0	0	0.006	0	0	0	0
	LA 265 total		0.05	0	0.05	0.67	0.2	0	0	0.027
Unknown total			0.03	0.23	0.03	1.11	0.1	0	0	0.066

	Table 24.2	Table 24.25. Pivot Table 15: V	/essel Ty	rpe by Mean	5: Vessel Type by Mean Pollen Concentration Values, Selected Economic Taxa	ration Values, S	selected Econ	iomic Taxa	
Vessel									
Type	Age	Site	Feature	Zea mays	Cucurbitaceae	Sphaeralcea	Cactaceae	Cylindropuntia	Platyopuntia
Bowl	AD 1100-1200	LA 6169	81	0.81	0	0.27	0	0	0.27
	AD 700-900	LA 115862	7	1.03	0	0	0.32	0	0
		LA 6169	0	0.5	0	0	0	0	0
	AD 700-900 Total			0.77	0	0	0.16	0	0
Bowl total				0.78	0	0.09	0.11	0	0.09
Jar	AD 700-900	LA 115862	7	2.6	0	0	0.24	0	0
		LA 265	244	0.01	0	0	0.04	0	0
		LA 6169	0	0	0	0	0	0	0
			49	1.39	0	0	0.46	0	0
		LA 6169 Total		0.69	0	0	0.23	0	0
	AD 700-900 Total			1.32	0	0	0.2	0	0
Mug	AD 700-900	LA 265	244	0	0	0	0	0.01	0
I	AD 700-900	LA 265	22	2.62	0.22	0	0.87	5.56	0.22
		LA 6169	0	0	0	0	0	0	0
	AD 700-900 Total			1.31	0.11	0	0.44	2.78	0.11
Pot	AD 700-900	LA 265	24	0	0	0	0	0	0
	AD 700-900	LA 115862	9	0.48	0	0	0	0	0
			7	0	0	1.82	0	0	0
		LA 115862 Total		0.24	0	0.91	0	0	0
		LA 265	24	0.06	0	0	0.42	0.42	0
	AD 700-900 Total			0.18	0	0.61	0.14	0.14	0
Sherds	AD 700-900	LA 6169	49	0.43	0	0	0.22	0.22	0
Utility	AD 700-900	LA 6169	7	0	0	0	0	0	0

		-	auro 24.2					
Vessel								
Type	Age	Site	Feature	Feature Artemisia	Solanaceae		Rosaceae Polygonum	Eriogonum
Bowl	AD 1100-1200	LA 6169	81	1.9	0	0	0	0.07
	AD 700-900	LA 115862	7	0	0	0	0	0
		LA 6169	0	0	0	0	0	0
	AD 700-900 Total			0	0	0	0	0
Bowl total				0.63	0	0	0	0.02
Jar	AD 700-900	LA 115862	7	0	0	0	0	0.21
		LA 265	244	0	0	0	0	0
		LA 6169	0	0	0	0	0	0
			49	5.08	0	0.46	0.07	0
		LA 6169 Total		2.54	0	0.23	0.04	0
	AD 700-900 Total			1.02	0	0.09	0.01	0.08
Mug	AD 700-900		244	0	0	0	0	0
	AD 700-900	LA 265	22	1.75	0	0	0	0.11
		LA 6169	2	0	0	2.23	0	0
	AD 700-900 Total			0.87	0	1.12	0	0.05
Pot	AD 700-900	LA 265	24	0	0	0	0	0
Seed	AD 700-900	LA 115862	9	0	0	0	0	0
			7	0	0	0	0	0
		LA 115862 Total	0	0	0	0	0	0
		LA 265	24	1.66	0.83	0	0	0
	AD 700-900 Total			0.55	0.28	0	0	0
Sherds	AD 700-900	LA 6169	49	2.38	0	0	0.22	0
Utility	AD 700-900	LA 6169	2	0	0	0	0	0

	Table 24.26. Pivot Table 16	Table 16: Age by Mean Pollen Concentration Values, Selected Economic Taxa	en Conce	ntration V	alues, Selecte	d Economic Taxa	_	
				Zea				Cylindro-
Age	Period	Site	Feature	e mays	Cucurbitaceae	eae Sphaeralcea	a Cactaceae	ae puntia
AD 1100-1200	Late Rio Grande Developmental	LA 6169	81	0.81		0.27	0	0
AD 700-900	Early Rio Grande Developmental	LA 115862	9	0.48		0	0	0
			7	1.55		0.46	0.2	0
		LA 115862 Tota	_	1.34	4 0	0.36	0.16	0
		LA 265		2.62	2 0.22	0	0.87	5.56
			24	0.03	3 0	0	0.21	0.21
			244	0.01	1 0	0	0.02	0.01
		LA 265 Total		0.54	4 0.04	0	0.27	1.2
		LA 6169	2	0.13	3	0	0	0
			49	0.91		0	0.34	0.11
		LA 6169 Total		0.39	0 6	0	0.11	0.04
	Early Rio Grande Developmental Total			0.73	3 0.01	0.11	0.18	0.39
Age	Period	Site	Feature	Platyo- puntia	<i>Artemisia</i> Sol	Solanaceae Rosacea	Poly- eae gonum	· Enogo- n num
AD 1100-1200	Late Rio Grande Developmental	LA 6169	81	0.27	1.9	0	0	0 0.07
AD 700-900	Early Rio Grande Developmental	LA 115862	9	0	0	0	0	0
			7	0	0	0	0	0.1
		LA 115862 Total		0	0	0	0	
		LA 265	22	0.22	1.75	0	0	0.1
			24	0	0.83	0.42	0	
			244	0	0	0	0	
		LA 265 Total		0.04	0.68	0.17	0	0.0
		LA 6169	0	0	0			
			49	0	3.73			
		LA 6169 Total		0	1.24			
	Early Rio Grande Developmental Total			0.01	0.68	0.05 0	0.17 0.02	0.03

Table 24.26. Pivot Table 16: Age by Mean Pollen Concentration Values. Selected Economic Taxa

